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Preface

We met again in front of the statue of Gottfried Wilhelm von Leibniz in the city of 
Leipzig. Leibniz, a famous son of Leipzig, planned automatic logical inference using 
symbolic computation, aimed to collate all human knowledge. Today, artificial 
intelligence deals with large amounts of data and knowledge and finds new 
information using machine learning and data mining. Machine learning and data 
mining are irreplaceable subjects and tools for the theory of pattern recognition and in 
applications of pattern recognition such as bioinformatics and data retrieval.  

This was the fourth edition of MLDM in Pattern Recognition which is the main 
event of Technical Committee 17 of the International Association for Pattern 
Recognition; it started out as a workshop and continued as a conference in 2003. 
Today, there are many international meetings which are titled “machine learning” and 
“data mining”, whose topics are text mining, knowledge discovery, and applications. 
This meeting from the first focused on aspects of machine learning and data mining in 
pattern recognition problems. We planned to reorganize classical and well-established 
pattern recognition paradigms from the viewpoints of machine learning and data 
mining. Though it was a challenging program in the late 1990s, the idea has inspired 
new starting points in pattern recognition and effects in other areas such as cognitive 
computer vision.  

For this edition the Program Committee received 103 submissions from 20 
countries. After the peer-review process, we accepted 58 papers for presentation. We 
deeply thank the members of the Program Committee and the reviewers, who 
examined some difficult papers from broad areas and applications. We also thank the 
members of the Institute of Applied Computer Sciences, Leipzig, Germany who ran 
the conference secretariat. We appreciate the help and understanding of the editorial 
staff at Springer, and in particular Alfred Hofmann, who supported the publication of 
these proceedings in the LNAI series.  

Last, but not least, we wish to thank all the speakers and participants who 
contributed to the success of the conference.  

This proceedings also includes a special selection of papers from the Industrial 
Conference on Data Mining, ICDM-Leipzig 2005, which we think are also interesting 
for the audience of this book. We also thank the members of the Program Committee 
of ICDM 2005 for their valuable work, and all the speakers who made this event a 
success. 

Leipzig, Petra Perner  
July 2005 Atsushi Imiya 
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On ECOC as Binary Ensemble Classifiers 

J. Ko1 and E. Kim2  

1 Dept. of Computer Engineering, Kumoh National Institute of Technology, 
1, Yangho-dong, Gumi, Gyeongbuk 730-701, Korea 

nonezero@kumloh.ac.kr, 
2 National Computerization Agency, 
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Abstract. The Error-Correcting Output Codes (ECOC) is a representative ap-
proach of the binary ensemble classifiers for solving multi-class problems. 
There have been so many researches on an output coding method built on an 
ECOC foundation. In this paper, we revisit representative conventional ECOC 
methods in an overlapped learning viewpoint. For this purpose, we propose new 
OPC based output coding methods in the ECOC point of view, and define a 
new measure to describe their properties. From the experiment on a face recog-
nition domain, we investigate whether a problem complexity is more important 
than the overlapped learning or an error correction concept. 

1   Introduction 

The Error-Correcting Output Codes (ECOC) [1] is one of the binary ensemble classi-
fiers for solving multi-class problems. The ECOC has been dominant theoretical 
foundation in output coding methods [2-6] that decompose a complex multi-class 
problem into a set of binary problems and then reconstructs the outputs of binary 
classifiers for each binary problem. The performance of output coding methods de-
pends on base binary classifiers. It needs to revisit the ECOC concept, since the Sup-
port Vector Machines (SVM) [7] that can produce a complex nonlinear decision 
boundary with a good generalization performance is available as a base classifier for 
output coding methods. 

The ECOC has two principals with respect to a codes design in which the codes 
concern both how to decompose a multi-class problem into several binary ones and 
how to decide a final decision. One principal is to enlarge the minimum hamming 
distance of a decomposition matrix. The other is to enlarge the row separability to 
increase the diversity among binary problems. A high diversity reduces an error-
correlation among binary machines [8]. By enlarging the length of codewords [9], we 
can easily increase the hamming distance of the decomposition matrix at the cost of 
generating a large number of binary problems. In this circumstance, each class can be 
learned redundantly in several binary machines, we call it overlapped learning. By 
increasing the error-correction ability through the overlapped learning, we have been 
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able to improve performance of a conventional ECOC with a hamming decoding. The 
hamming decoding closely concerns the hamming distance of the decomposition matrix. 

In a generalized ECOC [9] that includes 0 elements as well as –1 and +1 in the de-
composition matrix, i.e., it has a triple codes (on the other side, a conventional ECOC 
consists of -1 and +1, i.e., it has a binary codes), we cannot directly compute the 
hamming distance. A new distance, a generalized hamming distance, is defined by 
[9], where the distance between the 0 element and the others is 0.5. The primary mo-
tivation of the conventional ECOC has been the overlapped learning of classes built 
on binary codes. The generalized ECOC does not insist on the binary codes any more, 
and the SVM used for a binary classifier can produce a real-valued confidence output 
that can be useful information for discriminating classes.  

In this paper, we revisit ECOC with respect to the generalized ECOC by compar-
ing and empirically analyzing certain properties of the representative ECOC methods, 
such as One-Per-Class (OPC) [11], All-Pairs [12], Correcting Classifier (CC) [10] and 
our proposed OPC-based methods designed on conventional ECOC concept. Further, 
we give an empirical conclusion on a codes design, which is limited to our experiment 
on face recognition. 

2   One-per-Class Variants with ECOC Concept 

In this section, we firstly formulate the output coding method (a generalized ECOC) 
in two steps: decomposition and reconstruction. Then, we propose new OPC based 
output coding method with ECOC concept, and define a new measure to describe 
their properties. Further, we describe later the performance of ECOC with margin 
decoding, which uses the real-valued output of a machine, using a newly defined 
problem complexity measure in the experiment. The OPC with hamming decoding 
has no error correction ability, so we begin by introducing additional machines to 
endow it with an error correcting ability. 

2.1   Decomposition and Decoding 

Decomposition (Encoding): A decomposition matrix, { } KLD ×+−∈ 1,0,1 , specifies K  

classes to train L  machines (dichotomizers), Lff ,,1 K . The machines lf  is trained 

according to the row ),( ⋅lD . If 1),( +=klD , all examples of class k are positive and if 
1),( −=klD , all examples of class k  are negative, and if 0),( =klD  none of the exam-

ples of class k  participates in the training of lf . The column of D  is called code-

words. The entry “ 0 ” is introduced by [9]. Hence, some examples for 0),( =klD  can 
be omitted in the training phase.  

We can formulate two separated super classes +
lC and −

lC  for the machine lf  as 

follows: { }1),(| ==+ klDCC kl , { }1),(| −==− klDCC kl . 

Decoding (Reconstruction): In the decoding step, a simple nearest-neighbor rule is 
commonly used. The class output is selected that maximizes some similarity meas-

ure LLs }1,0,1{: −×R ],[ ∞∞−→ , between )(xf and column ),( kD ⋅ .  
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)),(),((maxarg_ kDfsoutputclass k ⋅= x  (1) 

We call it a margin decoding, equation  a similarity measure based on a margin, 
defined as )(xfy ⋅ [9]. When classifier outputs a hard decision, { }1,1)( −∈xh , the 

method is called hamming decoding, equation . 

=⋅ l l klDfkDfs ),()()),(),(( xx  

+×=⋅ l lH klDhkDhs )),()(1(5.0)),(),(( xx  

(2) 

(3) 

2.2   New Decompositions 

Tree-Based Decomposition: We design the tree structure for getting additional  
machines as well as those of generated by OPC. We adopt binary tree and distribute 
the classes of a parent node to its child nodes in a crossing manner. By the crossing 
manner, we can achieve the diversity of the binary problems with our proposed de-
composing method as follows. Each node except for the root node makes one row in a 
decomposition matrix by assigning a positive value for classes that the node has, and 
a negative value for the other classes in the sibling nodes. The root node gives a posi-
tive value for the half of the whole classes and a negative value for the remainder. 
Fig. 1 shows a generated decomposition tree and a decomposition matrix on 8 classes. 

     

Fig. 1. Decomposition matrix of Tree-based scheme for 8 classes. tree-structure on  
8 classes. Its decomposition matrix 

When the number of classes is K , the )1(2 −× K  problems are generated. The differ-
ence between the number of classes being a positive class and the number of classes 
being a negative class varies according to the level of depth of the tree, so each binary 
problem can have the different level of complexity. Therefore, it is desirable to  
introduce weights into the decoding process to handle a different complexity among 
problems. 

N-Shift Decomposition: In this scheme, we first decide the number of positive 
classes N , and then form the first row of a decomposition matrix by setting N  ele-
ments from left as positive ones and the remainder as negative ones. The rest rows are 
easily constructed by right-shifting the elements of the preceding row. Finally, OPC 
decomposition matrix is added to it. When the number of classes is K , the K×2  
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problems are generated. . Fig. 2 shows two examples of a generated decomposition 
matrix having different N  values, 2 and 3, respectively, when K is 4. 

      

2=N                   3=N  

Fig. 2. Decomposition matrix of 2-Shift and 3-Shift for 4 classes 

2.3   New Decodings 

It is undesirable to deal with the outputs of the machines equally where each machine 
is trained with a problem having different level of complexity. There are two possible 
solutions to this problem: One is to utilize the different level of output for class deci-
sion, and the other is to adopt a weighed output. In this section, we propose the relative 
distance decoding for the former, and the weighted decoding for the latter respective. 

Relative Distance Decoding: The machine has different scale outputs for two 
classes, so the same outputs should be understood differently. As an example, con-
sider that, for samples belonging to class i , the machine habitually generates 0.8, and 
for samples belonging to class j , 0.5. The habit of generating uneven outputs for 
classes is formed during the learning process, and can be used for discriminating 
classes. To utilize this information, we introduce an average template. The average 
template is constructed by calculating the average of output for each machine as fol-
lows: 

( ) jC i CfjiD
j

/)(),(' = ∈x x  (4) 

where jC means the number of samples belonging to the class j . The following 

equation calculates the similarity between a given input and a considered class by the 
relative distance. 

−=
++=⋅

l l klDfd

BAdkDxfrd

2
),(')(

))exp(1/(1)),('),((

x
 

(5) 

Both A and B constants of the exponential function and they can be usually fixed by 
experiment. 

Weighted Decoding: As the number of positive classes increases, the complexity of 
the binary problem increases accordingly. There is a difference between the confi-
dences on the outputs of a machine trained with problems having different level of 
complexity. To handle this problem, we introduce weighting into the decoding proc-
ess. The weight for learner l , lw , is calculated as follows:  
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>
=

=

else

klDif
klDL

klDLw kl

0

0),(1
)),((

)),((/1

 (6) 

where, )),(( klDL  is a function for discerning positive classes from negative classes. 
Then, the weighted decoding is as follows: 

=⋅
l

ll klDxfwkDxfs ),()()),(),((  (7) 

This decoding can be used for determining the complexity of a problem. If we adopt 
this measure and obtain improvement in decomposition, then we can think that the 
decomposition generates complex problems. 

3   Intuitive Problem Complexity 

We define a new measure for estimating the complexity of a machine as well as the 
weighted decoding. We need some measure that estimates the complexity when in 
designing the decomposition matrix, not in the experiment as the weighted decoding. 

The magnitude of a super class, equation (2), for training a binary classifier, means 
that how many classes are grouped into one. Intuitively, one expects that, as the num-

ber of classes that is grouped into one increases, i.e., the magnitude of || +
lC  or || −

lC  

increases, the complexity of the binary problem associated with them will increase. 
From this viewpoint, we can say that the most complex case is 

2)2/(|||| >>== −+ KCC ll , and the easiest case is 1|||| =−+
ll CorC  when the number of 

classes is K . In other words, if we define intuitively the problem complexity as the 

magnitude of the super class of a binary problem, this can be in proportion to || +
lC  

and || −
lC . Let us define Intuitive Problem Complexity (IPC) as follows:  

)||,||( −+≡ CCMinIPC  (8) 

We summarize the magnitude of each super class of different decompositions and IPC 
in Table 1. According to Table 1, the tree-based scheme can be considered as a very 
complex problem compared to other schemes. The second complex problem can be 
the N-Shift scheme or CC scheme up to the value of N. 

Table 1. Comparison of the magnitudes of super classes and IPC 

Decomposition 
Scheme 

OPC All-Pairs CC 
Tree-
based 

N-Shift 

|| +C  1 1 2 K/2 N 

|| −C  K-1 1 K-2 K/2 K-N 

IPC 1 1 2 K/2 N 
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4   Experimental Results 

4.1   Data Sets 

We used the ORL face dataset, which is one of the popular public datasets used in 
face recognition. The image set consists of 400 images, ten images for each individ-
ual. Each image for one person differs from each other in lighting, facial expression, 
and pose. We obtain the final training and testing dataset by applying preprocessing 
and Principal Component Analysis. Fig. 3 shows examples of the normalized face 
images produced after preprocessing. 

 

Fig. 3. Some normalized facial images in the ORL dataset 

We used all of the face images for PCA transformation, and divided them into two 
parts; one was used for a gallery set (reference set), and the other was used for a probe 
set (test set). We obtained the highest recognition rate at 48-dimension with a PCA-
based rank test, which is the standard test protocol described in FERET [13]. We 
determined the feature dimension by employing the procedure mentioned above, 
because the focus of our experiments is to display the classification performance of 
our proposed method. To compare the properties of the output coding methods, we 
used the SMOBR [14], which is one of the implementations of SMO [15], with RBF 
kernels as a base classifier. We randomly selected five images of each person, for 
training and the remaining five for testing. The number of samples for training and 
testing is both 200 respectively and the dimension of one sample is 48. Note that the 
dataset has a relatively small number of samples for its high dimensional feature space. 
We evaluated various decoding schemes on the ORL face dataset and compared their 
recognition performance. Table 2 shows the decoding schemes we investigated. 

Table 2. Various decoding schemes 

Symbol Meaning 
HM Hamming Decoding 
MG Margin Decoding 
RD Relative Distance Decoding 

WHM Weighted Hamming Decoding 
WMG Weighted Margin Decoding 
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In the subsequent section, the recognition accuracy of each decomposition scheme 
is presented. For those results, we calculated the recognition accuracy, varying C  of 
SVM parameter from 1 to 10 and dispersion from 0.2 to 1.0 and chose the best recog-
nition accuracy among them. 

4.2   Properties Analysis 

In this section, we compare and analyze empirically some properties of the represen-
tative output coding methods, such as OPC, All-Pairs, CC and our proposed OPC-
based methods, on the following items. 

Relationships Between Overlapped Learning and Hamming Decoding: The error 
correcting ability is related to the minimum hamming distance of a decomposition 
matrix, and this is obtained from the overlapped learning of classes. We investigate it 
empirically. The number of binary machines generated and the minimum hamming 
distance of each output coding method for 40 classes are summarized in Table 3. We 
assume that the hamming distance between zero and zero or nonzero element of a 
decomposition matrix is 0.5. 

Table 3. Number of machines and Minimum hamming distance of decomposition schemes 

Number of Machines Minimum Hamming Distance Decomposition 
Scheme K=40 K-Class K=40 K-Class 

OPC 40 K 2 2 
All-Pairs 780 K(K-1)/2 390 (K(K-1)/2–1)/2+1 

CC 780 K(K-1)/2 76 2 (K-2) 
N-Shift 80 K+K 2 2 

Tree-Based 78 (K-2)+K 2 2 

Fig. 4  presents the recognition accuracy of each decomposition scheme with 
hamming decoding. If we compare the recognition accuracy of Fig. 4  with the 
number of machines and the minimum hamming distance in Table 3, we can observe 
that the recognition accuracy is in proportion to both the number of machines and the 
minimum hamming distance. 

The recognition accuracy of OPC is considerably lower than those of N-Shift and 
Tree-based schemes in spite of their having the same hamming distances. The reason 
for this observation is that OPC does not retain any error correction ability because it 
does not conduct overlapped learning. In other words, both N-Shift and Tree-based 
schemes generate some extra binary machines in addition to the same machines of the 
OPC scheme; as a result, this allows for them to train classes in an overlapped man-
ner, where it makes a considerable difference. Therefore, we conclude that the recog-
nition accuracy of each decomposition scheme with hamming decoding depends on 
the number of machines for overlapped learning as well as its minimum hamming 
distance. 
 



8 J. Ko and E. Kim 

 

Hamming Decoding Versus Margin Decoding: According to Fig. 4 , margin de-
coding is superior to hamming decoding for all the decomposition schemes, except for 
All-Pairs. This means that the margin decoding does not strongly depend on the num-
ber of machines or the minimum hamming distance. The reason for the poor accuracy 
of All-Pairs with margin decoding can be explained by two viewpoints as follows: 
First, the number of samples being used in training each machine of All-Paris is sig-
nificantly smaller than that of OPC. Secondly, the decomposition matrix includes zero 
elements, which means that some classes exist that are not involved in training a ma-
chine. That raises the problem of nonsense outputs. The level of the nonsense outputs 
problem increases as the number of classes increases. 

   
   

Fig. 4. Comparison of recognition accuracy  with hamming decoding,  between hamming 
and margin decoding, and  between margin and weighted margin decoding 

Relationships Between Performance and Intuitive Problem Complexity: While 
N-Shift and Tree-Based schemes have more machines due to the overlapped learning, 
they are inferior to OPC in recognition accuracy. For explanation of the reason, we 
consider the Intuitive Problem Complexity (IPC) and the weighted decoding. The IPC 
of each decomposition scheme being computed using Table 1 with K=4, can be 
ordered ascendant as follow: OPC=1, 2-Shift=2, 3-Shift=3, and Tree-Based=20. This 
order corresponds exactly to the order of their recognition accuracy shown in Fig. 4 . 

Therefore, we infer that the overlapped learning has a strong effect when it is used 
with hamming decoding; however, this is not the case with margin decoding. In other 
words, recognition accuracy depends more on the IPC than the overlapped learning 
effects when we use margin decoding. Table 4 presents both the IPC and recognition 
accuracy on the ORL dataset.  

To support this inference, We compare the recognition accuracy of N-Shift and 
Tree-Based schemes with margin decoding and weighted decoding respectively in 
Fig. 4 . According to Table 4 and Fig. 4 , the recognition accuracy of each 
decomposition scheme decreases as the IPC increases; however, their recognition 
accuracy is almost the same as our proposed weighted margin decoding. This means 
that weighted margin decoding can remove something related to the problem 
complexity represented by IPC. These results allow us to infer again that recognition 
accuracy strongly depends on the IPC of each decomposition matrix when we use 
margin decoding. 



 On ECOC as Binary Ensemble Classifiers 9 

 

Table 4. Recognition Accuracy (RA) of decomposition schemes with margin decoding and IPC 

Decomposition OPC 2-Shift 3-Shift Tree-Based 
RA (%) 92.0 90.0 89.0 84.0 

IPC 1 2 3 20 

Performance Analysis: In Table 5, we present the recognition accuracy of the ex-
periments on the ORL dataset with various decomposition and decoding schemes. 

Table 5. Rcognition accuracy (%) on the ORL face dataset 

Decoding Scheme Decomposition 
Scheme HM MG RD WHM WMG 

OPC 69.0 92.0 93.0 - - 
All-Pairs 91.0 88.5 88.5 - - 

CC 89.5 92.5 93.0 - - 
2-Shift 73.5 90.0 93.0 73.5 91.0 
3-Shift 73.5 89.0 90.0 71.5 92.5 

Tree-Based 73.5 84.0 85.5 75.0 91.0 

When we compare the OPC and All-Pairs, with the hamming decoding, All-Pairs 
shows a significantly better performance than OPC, but with the margin decoding, 
OPC shows a better performance. Overall, OPC with the margin decoding shows 
slightly better performance than All-Pairs with the hamming decoding. We infer that 
the performance of OPC training all classes at a time is better than that of All-Pairs 
since the number of training face image of one person is small. 

Each machine in OPC and CC trains all the classes at a time. In this case, CC 
shows significantly better performance than OPC in hamming decoding like All-Pairs 
due to its large number of machines. With margin decoding, the performance of the 
two machines is almost the same regardless of their differing numbers. 

Consequently, when we have small number of samples, such as face images, the 
OPC-like schemes training all the classes at a time can be preferred, but it is unneces-
sary to make too many machines for the overlapped learning like the CC scheme to 
improve an error correcting ability at the expense of a larger IPC than OPC and  
All-Pairs. 

5   Conclusion 

In this paper, we compared and analyzed empirically certain properties of the repre-
sentative output coding methods such as OPC, All-Pairs, CC and our proposed OPC-
based methods with a face recognition problem. We observed the followings:  Firstly, 
the recognition accuracy of each decomposition scheme with a hamming decoding 
depends on the number of machines for overlapped learning as well as its minimum 
hamming distance of it. Secondly, the margin decoding is superior to hamming de-
coding with all the decomposition schemes except for All-Pairs. The margin decoding 



10 J. Ko and E. Kim 

 

is slightly independent of the number of machines or the minimum hamming distance. 
Thirdly, we infer that an overlapped learning can have a strong effect when it is used 
with the hamming decoding, but this is not the case with the margin decoding. This 
means that recognition accuracy relies more on the IPC than the overlapped learning 
effects when we use the margin decoding. 

According to our experiment on face recognition, we conclude that the perform-
ance depends more on the problem complexity than the minimum hamming distance 
of the decomposition matrix, so it is no need to consider seriously the conventional 
error-correcting concept, and we suggest that the IPC of desired output coding method 
should be small as one.  
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Abstract. Concept lattice, core structure in Formal Concept Analysis
has been used in various fields like software engineering and knowledge
discovery.In this paper, we present the integration of Association rules
and Classification rules using Concept Lattice. This gives more accurate
classifiers for Classification. The algorithm used is incremental in nature.
Any increase in the number of classes, attributes or transactions does not
require the access to the previous database. The incremental behavior is
very useful in finding classification rules for real time data such as image
processing. The algorithm requires just one database pass through the
entire database. Individual classes can have different support threshold
and pruning conditions such as criteria for noise and number of condi-
tions in the classifier.

Keywords: Classification rules, Formal concept analysis, Data Mining,
Concept lattice.

1 Introduction

Data Mining can be described as a process of exploration and analysis of large
data sets in order to discover meaningful patterns and rules. Data Mining in-
volves scientists from a wide range of disciplines, including mathematicians,
computer scientists and statisticians, as well as those working in fields such as
machine learning, artificial intelligence, information retrieval and pattern recog-
nition. Classification rule mining and association rule mining are two important
data mining techniques. Classification rule mining discovers a small set of rules in
the database where consequent of the rule is a class [Q1992][Q1986].Association
rule mining discovers all possible rules in the database that satisfy a user speci-
fied minimum support and minimum confidence [AS1994] [SA1996] [PBL1999].
Classification Based on Association rule (CBA) mining aims to find the rules
of the form COND → CL where COND is the set of conditions and CL is the
class label [LHM1998]. Few CBA algorithms have been proposed to address this
issue [LHM1998] [HLZC1999] . In this paper we are discussing the method of
generating Classification rules Based on Association rules using Concept Lattice
of Formal Concept Analysis (CBALattice).

P. Perner and A. Imiya (Eds.): MLDM 2005, LNAI 3587, pp. 11–20, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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CBALattice provides an efficient method for constructing the concept lattice
corresponding to each class label and then it provides an efficient method for
building a classifier from the lattice. This method needs only one database pass
through the whole procedure. CBALattice can classify data sets irrespective of
the number of classes, number of objects (i.e. rows) and number of attributes
(i.e. columns). As Association rules deals with whole of data, they give more
accurate rules. Since CBALattice is based on association rules so it provides more
accurate rules as compared to other traditional methods such as ID3 [Q1986],
C4.5 [Q1992]etc.As concepts deal with maximal item sets, concept lattice-based
method provides results faster as compared to traditional methods such as ID3,
C4.5 etc [HLZC1999] .

CBALattice is incremental in nature. Any increase in number of objects,
attributes and classes does not need reading the previous database. Once Clas-
sification rules have been generated, concept lattice can be stored. In case of in-
crease in objects, attributes or classes, concepts generated from the incremented
database can be combined with concepts stored earlier and new classification
rules can be generated.

Traditional association rule mining uses only a single minimum support in
rule generation, which is inadequate for unbalanced class distribution. CBAL-
attice method allows us to specify different minimum support for different class
label.

Since CBALattice constructs a separate concept lattice for each class label
so different pruning conditions can be mentioned for each class label such as
criterion of deciding for noise. Also this technique can generate rule, which has
many conditions. These rules may be important for accurate classification but
it is difficult to find such rules in the CBA methods proposed earlier.

1.1 Related Work

Classification rule mining has been in common use since the emergence of data
mining. Several algorithms have been produced such as ID3, C4.5 etc. [LHM1998]
proposes an approach of integrating association rules and classification rules.
[LHM1998] cannot specify different pruning conditions for each class label except
minimum support threshold. Also [LHM1998]is not incremental in nature. It does
not consider increase in objects, attributes or classes.

[MAR1996] proposes an algorithm SLIQ, which is scalable. This algorithm
can handle large amount of data. But although scalable it is not incremental.
Once rules have been generated, any change in the data is not considered. Also
SLIQ makes at most two passes over the data for each level of the decision tree.
CBALattice makes just one pass of the whole database. SLIQ requires pre-sorting
of the data while is not needed in case of our approach.

There are few algorithms present which talk about use of concept lattice
in finding Classification rules [HLZC1999] , [LN90], [GMA1995], [XHLL2002],
[FFNN2004] , [CR1993] , [MZ2000]. [HLZC1999] gives an algorithm to integrate
association rules and classification rules using lattices (CLACF). But it is not
incremental. Also it uses same minimum support for all class labels. It cannot
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Table 1

Type Increase Increase Increase Lattice Integra- Min sup Pruning
of in in in Type -tion of for condi

Data Classes Attri- Objects AR and different -tions for
different

-butes CR classes classes

GRAND Bin No No No Lattice No Same No

LEGAL Bin No No Yes Lattice No Same No

GALOIS Attr/val No No Yes Lattice No Same No

RULEAR- Attr/val No No No Lattice No Same No
NER

CLNN, Symb. No No No Concept No Same No
CLNB Num. Lattice

CLACF Attr/val No No No Concept Yes Same No
Lattice

CBALattice Bin Yes Yes Yes Concept Yes Different Yes
Lattice

define different pruning conditions for each class label. Concept Lattice pro-
duces only maximal item-sets so they are much faster than traditional methods.
[HLZC1999] compares apriori and C4.5 with CLACF and found CLACF to be
faster than those algorithms.

LEGAL [LM1990]can classify datasets with two classes (positive and neg-
ative examples of one concept) only. CBALattice can handle any number of
classes. Also CBALattice can handle increase in number of attributes, objects
and classes. LEGAL is non-incremental in nature. CLNN and CLNB [XHLL2002]
use non-incremental algorithm to build a lattice. GALOIS [GMA1995]generated
concepts. It does not generate the rules after that. So objects of test data have
to be tested against concepts and not against classification rules. RULEARNER
[S1995]uses incremental approach, but it does not make use of Concept Lattice.
Our algorithm deals with only concepts, which are less in number.

Table 1 gives a fair idea of comparison of CBALattice with other lattice-based
methods. Features of GRAND GALOIS, RULEARNER, CLNN CLNB has been
taken from [FFNN2004] .

2 Formal Concept Analysis

Formal Concept Analysis is a field of applied mathematics based on the math-
ematization of concept and conceptual hierarchy [GW1999]. It thereby activates
mathematical thinking for conceptual data analysis and knowledge processing.

A formal context K= (G,M,I) consists of two sets G and M and a rela-
tion I between G and M. The elements of G are called the objects and the
elements of M are called the attributes of the context. For a set A⊆G of ob-
jects A′ = { mεM | gIm for all gεA } (the set of all attributes com-
mon to the objects in A). Correspondingly, for a set B of attributes we define
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B′ = { gεG | gIm for all mεB } (the set of objects common to the objects in
A). A formal concept of the context (G,M,I) is a pair (A,B) with A⊆G,B⊆M,
A′=B and B′=A. A is called the extent and B is the intent of the concept (A,B).
ζ(G,M,I) denotes the set of all concepts of the context (G,M,I).

If (A1,B1) and (A2, B2) are concepts of a context, (A1,B1) is called a sub
concept of (A2,B2), provided that A1⊆A2 (which is equivalent to B2⊆B1). In
this case, (A2,B2) is a super concept of (A1,B1) and we write (A1,B1) ≤(A2,B2).
The relation ≤ is called the hierarchical order of the concepts. The set of all
concepts of (G, M, I) ordered in this way is denoted by ζ(G,M,I) and is called
the concept lattice of the context (G,M,I).

An ordered set V: = (V,≤) is a lattice, if for any two elements x and y in V
the supremum x

∨
y and the infimum x

∧
y always exist. V is called a complete

lattice, if the supremum
∨

X and the infimum
∧

X exist for any subset X of V.
Every complete lattice V has a largest element,

∨
X, called the unit element

of the lattice, denoted by 1v. Dually, the smallest element 0v is called the zero
elements.

Proposition 1. Each concept of a context (G,M,I) has the form (X′′,X′) for
some subset X⊆G and the form (Y′,Y′′) for some subset Y⊆M. Conversely all
such pairs are concepts. This implies every extent is the intersection of attribute
extents and every intent is the intersection of object intents.

Using the above proposition this paper gives a method for finding all concepts
of the context. Using all concepts now we draw a concept lattice corresponding
to each class label.

2.1 Building the Lattice

This algorithm builds Concept Lattice for all class labels. Each class label has
a different lattice. The lattice is constructed taking into consideration the min-
imum support threshold and maximum number of levels. We can prune the
rules according to noise. If size of extent of node is less than some threshold
then we can consider it as noise. Also while drawing the lattice, we can de-
cide upon the number of levels for the lattice. More levels means more con-
ditions in the rule. This way we can find the rules with desired number of
conditions.

findConcepts(minSupport,maxlevel,noiseThreshold)
{ for all class labels

findExtent(classlabel)
// for all class labels, build a lattice
// first find all extents of all attributes corresponding to a

class label
for all attributes
findExtent(attribute)
findIntersection(attributeExtent,classlabelExtent,intersect
Extent)
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if support(intersectExtent) < minSupport
break;

if (size(intersectExtent)) < noiseThreshold)
break;

if intersectExtent not present in concept list
addExtentInConceptList(intersectExtent)
for all concepts in ConceptList

findIntersection(conceptExtent,intersectExtent,
extent)

if extent not present in concept list
addExtentInConceptList(extent)

endif
addZeroElement()
storeConceptListInFile()
drawLattice(maxLevel)

}

For example, consider the following database [HK2001].

a b c d e f g h i j CL1 CL2
1. X X X X X
2. X X X X X
3. X X X X X
4. X X X X X
5. X X X X X
6. X X X X X

Fig. 1

a: age ≤30, b: age=31..40, c: age>40, d: income=low, e: income= medium, f: in-

come=high, g: student=yes, h: student=no, i: credit rating = fair, j: credit rating

= excellent, Class Label (CL1): buys computer = yes, CL2: buys computer = no

Concepts generated for Class Label CL1 from this database are: {36,b},
{45,cehi}, {6,bdgj}, {3,bfhi}, {345,hi}.

Here we have assumed that no support threshold and no limit on level have
been specified. Concept lattice:

From the concept lattice we can read the Classification rules, which are based
on following proposition:

Proposition 2. An implication A → B holds in (G,M,I) if and only if B ⊆ A”.
This means an implication is an Association rule with 100% confidence. Method
to read an implication from the concept lattice is as follows: It is sufficient to
describe this procedure for implications of the form A → m , since A → B holds
if and only if A → m holds for each m ε B. A → m holds if and only if (m’,m”)
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(A’,A”), i.e. if μ m ≥ ∩ { μ n — n ε A}. This means that we have to check in
the concept lattice whether the concept denoted by m is located above the infimum
of all concepts denoted by an n from A.

2.2 Building the Classifier

Using above Proposition we can now generate Classification rules.

findClassifier() { Start from zero element
go up level by level
for each branch at all levels

keep storing the attributes
last element i.e. unit element is the class label
(rhs of the rule)
all attributes connected by ’and’ connective is the
lhs of the rule

endfor
}

Fig. 2

From the Fig 2, we can find the Classifiers as

1. c
∧

e
∧

h
∧

i ⇒ CL1
2. b

∧
f
∧

h
∧

i ⇒ CL1
3. b

∧
d

∧
g

∧
j ⇒ CL1

2.3 Incremental Classification Rules

Here we have described the algorithm for increase in objects (i.e. the rows).
Similarly we can find concepts when increase in attributes or increase in class
labels is performed.
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incrementalLattice(minSuport, maxlevel,noiseThreshold)

{ if (objectIncremental)
{

for all class labels
findExtent(newClassLabelExtent)
read oldClassLabelExtent from file
ClassLabelExtent = oldClassLabelExtent U
newClassLabelExtent
readConceptFromFile()
for all attributes

findAttributeExtent(newExtent)of incremented context
readAttributeExtent(oldExtent) from file
incrementExtent = newExtent U oldExtent
if support(incrementExtent) < minSupport

break;
if (size(intersectExtent)) < noiseThreshold)

break;
if incrementExtent not present in concept list

addExtentInConceptList(incrementExtent)
for all concepts in ConceptList

findIntersection(concept,incrementExtent,extent)
if extent not present in concept list
addExtentInConceptList(extent)

endif
endfor

endfor
}

}

Let’s assume that the incremented database is as given in Fig 3.

a b c d e f g h i j CL1 CL2
1. X X X X X
2. X X X X X
3. X X X X X
4. X X X X X
5. X X X X X
6. X X X X X
7. X X X X X
8. X X X X X

Fig. 3
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Concepts generated for class label 1 from this incremented database are
{7,adig}, {3, bfhi}, {45,cehi}, {3, bfhi}, {36,b}, {458,cei}, {67,dg},{3, bfhi},
{678,g}, {345,hi}, {34578,I}, {6,bdjg}, {8,cegi}, {45,cehi}, {78,gi}

Concept Lattice:

Fig. 4

Few classification rules generated are:

1. a
∧

d
∧

i
∧

g ⇒ CL1
2. c

∧
e

∧
i ⇒ CL1

3. b
∧

f
∧

h
∧

i ⇒ CL1
4. c

∧
e

∧
h

∧
i ⇒ CL1

3 Experiments

3.1 Computation Effort

The algorithm to find extents of all attributes requires one database pass through
the entire database. After finding the extents, we put the extent of class in the
list of concepts. Then we find intersection of every attribute extent with the
extents in the list of concepts. This requires checking of attribute extent against
previously found extents. If intersected extent does not exist in the list then
it is put in the list. Effort involved here is checking of intersection of extents.
If there are m attributes and n objects then effort required is checking against
m(m+1)/2 extent list where size of each extent list is less than n. In fact size
of each extent list is very less as compared to n. If we increase the number of
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attributes to m+k then effort involved in our algorithm is m(k(k+1)/2) whereas
if we start the whole process again then effort required is (m+k)(m+k+1)/2.

3.2 Accuracy

We have tried our algorithms on dataset from UCI [MM1996]and found that our
algorithm gives quite accurate results.

Table 2

Dataset No of No of No.- Size Error No. CR No. CR with
Attrs Binary Classes Rate with no support

Attrs support Threshold
= 60%

Tic-tac-toe 9 27 2 958 4% 346 20

Zoo 16 36 7 101 4.2% 256 15

Car 6 21 1 1728 6% 3506 436

Hepatitis 19 33 2 155 15% 1692 208

Column 1 denotes the name of the dataset. Column 2 denotes the number
of attributes present in the dataset. These attributes may be binary, numeric
or continuous. Since CBALattice deals with binary variables only so numeric
attributes have been converted to binary attributes. Continuous variables wher-
ever present, have been ignored. Column 3 denotes the number of binary at-
tributes that have been obtained after conversion. In case of Hepatitis dataset,
15 attributes out of 19 attributes have been converted to binary attributes and
attributes like Bilirubin, Alk Phosphate, Sgot, Albumin, and Protime have been
ignored (being continuous attributes). Other datasets considered above does not
have continuous variables. Column 4 denotes the number of objects present in
the dataset. Column 5 denotes the error rate on the datasets. Column 6 de-
notes the classification rules generated from the concept lattice. Here we have
assumed that no support threshold has been mentioned and no other pruning
such as number of conditions in the rule, has been performed. If we perform
pruning then number of rules generated will be very less. Column 7 denotes the
no. of classification rules generated with support threshold = 60%.

4 Conclusion

This paper proposes a framework to integrate association rule and classification
rule mining based on concept lattice of formal concept analysis. We propose
an algorithm that builds a concept lattice for each class label and then finds
the classification rules. The algorithm is incremental in nature. Any increase in
number of objects, attributes and classes can be handled very efficiently. Also
this algorithm provides a way to define different pruning conditions for different
classes.
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5 Future Work

CBALattice deals with only binary data. Future version will be able to handle
other data. CBALattice can handle large amount of data and since CBALattice
is incremental in nature so theoretically it should be scalable also. Scalability
can be tested in future.
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Abstract. Several cost-sensitive boosting algorithms have been
reported as effective methods in dealing with class imbalance problem.
Misclassification costs, which reflect the different level of class identi-
fication importance, are integrated into the weight update formula of
AdaBoost algorithm. Yet, it has been shown that the weight update pa-
rameter of AdaBoost is induced so as the training error can be reduced
most rapidly. This is the most crucial step of AdaBoost in converting a
weak learning algorithm into a strong one. However, most reported cost-
sensitive boosting algorithms ignore such a property. In this paper, we
come up with three versions of cost-sensitive AdaBoost algorithms where
the parameters for sample weight updating are induced. Then, their iden-
tification abilities on the small classes are tested on four “real world”
medical data sets taken from UCI Machine Learning Database based on
F-measure. Our experimental results show that one of our proposed cost-
sensitive AdaBoost algorithms is superior in achieving the best identifica-
tion ability on the small class among all reported cost-sensitive boosting
algorithms.

1 Introduction

Reports from both academy and industry indicate that the class imbalance prob-
lem has posed a serious drawback of classification performance attainable by
most standard learning methods which assume a relatively balanced distribu-
tion and equal error cost of the classes [6, 10]. Class imbalance problem can be
interpreted in two aspects: the imbalanced class distribution and the non-uniform
misclassification costs. Hence, the crucial learning issue is that the class distri-
bution is skewed and the recognition importance on rare events is much higher
than that on normal cases. Assuming the balanced class distribution and even
recognition importance, traditional learning algorithms do not always produce
classifiers which are capable of achieving satisfactory identification performances
on rare classes.

AdaBoost (Adaptive Boosting) algorithm, introduced by Freund and Schapire
[7, 12], is reported as an effective boosting algorithm to improve classification

P. Perner and A. Imiya (Eds.): MLDM 2005, LNAI 3587, pp. 21–30, 2005.
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accuracy. In view that prevalent classes usually contribute more to the overall
classification accuracy, the weighting strategy of AdaBoost may bias towards
the prevalent classes. Hence the desired identification ability on small classes is
not guaranteed. Cost-sensitive boosting algorithms are therefore developed such
that the boosting process may cater to the costly class [5, 13]. However, most
reported cost-sensitive boosting algorithm neglect the effects of cost items when
choosing the weight update parameter, which is crucial in converting a “weaker”
learning algorithm into a strong one.

In this paper, we come up with three versions of cost-sensitive AdaBoost
algorithms by inducing the misclassification costs into the weight update formula
of AdaBoost in three different ways. For each version, weight update parameter is
recalculated taking misclassification costs into consideration. These adaptations
retain the good feature of AdaBoost while becoming sensitive to different level
of learning importance of different classes. To evaluate their recognition abilities
on small classes, four “real world” medical data sets are tested. These data
are collections of typical disease diagnostics. Thus, the class imbalance problem
prevails in these data sets. F-measure evaluation is adopted for performance
comparisons.

This paper is organized as follows. Following the introduction in Section 1,
section 2 describes the AdaBoost algorithm and addresses the problems of cost-
sensitive learning. Section 3 details the methods of integrating misclassification
cost into AdaBoost algorithm. Section 4 describes the experimental data, base
learner and evaluation measurements. Section 5 compares the recognition abilities
of different cost-sensitive boosting algorithms. Section 6 provides the conclusions.

2 AdaBoost and Cost-Sensitive Boosting

2.1 AdaBoost Algorithm

AdaBoost algorithm reported in [7, 12] takes as input a training set {(x1, y1), · · · ,
(xm, ym)} where each xi is an n-tuple of attribute values belonging to a certain
domain or instance space X, and yi is a label in a label set Y . In the context
of bi-class applications, we can express Y = {−1,+1}. The Pseudocode for Ad-
aBoost is given as below:

Given:(x1, y1), · · ·, (xm, ym) where xi ∈ X, yi ∈ Y = {−1,+1}
Initialize D1(i) = 1/m.
For t = 1, · · ·, T :
1.Train base learner ht using distribution Dt

2.Choose weight updating parameter: αt

3.Update and normalize sample weights:

D(t+1)(i) =
D(t)(i)exp(−αtht(xi)yi)

Zt
Where, Zt is a normalization factor.
Output the final classifier: H(x) = sign(

∑T
t=1 αtht(x))
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It has been shown in [12] that the training error of the final classifier is
bounded as below:

1
m
|{i : H(xi) 	= yi}| ≤ 1

m

∑
i

exp(−yif(xi)) =
∏

t

Zt (1)

where,

Zt =
∑

i

D(t)(i)exp(−αtht(xi)yi) (2)

Minimize Zt on each round, αt is induced as

αt =
1
2
log

∑
i,yi=ht(xi)

D(i)(t)

∑
i,yi �=ht(xi)

D(i)(t)
(3)

To ensure that the selected value of αt is positive, the following condition
should hold

∑
i,yi=ht(xi)

D(i)(t) >
∑

i,yi �=ht(xi)

D(i)(t) (4)

2.2 Cost-Sensitive Boosting

Cost-sensitive classification considers varying costs of different misclassification
types. Thus the cost-sensitive learning process seeks to minimize the number of
high cost errors and the total misclassification cost. Reported works on research
in cost-sensitive learning can be categorized into three main groups related to the
learning phases of a classifier: 1) Data preprocessing: modifying the distribution
of the training set with regards to misclassification costs so that the modified
distribution bias towards the costly classes [1, 3]; 2) Classifier Learning: making
a specific classifier learning algorithm cost-sensitive [2, 8]; and 3) Classification:
using Bayes risk theory to assign each sample to its lowest risk class [4].

Cost-sensitive learning methods in the first group, known as cost-sensitive
learning by example weighting in [1], is very general since it applies to arbitrary
classifier learners and does not change the underlying learning algorithms. In this
method, an example-dependent cost is first converted into example weight. Then,
a learning algorithm is applied to training examples drawn from this weighted
distribution. Several variants of AdaBoost algorithm reported in [5, 13] are with
this approach, known as cost-sensitive boosting algorithms.

These cost-sensitive boosting algorithms inherit the learning framework of
AdaBoost algorithm. They feed the misclassification costs into the weight update
formula of AdaBoost, so that the updated data distribution on the successive
boosting round can bias towards the small classes. Except using cost items to
update sample weights, CSB1 [13] does not use any αt factor (or αt = 1), CSB2
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[13] uses the same αt as computed by AdaBoost, and AdaCost [5] introduces
a cost adjustment function into weight update rule of AdaBoost. The require-
ment for this function is: for an instance with a higher cost factor, the function
increases its weights “more” if the instance is misclassified, but decreases its
weight “less” if otherwise.

The crucial step in AdaBoost algorithm is the selection of the weight update
parameter which enables the training error be reduced rapidly. This process is an
efficient boosting scheme to convert a weak learning algorithm into a strong one.
When introducing the misclassification costs into the weight updating formula,
it is necessary to integrate the cost items into the parameter calculation in order
to maintain the boosting efficiency. Out of all reported cost-sensitive boosting
algorithms, only in AdaCost misclassification costs are taken into consideration
when calculating the weight update parameter α. However, the problems with
this adaptation are: 1) the selection of the adjustment function is ad hoc; 2)
when the cost items (CP and CN ) are set to 1, AdaCost will not become the
original AdaBoost algorithm, thus the steepest descent search of AdaBoost is
varied by the cost adjustment function.

3 Cost-Sensitive AdaBoost Algorithms

In order to adapt the weight update strategy of AdaBoost algorithm for cost-
sensitive learning, we propose three versions of cost-sensitive AdaBoost algo-
rithms according to the ways we feed the the cost factor into the weight update
formula of AdaBoost: inside the exponent, outside the exponent, and both inside
and outside the exponent. Let {(x1, y1, c1), · · ·, (xm, ym, cm)} be a sequence of
training samples, where, as denoted previously, each xi is an n-tuple of attribute
values; yi is a class label in Y where Y = {−1,+1}, and ci is the cost factor be-
longing to the none-negative real domain R+. Three modifications of the weight
update formula of AdaBoost then become:

D(t+1)(i) =
D(t)(i)exp(−αtciht(xi)yi)

Zt
(5)

D(t+1)(i) =
ciD

(t)(i)exp(−αtht(xi)yi)
Zt

(6)

D(t+1)(i) =
ciD

(t)(i)exp(−αtciht(xi)yi)
Zt

(7)

Thus, respecting to each modification of weight update formula, a new α value
should be calculated to minimize the weighted training error. Taking each mod-
ification as a new learning objective, three cost-sensitive AdaBoost algorithms
can be developed. We denote them as AdaC1, AdaC2 and AdaC3 respectively.
Adopting the inference method used in [12], the calculation of weight updating
factor α for each algorithm can be presented in the following subsections.
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3.1 AdaC1

Unraveling the weight update rule of Equation 5, we obtain

D(t+1)(i) =
exp(−∑

t αtciyiht(xi))
m

∏
t Zt

=
exp(−ciyif(xi))

m
∏

t Zt
(8)

where,

Zt =
∑

i

D(t)(i)exp(−αtciyiht(xi)) (9)

Here, the training error bound as stated in Equation 1 still holds. Thus,
the learning objective on each round is to find αt and ht so as to minimize Zt

(Equation 9). ht can be trained while minimizing the weighted training error
based on current data distribution. Then αt is selected to minimize Equation 9.
According to [12], once ciyiht(xi) ∈ [−1,+1], the following inequality holds

∑
i

D(i)(t)exp(−αciyih(xi)) ≤
∑

i

D(i)(t)(
1 + ciyiht(xi)

2
e−α+

1 − ciyiht(xi)
2

eα)

(10)
By zeroing the first derivative of the right hand side of the inequality (10),

αt can be determined as:

αt =
1
2
log

1 +
∑

i,yi=ht(xi)

ciD(i)(t) −
∑

i,yi �=ht(xi)

ciD(i)(t)

1 −
∑

i,yi=ht(xi)

ciD(i)(t) +
∑

i,yi �=ht(xi)

ciD(i)(t)
(11)

To ensure that the selected value of αt is positive, the following condition
should hold

∑
i,yi=ht(xi)

ciD(i)(t) >
∑

i,yi �=ht(xi)

ciD(i)(t) (12)

3.2 AdaC2

Unraveling the weight update rule of Equation 6, we obtain

D(t+1)(i) =
ct
iexp(−∑

t αtyiht(xi))
m

∏
t Zt

=
ct
iexp(−yif(xi))

m
∏

t Zt
(13)

where,

Zt =
∑

i

ciD
(t)(i)exp(−αtyiht(xi)) (14)
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Then, the training error of the final classifier is bounded as:

1
m
|{i : H(xi) 	= yi}| ≤ 1

m

∑
i

exp(−yif(xi)) =
∏

t

Zt

∑
i

ciD
t(i)

ct+1
i

(15)

There exists a constant γ such that ∀i, γ < ct+1
i . Then,

1
m
|{i : H(xi) 	= yi}| ≤

∏
t

Zt

∑
i

ciD
t(i)

ct+1
i

≤ 1
γ

∏
t

Zt (16)

Since γ is a constant, the learning objective on each round is to find αt and
ht so as to minimize Zt (Equation 14). ht can be trained while minimizing the
weighted training error based on current data distribution. Then αt is selected
to minimize Equation 14 as:

αt =
1
2
log

∑
i,yi=ht(xi)

ciD(i)(t)

∑
i,yi �=ht(xi)

ciD(i)(t)
(17)

To ensure that the selected value of αt is positive, the following condition
should hold

∑
i,yi=ht(xi)

ciD(i)(t) >
∑

i,yi �=ht(xi)

ciD(i)(t) (18)

3.3 AdaC3

The weight update formula (Equation 7) of AdaC3 is a combination of that of
AdaC1 and AdaC2 (with the cost items both inside and outside the exponential
function). Then the training error bound of AdaC3 could be expressed as

1
m
|{i : H(xi) 	= yi}| ≤ 1

γ

∏
t

Zt (19)

where, γ is a constant and ∀i, γ < ct+1
i , and

Zt =
∑

i

ciD
(t)(i)exp(−αtciyiht(xi)) (20)

Since γ is a constant, the learning objective on each round is to find αt and
ht so as to minimize Zt (Equation 20). ht can be trained while minimizing the
weighted training error based on current data distribution. Then αt is selected
to minimize Equation 20.

According to [12], once ciyiht(xi) ∈ [−1,+1], the following inequality holds
∑

i

ciD(i)(t)exp(−αciyih(xi))≤
∑

i

ciD(i)(t)(
1 + ciyiht(xi)

2
e−α+

1 − ciyiht(xi)
2

eα)

(21)
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By zeroing the first derivative of the right hand side of inequality (21), αt

can be determined as:

αt =
1
2
log

∑
i

ciD(i)(t) +
∑

i,yi=ht(xi)

c2
i D(i)(t) −

∑
i,yi �=ht(xi)

c2
i D(i)(t)

∑
i

ciD(i)(t) −
∑

i,yi=ht(xi)

c2
i D(i)(t) +

∑
i,yi �=ht(xi)

c2
i D(i)(t)

(22)

To ensure that the selected value of αt is positive, the following condition
should hold

∑
i,yi=ht(xi)

c2
i D(i)(t) >

∑
i,yi �=ht(xi)

c2
i D(i)(t) (23)

4 Experiment Settings

4.1 Base Learner

To test these cost-sensitive AdaBoost algorithms, we select an associative clas-
sification learning system, namely High-Order Pattern and Weigh-of-Evidence
Rule Based Classifier(HPWR) as the base learner. The selected base learner
HPWR is a complete and independent system. Employing residual analysis and
mutual information for decision support, it generates classification patterns and
rules in two stages: 1) discovering high-order significant event associations us-
ing residual analysis in statistics to test the significance of the occurrence of a
pattern candidate against its default expectation[15]; and 2) generating classi-
fication rules with weight of evidence attached to each of them to quantify the
evidence of significant event associations in support of, or against a certain class
membership[14] for a given sample. Hence, HPWR is a mathematically well-
developed system with a more comprehensive and rigorous theoretical basis.

4.2 Data Sets

We use four medical diagnosis data sets “Cancer”, “Pima”, “Hypothyroid” and
“Sick-euthyroid” taken from UCI Machine Learning Database [11] to test the
performances of these three cost-sensitive AdaBoost algorithms. These data sets
all have two output labels: one denoting the disease category is treated as the
positive class and another representing the normal category is treated as negative
class. The percentages of the positive classes are 29.72%, 34.90%, 4.77% and
9.26% respectively.

In these experiments, continuous data in each data set is pre-discretized using
the the commonly used discretization utility of MLC++ [9] on the default setting
and missing values are treated as having the value “?”. Five-fold cross-validation
is used on all of the data sets. For consistency, exactly the same data are used
to train and test all of these cost-sensitive boosting algorithms.
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4.3 Cost Factor

The misclassification costs for samples in the same category are set the same
value: CP denoting the misclassification cost of the positive class and CN repre-
senting that of the negative class. Conceptually, CP should be greater than CN .
As constrained by the inferences of Inequality 10 and 21, their values should
be no greater than 1. Thus, this condition should hold 1 ≥ CP ≥ CN > 0. In
these experiments, relative misclassification costs are set as [1.0 : 1.0, 1.0 :
0.9, 1.0 : 0.8, 1.0 : 0.7, 1.0 : 0.6, 1.0 : 0.5, 1.0 : 0.4, 1.0 : 0.3, 1.0 :
0.2, 1.0 : 0.1] on two classes for all the data sets. Then, with each pair of
cost settings, the performance of each learning algorithm is evaluated on 5-fold
cross-validation.

4.4 F-Measure for Performance Evaluation

In information retrieval, with respect to a given class, Recall is defined as the
percentage of retrieved objects that are relevant; and Precision is defined as the
percentage of relevant objects that are identified for retrieval. Clearly neither
of these two measures are adequate by themselves to evaluate the recognition
performance on a given class. Thus, the F-measure (F), a measure often-used
by the Information Retrieval community for evaluating the performance of the
right objects, is devised as a combination of Recall and Precision:

F =
2RP

R + P
(24)

It follows that if the F-measure is high when both the recall and precision should
be high. This implies that the F-measure is able to measure the “goodness” of
a learning algorithm on the current class of interest.

5 Performance Comparisons

Table (1) shows the best F-measure value, as well as the misclassification cost
setting of each algorithm on each data set. In general, over the 4 datasets, AdaC3
wins twice, AdaC2 and AdaCost each wins 1 time respectively and AdaC3 also
achieves the highest average F-measure value over the four data sets. The per-
formances of CSB1 and CSB2 are obviously not satisfactory.

The basic idea of cost-sensitive boosting algorithm in dealing with the class
imbalance problem is to maintain a considerable weighted sample size of the
positive class at each iteration of boosting. Then the recognition recall measure-
ment is increased on the positive class. This is the critical step in dealing with
the class imbalance problem. However, there is a tradeoff between recall and
precision: precision declines as recall increases. When the positive class is over
resampled, recall of the positive class is greatly improved. Yet, more samples
from the negative class are categorized to the positive class. As a consequence,
the recognition precision on the positive class gets worse, and the F-measure
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Table 1. F-measure Comparisons of Cost-Sensitive Boosting Algorithms

HPWR AdaBoost AdaC1 AdaC2 AdaC3 AdaCost CSB1 CSB2

Cancer Cost 1:0.6 1:0.7 1:0.7 1:0.2 1:0.6 1:0.4
F+(%) 40.21 47.10 50.64 53.98 54.97 50.75 47.88 50.73

Hypo Cost 1:0.9 1:0.9 1:0.9 1:0.9 1:0.9 1:0.8
F+(%) 55.84 81.99 84.20 84.56 83.02 82.15 82.72 69.42

Pima Cost 1:0.5 1:0.6 1:0.7 1:0.3 1:0.6 1:0.9
F+(%) 67.98 67.66 72.58 71.03 73.61 69.03 67.30 65.58

Sick Cost 1:0.8 1:0.8 1:0.9 1:0.9 1:0.8 1:0.8
F+(%) 69.22 79.77 82.51 78.05 81.04 82.67 77.77 62.89

Average F+(%) 58.31 69.13 72.48 71.90 73.16 71.24 68.92 57.93

cannot be satisfactory under this situation. Hence, to balance the tradeoff be-
tween recall and precision and get the best F-measure value, the boosted weights
on the positive class should be in a proper degree which is adequate to obtain
a satisfactory recall yet not too much to reduce the precision. Misclassification
cost setting is one aspect that influences this issue. Table 1 shows the best ratio
setting at which the best F-measure are obtained for each algorithm. Another
important affect is related to the weighting scheme of each boosting algorithm.
Experimental results reported in Table 1 show that AdaC3 achieves the best
F-measure values on two data sets and also the highest average F-measure value
over the four data sets.

6 Conclusion

In this paper, we have proposed three new cost-sensitive AdaBoost algorithms
to tackle the class imbalance problem in the context of bi-class applications.
Based on how cost items are used in the equation, three versions of cost-sensitive
boosting algorithms, known as AdaC1, AdaC2 and AdaC3, are developed. To
ensure boosting efficiency, α is recalculated taking misclassification costs into
consideration for each version. We find that these adaptations retain the good
feature of AdaBoost yet adequately sensitive to adjust to cope with differ-
ent level of learning importance corresponding to different classes. To evalu-
ate their recognition abilities on small classes, four “real world” medical data
sets are tested. F-measure evaluation is adopted for performance comparisons.
In our classification implementation and comparison, we select HPWR as the
base learner. When comparing the recognition ability on the small class of each
cost-sensitive AdaBoost algorithm, our experimental results show that AdaC3
is superior in achieving the best performance among all reported cost-sensitive
boosting algorithms. Further study on weight updating effect of each proposed
cost-sensitive boosting algorithm is recommended for theoretically reasoning this
observation.
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Abstract. Mixture models, especially mixtures of Gaussian, have been
widely used due to their great flexibility and power. Non-Gaussian clus-
ters can be approximated by several Gaussian components, however, it
can not always acquire appropriate results. By cancelling the nonnega-
tive constraint to mixture coefficients and introducing a new concept of
“negative components”, we extend the traditional mixture models and
enhance their performance without increasing the complexity obviously.
Moreover, we propose a parameter estimation algorithm based on an it-
eration mechanism, which can effectively discover patterns of “negative
components”. Experiments on some synthetic data testified the reason-
ableness of the proposed novel model and the effectiveness of the param-
eter estimation algorithm.

1 Introduction

In the field of statistical learning, finite mixture models (FMM) have been widely
used and have continued to receive increasing attention over years due to their
great flexibility and power [1]. The capability of representing arbitrary complex
probability density functions (pdf’s) enables them to have many applications
not only in unsupervised learning fields [2], but also in (Bayesian) supervised
learning scenarios and in parameter estimation of class-conditional pdf’s [3].
Especially, Gaussian Mixture Models (GMM) have been widely employed in
various applications[1, 2, 3].

GMM can accommodate data of varied structure, since one non-Gaussian
component can usually be approximated by several Gaussian ones [4, 5]. How-
ever, this approximation can not always acquire appropriate results. To form
an intuitive image of this fact, a sample set is generated by a Gaussian model
and partly “absorbed” by another one, i.e. there is a “hole” in the data cloud
as Fig.1a shows. Fitting this sample set by GMM yields a solution shown in
Fig.1b. This solution is achieved by the Competitive Expectation Maximization
algorithm (CEM) [6], and the component number is auto-selected by a criterion
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Fig. 1. Samples generated by a component and partly absorbed by another one (average
log likelihood in (a) and (b) is 0.353 and 0.351, respectively )

similar to Minimum Message Length (MML) [7]. Although this solution is not
bad, it is obvious that in the “hole” area , densities are estimated higher than
they should be.

In the definition of traditional mixture models, the coefficients of mixture
components are nonnegative. In fact, to satisfy the constraint of pdf, it only
requires to meet the following two conditions: the sum of the mixture coefficients
equals 1, and the probability density at any point is nonnegative. The mixture
coefficients are not necessary to be nonnegative.

In this paper, we endeavor to extend mixture models by cancelling the non-
negative constraint to mixture coefficients. We introduce a new concept of “Neg-
ative Component”, i.e. a component with a negative mixture coefficient.

The rest of this paper is organized as follows. We will describe this proposed
model in Sect.2. A parameter estimation algorithm based on an iteration mecha-
nism is given in Sect.3. Experiments are presented in Sect.4, followed by a short
discussion and conclusion in Sect.5.

2 Finite Mixture Models with Negative Components

It is said a d-dimensional random variable x = [x1, x2, · · · , xd]T follows a k-
component finite mixture distribution, if its pdf can be written as

p(x|θ) =
∑k

m=1
αmp(x|θm), (1)

where αm is the prior probability of the mth component and satisfies

αm ≥ 0, and
∑k

m=1
αm = 1. (2)

Different descriptions of p(x|θm) can be assigned to different kinds of mixture
models. We focus on FMM and demonstrate algorithms by means of GMM.

If the nonnegative constraint of mixture coefficients is cancelled, mixture
models will be more powerful to fit data clouds. Equation (2) is modified to

∑k

m=1
αm = 1. (3)
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To ensure p(x) satisfies the constraint of pdf, we should add a new constraint:

p(x) ≥ 0,∀x. (4)

For convenience, we call finite mixture models with negative components
NegFMM, and call the corresponding GMM version NegGMM.

2.1 An Interpretation to NegFMM

In NegFMM, a component with a positive coefficient is called a “Positive Com-
ponent” and the negative one a “Negative Component”. Let k+ and k− denote
the number of positive components and negative ones, respectively. k = k+ +k−

is the total component number. For convenience, positive components and neg-
ative ones are separated as follows

p(x|θ) =
∑k+

m=1
αmp(x|θm) +

∑k

m=k++1
αmp(x|θm) (5)

Defining a = −∑k
m=k++1 αm,

∑k+

m=1 αm = 1 + a. Let β+
m = αm/(1 + a), β−

m =

−αk++m/a. Obviously, β+
m, β−

m ≥ 0 , and
∑k+

m=1 β+
m = 1,

∑k−

m=1 β−
m = 1.

Defining p+ =
∑k+

m=1 β+
mp(x|θm), p− =

∑k−

m=1 β−
mp(x|θk++m), p+ and p− are

traditional mixture models. So NegFMM can be expressed as

pM = (1 + a)p+ − ap−. (6)

p+ is called “Positive Pattern” and p− is called “Negative Pattern”. When a = 0,
NegFMM will degrade to FMM. In this paper, we only focus on the case of a > 0.

Moving p− to the left side, (6) can be rewritten as

p+ = 1
1+apM + a

1+ap−. (7)

Then the positive pattern p+ is expressed as a mixture of the model pM and the
negative pattern p−. This expression clearly shows that the negative pattern can
not exist independently and it is only a part of the positive pattern.

2.2 The Nonnegative Density Constraint for NegGMM

NegFMM introduces the nonnegative density constraint (4). In this section, we
will further analyze this constraint in the case of NegGMM.

This constraint is to ensure (1 + a)p+ − ap− = p+ + a(p+ − p−) ≥ 0. When
p+ − p− ≥ 0, pM ≥ 0 is met. When p+ − p− < 0, it means

a ≤ p+
/
(p− − p+). (8)

We will show that this constraint can be decomposed to two parts, i.e. the
constraint to covariance matrices and the constraint to a, corresponding to the
nonnegative condition for infinite x and finite x, respectively.
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The Covariance Constraint. For Gaussian distribution, the covariance ma-
trix describes the density decaying rate in any direction. For a direction r
(‖r‖ = 1), the variance satisfies σ2

r = rT Σr, because

σ2
r =

∫
[rT (x − μ)]2p(x)dx = rT [

∫
(x − μ)(x − μ)T p(x)dx]r = rT Σr.

For the case of k+ = k− = 1, if there is a direction r where the variance of p− is
larger than p+, the right side of (8) will approach zero when x goes to infinite
along the direction r. This will lead to a = 0. So the covariance constraint is
σ2

1r ≥ σ2
2r, ∀r, ‖r‖ = 1. Fig.2 illustrate this case: the model in Fig.2a satisfies

the covariance constraint while the model in Fig.2b does not.

(a) (b)

Fig. 2. Illustration of the covariance constraint

In the general case of NegGMM with arbitrary k+ and k−, the constraint
will be similar. In any direction, variances of all negative components must be
not larger than the maximum variances of all positive components,

max
1≤m≤k+

{σ2
mr) ≥ max

k++1≤m≤k
{σ2

mr), ∀r, ‖r‖ = 1. (9)

The Constraint to a. If NegGMM satisfies the covariance constraint, there
exists a threshold aT > 0. If a = aT , min

x
p(x) = 0. So the constraint to a is

a ≤ aT , (10)

where aT = min
x∈{x|p−−p+>0}

{p+/(p− − p+)}.

3 A Framework of Parameter Estimation

Assuming that samples in the set X = {x1, x2, · · · , xn} are independently drawn
from the NegGMM model, how to estimate parameters of the model from X is
a difficult problem, since no samples originate from the negative pattern.

To estimate an appropriate number of components, many deterministic cri-
teria are proposed [1]. In this paper, we do not consider the problem of choosing
the numbers of components. We take the Maximum Likelihood (ML) estimation
as our object function,

J =
1
n

∑n

i=1
log(p(xi|θ)). (11)



Finite Mixture Models with Negative Components 35

The EM algorithm is a widely used class of iterative algorithms for Maxi-
mum Likelihood or Maximum A Posteriori (MAP) estimation in problems with
incomplete data, e.g. parameter estimation to mixture models [8, 9]. However,
the EM framework is difficult to be directly used in NegGMM, because of the
existence of negative coefficients terms.

3.1 Basic Ideas

Parameters of negative pattern p− can not be directly estimated from the sample
set X. According to (7), p− can be viewed as the result of subtracting pM from
p+, where p+ can be estimated, but pM is unknown. Intuitively, pM can be
approximated by the sample density function ps which can be estimated by the
Parzen window based methods. Then (7) can be approximated as

p+ = 1
1+aps + a

1+ap−. (12)

At first p+ is estimated according to X, then p− is estimated according to
(12). After that a is estimated under the nonnegative density constraint. Then
p+ is reestimated using the information of p− and a, and so on.

p+, p− and a are optimized separately, i.e. when one part is being optimized,
the other parts are fixed. This is similar to the idea of Gibbs Sampling [10].

In order to estimate p−, we first sampling p+ to get a sample set. Then, based
on (12), we use a modified EM algorithm to estimate p− with a fixed mixture
component ps.

In order to estimate p+, we sampling p− and weight the sample set according
to a. The union of the weighted sample set and X can be viewed as a sample
set generated by p+. Then p+ can be estimated by EM.

In order to estimate a, we first estimate the threshold aT . Then, under the
constraint of a ≤ aT , we search for the most appropriate a which leads to the
highest likelihood value.

The Manifold Parzen Window Algorithm. To estimate p−, the sample
density function ps needs to be estimated to approximate pM . To ensure a satis-
fying result, this estimation should be as accurate as possible. Usually, the sample
distribution is inhomogeneous, so the traditional Parzen window method can not
promise to obtain a good estimation due to a uniform isotropic covariance.

In this paper, we use the manifold Parzen window algorithm proposed by Vin-
cent [11]. The main idea is that the covariance matrix of sample xi is calculated
by its neighbor points

ΣKi
=

∑
j �=i K(xj ;xi)(xj − xi)(xj − xi)T∑

j �=i K(xj ;xi)
, (13)

where the neighbor constraint K(x;xi) could be soft, e.g. a spherical Gaussian
centered on xi, or hard, e.g. only assigning 1 to the nearest k neighbors and
0 to others. Vincent used the latter in his experiments. Considering the data
sparsity in high-dimension space, Vincent added two parameters to enhance



36 B. Zhang and C. Zhang

the algorithm, i.e. the manifold dimension d and the noise variance σ2. The
first d eigenvectors with large eigenvalues to ΣKi

are kept, zeroing the other
eigenvalues and then adding σ2 to all eigenvalues. Based on a criterion of av-
erage negative log likelihood, these three parameters are determined by cross
validation.

In low-dimension space, ΣKi
is supposed to be nonsingular. So only one

parameter, i.e. the neighbor number k, needs to be predetermined. The compu-
tational cost for cross validation will be reduced greatly.

Grid Sampling. In order to estimate p−, we can randomly sampling p+. But
the randomicity will lead to very unstable estimations of p− because of small
number of sampling. To solve this problem, we can increase the amount of sam-
pling which will make the succeeding algorithm very slow, or change random
sampling to grid sampling which is adopted in this paper.

For the standard Gaussian model N(0, I), all grid vectors whose lengths are
less than dscope will be preserved, and the weight of a grid vector is in proportion
to the model density at the point. In our experiments, dscope is determined
by experience. The grid space dspace can be determined according to precision
requirement and computational cost. Let (Sg, Wg) denote the grid set, where Sg

are grid vectors and Wg the corresponding grid point weights. Fig.3 shows the
Grid sampling for the standard 2D Gaussian model.

For a general Gaussian model N(μ, Σ), where Σ = UΛUT , the grid sampling
set (S, W ) is converted from the standard set (Sg, Wg ) by W = Wg and
S = UΛ1/2Sg + μ · [1, 1, · · · , 1]1×|Sg|.

For traditional Gaussian mixtures, the grid sampling set (S, W ) is the union
of grid sets of all components, weighting W by component priors once more.

Estimating p− with one fixed component by EM. EM is widely used to
estimate the parameters of mixture models [8, 9]. Our goal is to estimate p−

based on (12). Now we have a sample set (S, W ) originating from p+ (by grid
sampling), a component ps with fixed parameters (estimated using the manifold
Parzen window method) and fixed mixture coefficients (determined by a).
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Fig. 3. Grid sampling for standard 2D Gaussian model, dscope=3.5, dspace=0.08
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For maximum likelihood estimation, the object function is

∑
wi ln(

a

1 + a
p−(si) +

1
1 + a

ps(si))

Similar to the EM algorithm for mixture models[8], the updating formulas
can be deduced easily.

E-Step: The posterior to the lth component of p− can be calculated as

p(l|si) =
aβ−

l p−l (si)
ap−(si) + ps(si)

, l = 1, 2, · · · , k−.

This formula is similar to the E-Step in the standard GMM-EM algorithm,
except that the denominator contains an additional term ps(si).

M-Step: The updating formulas to the lth component are very similar to the
M-Step in the standard GMM-EM algorithm,

β−
l =

∑
i wli∑k−

m=1

∑
i wmi

, μ−
l =

∑
i wlisi∑
i wli

, Σ−
l =

∑
i wli(si − μ−

l )(si − μ−
l )T∑

i wli
,

where wli denotes the weight of si to the lth component, and wli = wip(l|si).

3.2 Scheme of the Parameter Estimation Algorithm

To sum up, the scheme is described as follows:

1. Initialization:
Assign numbers of components k+ and k−;
Estimate sample density function ps by manifold Parzen window algorithm;
On the sample set X, estimate p+ using the standard EM algorithm;
Initialize p− randomly or by k-means based methods on the grid sampling
set of p+ ( ps is used in this step);
Set a to be a small number, e.g. a = 0.01, and set iteration counter t = 0.

2. One Iteration:
Fixing p+ and a, estimate p− by the modified EM algorithm described above;
Fixing p− and a, estimate p+ by EM, where the sample set is the union of
X (weight is 1) and the grid sample set (S−, W−) of p− (weight is a);
Fixing p+ and p−, estimate a under the constraint (10), maximizing (11);
The counter t = t + 1 .

3. End Condition:
Repeat the iteration 2, until the object function does not change or arrives
at the maximal steps. Ouput θ∗ with the maximal J .
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4 Experiments

Example 1. We use 1000 samples from a 2-component 2-dimension NegGMM
shown in Fig.1a. The parameters are: α1 = 1.05, α2 = −0.05, μ1 = [0, 0]T ,

μ2 = [1.5, 1]T , Σ1 =
[

4
1

]
, and Σ2 =

[
0.2 −0.1
−0.1 0.4

]
.

Fig.4 shows the optimization procedure. In this paper, real line and dashed
denote positive and negative components respectively, and p− is initialized by
k-means based methods. Fig.4a shows one initial state. Fig.4b∼f show some
intermediate states of the searching procedure. The best estimation is given in
Fig.4f (9th iteration).

Example 2. We use 1000 samples from a 5-component 2-dimension NegGMM
shown in Fig.5a, where k+ = 2, k− = 3 and a = 0.05. The parameters are:

α1 = 0.63, α2 = 0.42, α3 = −0.01, α4 = −0.03, α5 = −0.01
μ1 = [1.5, 0.2]T , μ2 = [−1.5, 0.3]T ,

μ3 = [1.2, 0.4]T , μ4 = [−1.6, 0.4]T , μ5 = [0.2, − 0.5]T

Σ1 =
[

0.2 0.1
0.1 0.2

]
, Σ2 =

[
0.1 −0.05

−0.05 0.1

]

Σ3 =
[

0.01 −0.002
−0.02 0.02

]
, Σ4 =

[
0.02 0.01
0.01 0.02

]
, Σ5 =

[
0.01

0.01

]
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Fig. 4. Example 1: (a) Initialization (b-e) 1st ∼5th iterations (f) the best estimation
(values of t, a, J are given below each graph )
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Fig. 5. Example 2: (a) TRUE model (b) Initialization (c-e) 1st ∼3rd iterations (f) the
best estimation (values of t, a, J are given below each graph )
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Fig. 6. Some interesting results: (a,d) Sample Sets; (b,e) GMM Estimation by CEM;
(c,f) NegGMM Estimation(k+, k−, a, J)

Fig.5b∼f plot some intermediate states of the searching procedure. The final
parameter estimation is given in Fig.5f (4th iteration) where J = 0.293. If use
the traditional GMM, the best estimation given by CEM is the same as p+ in
the initial state (plotted by real lines in Fig.5b) and the corresponding J equals
0.275.
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In our experiments, we do not check the covariance constraint (9). Because the
sample set to estimate p− originates from p+, and p+ contains a fixed component
ps, the estimation of p− will satisfy the covariance constraint in general. This is
also testified by experiments.

For p− and a, there is observable difference between estimations and true
values. It is mainly due to two reasons. The first is the large sampling er-
ror between X and the true model (this is also supported by comparing like-
lihood between the estimation and the true model). The second is that the
samples from p− can not be observed and the estimation algorithm may bring
bias.

Some Interesting Examples. Fig.6 illustrates some interesting results. The
first column contains sample sets, the second column contains estimations by
GMM-CEM where component numbers are auto selected, and the last column
contains estimations by NegGMM where component numbers are assigned by
us. The first row is a synthetic ring with 500 samples (Fig.6a), the second row
is 654 samples drawing from an image of digital “8” (Fig.6d). To traditional
GMM, estimations of 7 and 13 components are given respectively (Fig.6b and
Fig.6e). These solutions are very good. For NegGMM, estimation results are very
interesting (Fig.6c and Fig.6f), though likelihood is lower.

5 Discussion and Conclusion

In this paper, we extend the traditional mixture models by cancelling the nonneg-
ative constraint to mixture coefficients and introduce the concept of “negative
pattern”. The power and flexibility of mixture models are enhanced without
increasing the complexity obviously.

The proposed parameter estimation framework can effectively discover pat-
terns of lower density relative to positive pattern p+ due to three tricks. The
manifold Parzen window algorithm proposed by Vincent gives a very good es-
timation of sample density function ps. The grid sampling helps to gain a very
stable estimation of the nonnegative pattern. And the modified EM algorithm
gives a final estimation effectively.

Due to the data sparsity, mixture models are difficult to be directly em-
ployed in high-dimension space. For the high-dimension case, there are two
classes of processing methods. The first is to reduce the data dimension by lin-
ear or nonlinear methods, and the second is to constraint the model by priors or
hypotheses.

In complex situations, it is very difficult to find an acceptable solution for
mixture models by standard EM because of its greed nature. In the future, it
is necessary to do more research on split, merge and annihilation mechanism of
NegFMM as our previous work[6].
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Abstract. This paper proposes an unsupervised algorithm for learning
a finite Dirichlet mixture model. An important part of the unsupervised
learning problem is determining the number of clusters which best de-
scribe the data. We consider here the application of the Minimum Mes-
sage length (MML) principle to determine the number of clusters. The
Model is compared with results obtained by other selection criteria (AIC,
MDL, MMDL, PC and a Bayesian method). The proposed method is val-
idated by synthetic data and summarization of texture image database.

1 Introduction

Statistical models are widely used in various fields such as image processing, pat-
tern recognition, machine learning and remote sensing [1]. In these models, data
is characterized in terms of its likely behavior, by means of a probability. The
performance of the resulting algorithms depends heavily on the accuracy of the
probabilistic models employed. Among the probability models, finite mixtures
of densities are widely used [2]. Finite mixtures of distributions are a flexible
and powerful modeling which has provided a mathematical based approach to
the statistical modeling of a wide variety of random phenomena. This makes
them an excellent choice in Bayesian learning. In statistical pattern recognition,
finite mixtures permit a formal approach to unsupervised learning. The adop-
tion of this model-based approach to clustering brings important advantages:
for instance, the selection of the number of clusters or the assessment of the va-
lidity of a given model can be addressed in a formal way. Indeed, an important
part of the modeling problem concerns determining the number of consistent
components which best describes the data. For this purpose, many approaches
have been suggested, such as the Minimum Message Length (MML) [3], Akaike’s
Information Criterion (AIC) [4], the Minimum Description Length (MDL) [5],
the MMDL [6] and the partition coefficient (PC) [7]. Besides, many Bayesian
model selection approaches was proposed such as the model of Roberts et al. [8].

In this paper, we consider MML and Dirichlet mixtures. MML has been
used especially in the case of Gaussian, Poisson, Von Miss circular mixtures [9]
and recently in the case of Gamma [10] mixtures. However, we have proven in

P. Perner and A. Imiya (Eds.): MLDM 2005, LNAI 3587, pp. 42–51, 2005.
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a previous work that the Dirichlet may provide a better fit [11] [12]. From an
information-theory point of view, the minimum message length approach is based
on evaluating statistical models according to their ability to compress a message
containing the data. High compression is obtained by forming good models of
the data to be coded. For each model in the model space, the message includes
two parts. The first part encodes the model using only prior information about
the model and no information about the data. The second part encodes only the
data, in a way that makes use of the model encoded in the first part [13].

Let us consider a set of data X = (X1,X2, ...XN ) controlled by a mixture
of distributions with parameters Θ = (θ1, θ2, ...., θM ), where M is the number of
clusters, and θj is a vector which contains the parameters of the jth distribution.
According to information theory, the optimal number of clusters of the mixture is
that which allows a minimum amount of information, measured in nats, needed
to transmit X efficiently from a sender to a receiver. The message length is
defined as :MessLen = −log(P (Θ|X )). The minimum message length principle
has strong connections with Bayesian inference, and hence uses an explicit prior
distribution over parameter values [9]. Baxter [9] gives us the formula for the
message length for a mixture of distributions:

MessLen  −log(h(Θ)) − log(p(X|Θ)) +
1
2
log(|F (Θ)|) +

Np

2
(1 − log(12)) (1)

where h(Θ) is the prior probability, p(X|Θ) is the likelihood, and |F (θ)| is the
Fisher information, defined as the determinant of the Hessian matrix of minus
the log-likelihood of the mixture. Np is the number of parameters to be esti-
mated. The estimation of the number of clusters is carried out by finding the
minimum with regards to Θ of the message length MessLen. In dimension dim,
the Dirichlet pdf is defined by:

p(X|α) =
Γ (|α|)∏dim+1

i=1 Γ (αi)

dim+1∏
i=1

Xαi−1
i (2)

where
∑dim

i=1 Xi < 1, |X| =
∑dim

i=1 Xi, 0 < Xi < 1 ∀i = 1 . . . dim, Xdim+1 =
1 − |X|, |α| =

∑dim+1
i=1 αi, αi > 0 ∀i = 1 . . . dim + 1. This distribution is the

multivariate extension of the 2-parameter Beta distribution. A Dirichlet mixture
with M components is defined as :

p(X|Θ) =
M∑

j=1

p(X|αj)p(j) (3)

where 0 < p(j) ≤ 1 and
∑M

j=1 p(j) = 1. In this case, the parameters of a
mixture for M clusters are denoted by Θ = (α,P ), where α = (α1, · · · ,αM )T

and P = (p(1), · · · , p(M))T is the mixing parameters vector. In the next two
sections, we will calculate the Fisher information F (Θ) and the prior probability
density function h(Θ). Section 4 is devoted to the experimental results.
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2 Fisher Information for a Mixture of Dirichlet

Fisher information is the determinant of the Hessian matrix of the logarithm of
minus the likelihood of the mixture. In our case, we have a ((M × (dim + 2)) ×
(M × (dim + 2))) Hessian matrix defined by:

Hl1l2 =
∂2

∂θl1θl2

(−logp(X|Θ)) (4)

where l1 = 1 . . . M×(dim+2) and l2 = 1 . . . M×(dim+2). The Hessian matrix of
a mixture leads to a complicated analytical form of MML which cannot be easily
reproduced. We will approximate this matrix by formulating two assumptions,
as follows. First, it should be recalled that α and the vector P are independent
because any prior idea one might have about α would usually not be greatly
influenced by one’s idea about the value of the mixing parameters vector P .
Furthermore, we assume that the components of α are also independent. The
Fisher information is then:

F (θ)  F (P )
M∏

j=1

F (αj) (5)

where F (P ) is the Fisher information with regards to the mixing parameters
of the mixture and F (αj) the Fisher information with regards to the vector αj

of a single Dirichlet distribution. In what follows we will compute each of these
separately. For F (P ), it should be noted that the mixing parameters satisfy the
requirement

∑M
j=1 p(j) = 1. Consequently, it is possible to consider the general-

ized Bernoulli process with a series of trials, each of which has M possible out-
comes labeled first cluster, second cluster, ..., M th cluster. The number of trials
of the jth cluster is a multinomial distribution of parameters p(1), p(2), ..., p(M).
In this case, the determinant of the Fisher information matrix is:

F (P ) =
N∏M

j=1 p(j)
(6)

where N is the number of data elements. For F (αj), let us consider the jth
cluster Xj = (X l, . . . ,X l+nj−1) of the mixture, where l ≤ N , with parameter
αj . The choice of the jth cluster allows us to simplify the notation without loss
of generality. The Hessian matrix when we consider the vector αj is given by:

H(αj)k1k2 =
∂2

∂αjk1∂αjk2

(−logp(Xj |αj)) (7)

where k1 = 1 . . . dim + 1 and k2 = 1 . . . dim + 1. We can write the negative of
the log-likelihood function as follows:

− logp(Xj |αj) = −log(
l+nj−1∏

i=l

p(Xi|αj)) = −
l+nj−1∑

i=l

logp(Xi|αj) (8)
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We have:

− ∂logp(Xj |αj)
∂αjk

= nj(−Ψ(|αj |) + Ψ(αjk)) −
l+nj−1∑

i=l

log(Xik) (9)

Where Ψ is the digamma function. Then,

− ∂2logp(Xj |αj)
∂αjk1∂αjk2

= −njΨ
′(|αj |) (10)

− ∂2logp(Xj |αj)
∂2αjk

= −nj(Ψ ′(|αj |) − Ψ ′(αjk)) (11)

Where Ψ ′ is the trigamma function. We remark that H(αj)k1k2 can be written
as:

H(αj)k1k2 = D + γaaT (12)

where D = diag[njΨ
′(αj1), . . . , njΨ

′(αjdim+1)], γ = −njΨ
′(|αj |), aT = 1 and

γ 	= (
∑dim+1

k=1
a2

k

Dkk
)−1, then by the theorem (Theorem 8.4.3) given by Graybill

[14], the determinant of the matrix H(αj)k1k2 is given by:

F (αj) = (1 + γ

dim+1∑
k=1

a2
k

Dkk
)

dim+1∏
k=1

Dkk (13)

then

F (αj) = (1 − Ψ ′(|αj |)
dim+1∑

k=1

1
Ψ ′(αjk)

)ndim+1
j

dim+1∏
k=1

Ψ ′(αjk) (14)

Once we have the Fisher information for a single Dirichlet distribution, we can
use it to calculate the Fisher information for a mixture of Dirichlet distributions.
Eq. 5 is rewritten as:

F (Θ)  N∏M
j=1 p(j)

M∏
j=1

(1 − Ψ ′(|αj |)
dim+1∑

k=1

1
Ψ ′(αjk)

)ndim+1
j

dim+1∏
k=1

Ψ ′(αjk) (15)

3 Prior Distribution h(Θ)

The performance of the MML criterion is dependent on the choice of the prior
distribution h(Θ). Several criteria have been proposed for the selection of prior
h(Θ). Following Bayesian inference theory, the prior density of a parameter is
either constant on the whole range of its values or the value range is split into
cells and the prior density is assumed to be constant inside each cell. Since α
and the vector P are independent, we have:

h(Θ) = h(α)h(P ) (16)
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We will now define the two densities h(α) and h(P ). The P vector has M de-
pendent components; i.e. the sum of the mixing parameters is one. Thus, we
omit one of these components, say p(M). The new vector has (M − 1) indepen-
dent components. We treat the p(j), j = 1 . . . M − 1 as being the parameters
of a multinomial distribution. With the (M − 1) remaining mixing parameters,
(M − 1)! possible vectors can be formed. Thus, we set the uniform prior density
of P to [15]:

h(P ) =
1

(M − 1)!
(17)

For h(α), since αj , j = 1 . . . M are assumed to be independent:

h(α) =
M∏

j=1

h(αj) (18)

We will now calculate h(αj). In fact, we assume that the components of αj

are independent and in the absence of other knowledge about the αjk, k =
1, . . . , dim + 1, we use the principle of ignorance by assuming that h(αjk) is
locally uniform over the range [0, e6 |α̂j |

α̂jk
] (in fact, we know experimentally that

αjk < e6 |α̂j |
α̂jk

), where α̂j is the estimated vector. We choose the following uni-
form prior in accordance with Ockham’s razor (a simple priors which give good
results):

h(αjk) =
e−6α̂jk

|α̂j | (19)

By substituting Eq. 19 in Eq. 18, we obtain:

h(αj) =
e−6(dim+1)

|α̂j |dim+1

dim+1∏
k=1

α̂jk (20)

and

h(α) =
M∏

j=1

h(αj) = e−6M(dim+1)
M∏

j=1

∏dim+1
k=1 α̂jk

|α̂j |dim+1
(21)

So, substituting Eq. 21 and Eq. 17 in Eq. 16, we obtain:

log(h(Θ))=−
M−1∑
j=1

log(j)−6M(dim+1)−(dim+1)
M∑

j=1

log(|α̂j |)+
M∑

j=1

dim+1∑
k=1

log(α̂jk)

(22)
The expression of MML for a finite mixture of Dirichlet distributions is obtained
by substituting equations (22) and (15) in equation (1). The complete algorithm
of estimation and selection is then as follows:
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Algorithm
For each candidate value of M :

1. Estimate the parameters of the Dirichlet mixture using the algorithm in [11]
[12].

2. Calculate the associated criterion MML(M) using Eq. 1.
3. Select the optimal model M∗ such that:

M∗ = arg min
M

MML(M)

4 Experimental Results

We compare the results from the MML approach with those obtained using the
same model parameters (from the EM algorithm) using other model-order selec-
tion criteria/techniques. The methods we compare are the minimum description
length (MDL) [5], The MMDL (Mixture MDL)[6], the Akaikes’s information
criterion (AIC) [4], the Partition coefficient (PC) [7] and a Bayesian criterion,
which we call B, proposed by Roberts et al. [8].

4.1 Synthetic Data

In the first application we investigate the properties of our model selection on
three two-dimensional toy problems. We choose dim = 2 purely for ease of
representation. In the first example, data were generated from five Dirichlet
densities with different parameters. The parameters were: α11 = 10, α12 = 16,
α13 = 40, α21 = 23, α22 = 50, α23 = 32, α31 = 15, α32 = 19, α33 = 6,
α41 = 29, α42 = 8, α43 = 55, α51 = 60, α52 = 40, α53 = 16. A total of 100
samples for each of densities were taken. The resultant mixture is presented in
Fig. 1.a. From table 1, we can see that only the MML found the exact number of
clusters. In the second example, data were generated from six Dirichlet densities
with different parameters. The parameters were: α11 = 10, α12 = 16, α13 = 40,
α21 = 23, α22 = 50, α23 = 32, α31 = 15, α32 = 19, α33 = 6, α41 = 29, α42 = 8,
α43 = 55 α51 = 60, α52 = 40, α53 = 16, α61 = 30, α62 = 30, α63 = 30. A

(a) (b) (c)

Fig. 1. Mixture densities for the generated data sets
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Table 1. Values for the six criteria for the first two-dimensional generated data set

Number of clusters MML MDL AIC PC MMDL B

1 -207.26 -206.16 -401.15 N/A -206.16 270.41
2 -208.12 -207.02 -401.87 0.63 -207.93 274.45
3 -209.43 -207.89 -401.90 0.76 -209.45 278.84
4 -209.61 -208.00 -403.44 0.75 -210.40 280.13
5 -210.36 -207.54 -401.12 0.70 -210.33 272.02
6 -208.61 -207.01 -400.67 0.67 -211.79 272.98
7 -207.36 -204.43 -399.82 0.65 -209.59 273.17
8 -206.16 -200.12 -398.34 0.66 -207.33 273.91

Table 2. Values for the six criteria for the second two-dimensional generated data set

Number of clusters MML MDL AIC PC MMDL B

1 -287.65 -276.16 -476.52 N/A -276.16 320.73
2 -288.23 -277.09 -477.09 0.71 -278.31 318.77
3 -288.93 -277.65 -477.54 0.76 -279.20 320.51
4 -289.33 -278.92 -477.78 0.77 -281.32 320.13
5 -289.79 -278.80 -478.33 0.72 -282.29 320.84
6 -290.12 -276.85 -476.97 0.70 -281.65 319.05
7 -287.54 -274.66 -476.80 0.69 -280.11 319.86
8 -287.11 -272.82 -476.66 0.68 -297.80 320.06

Table 3. Values for the six criteria for the third two-dimensional generated data set

Number of clusters MML MDL AIC PC MMDL B

1 -310.18 -300.54 -512.02 N/A -300.54 378.22
2 -310.87 -300.89 -512.16 0.66 -301.49 380.14
3 -311.22 -301.15 -512.43 0.67 -302.71 379.64
4 -311.93 -301.87 -512.76 0.69 -304.27 379.06
5 -312.37 -302.12 -513.86 0.76 -305.62 378.83
6 -313.37 -303.76 -513.64 0.71 -308.94 380.53
7 -313.55 -301.09 -513.66 0.72 -308.18 379.03
8 -313.49 -300.87 -513.05 0.67 -308.09 379.76

total of 100 samples for each of the fourth first densities and a total of 50 for
each of the two last densities were taken. The resultant mixture is presented in
Fig. 1.b. From table 2, we can see that only the MML found the exact number
of clusters.

In the last example, data were generated from seven densities. The parameters
were: α11 = 10, α12 = 14, α13 = 40, α21 = 23, α22 = 50, α23 = 32, α31 = 15,
α32 = 19, α33 = 6, α41 = 29, α42 = 8, α43 = 55, α51 = 60, α52 = 40, α53 = 16,
α61 = 30, α62 = 30, α63 = 30, α71 = 10, α72 = 10, α73 = 40. A total of 100
samples for each of the three first densities and a total of 50 samples for each of
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the four last densities were taken. The resultant mixture is presented in Fig. 1.c.
From table 3, we can see that only the MML found the exact number of clusters.

4.2 Real Data

The second application concerns the summarization of image databases. Interac-
tions between users and multimedia databases can involve queries like “Retrieve
images that are similar to this image”. A number of techniques have been devel-
oped to handle pictorial queries. Summarizing the database is very important
because it simplifies the task of retrieval by restricting the search for similar
images to a smaller domain of the database. Summarization is also very efficient
for browsing. Knowing the categories of images in a given database allows the
user to find the images he or she is looking for more quickly. Using mixture de-
composition, we can find natural groupings of images and represent each group
by the most representative image in the group. In other words, after appropri-
ate features are extracted from the images, it allows us to partition the feature
space into regions that are relatively homogeneous with respect to the chosen
set of features. By identifying the homogeneous regions in the feature space, the
task of summarization is accomplished. For the experiment, we used the Vistex
grey level texture database obtained from the MIT Media Lab. In our experi-
mental framework, each of the 512 × 512 images from the Vistex database was
divided into 64 × 64 images. Since each 512 × 512 “mother image” contributes
64 images to our database, ideally all of the 64 images should be classified in the
same class. In the experiment, six homogeneous texture groups, “bark”, “fab-
ric”, “food”, “metal”, “water” and “sand” were used to create a new database. A
database with 1920 images of size 64 × 64 pixels was obtained. Four images from
each of the bark, fabric and metal texture groups and 6 images from water, food
and sand were used. Examples of images from each of the categories are shown in
Fig. 2. In order to determine the vector of characteristics for each image, we used
the cooccurrence matrix introduced by Haralick et al. [16]. For relevant represen-
tation of texture, many cooccurrences should be computed, each one considering
a given neighborhood and direction. In our application, we have considered con-
sidering the following four neighborhoods : (1; 0), (1; π

4 ), (1; π
2 ), and (1; 3π

4 ). For
each of these neighborhoods, we calculate the corresponding cooccurrence ma-

(a) (b) (c) (d) (e) (f)

Fig. 2. Sample images from each group. (a) Bark, (b) Fabric, (c) Food, (d) Metal, (e)
Sand, (f) Water
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Table 4. Number of clusters found by the six criteria

Number of clusters MML MDL AIC PC MMDL B

1 -12945.1 -12951.4 -25643.9 N/A -12951.4 12543.11
2 -12951.12 -13001.52 -25780.12 0.72 -13002.17 12897.21
3 -12960.34 -13080.37 -25930.23 0.73 -13381.82 12799.54
4 -13000.76 -13206.73 -26000.57 0.82 -13209.81 12730.13
5 -13245.18 -13574.98 -26111.04 0.78 -13578.60 13003.2
6 -13765.04 -13570.09 -26312.64 0.77 -13576.34 13000.11
7 -13456.71 -13493.5 -26401.50 0.74 -13499.53 12761.23
8 -13398.16 -13387.56 -26207.92 0.69 -13393.69 12900.19
9 -13402.64 -13125.41 -26009.95 0.71 -13132.34 12980.32
10 -13100.82 -13001.8 -25999.23 0.80 -13007.81 12580.32

Table 5. Confusion matrix for image classification by a Dirichlet mixture

Bark Fabric Food Metal Sand Water

Bark 250 0 0 0 6 0
Fabric 0 248 8 0 0 0
Food 0 9 375 0 0 0
Metal 0 0 0 250 0 6
Sand 4 0 0 0 380 0
Water 3 0 0 7 2 372

trix, then derive from it the following features: Mean, Energy, Contrast, and
Homogeneity. Thus, each image was represented by an 16D feature vector. By
applying our algorithm to the texture database, only the MML criterion found
six categories (see table 4). Then, in what follows we use the selection found
by the MML. The classification was performed using the Bayesian decision rule
after the class-conditional densities were estimated. The confusion matrix for
the texture image classification is given in Table 5. In this confusion matrix, the
cell (classi, classj) represents the number of images from classi which are clas-
sified as classj. The number of images misclassified was small: 45 in all, which
represents an accuracy of 97.65 percent. From table 5, we can see clearly that
the errors are due essentially to the presence of macrotexture, i.e the texture at
large scale, (between Fabric and food for example) or because of microtexture,
i.e the texture at pixel level (between Metal and water for example).

5 Conclusion

We have presented a MML-based criterion to select the number of components in
Dirichlet mixtures. The results presented indicate clearly that the MML model
selection method which is based upon information theory outperforms the other
methods. The validation was based on synthetic data and an interesting appli-
cations which involves texture image database summarization.
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Abstract. The scientific community has accumulated an immense experience in 
processing data represented in finite-dimensional linear spaces of numerical fea-
tures of entities, whereas the kit of mathematical instruments for dissimilarity-
based processing of data in metric spaces representing distances between enti-
ties, for which sufficiently informative features cannot be found, is much 
poorer. In this work, the problem of embedding the given set of entities into a 
linear space with inner product by choosing an appropriate kernel function is 
considered as the major challenge in the featureless approach to estimating de-
pendences in data sets of arbitrary kind. As a rule, several kernels may be heu-
ristically suggested within the bounds of the same data analysis problem. We 
treat several kernels on a set of entities as Cartesian product of the respective 
number of linear spaces, each supplied with a specific kernel function as a spe-
cific inner product. The main requirement here is to avoid discrete selection in 
eliminating redundant kernels with the purpose of achieving acceptable compu-
tational complexity of the fusion algorithm. 

1   Introduction 

The problem of finding empirical dependences ( ) :y Yω Ω →  in a set of entities of 

arbitrary kind ω∈Ω  is one of the glowing problems of modern data mining. Let a 
given data set be the set of experimentally measured values of a characteristic 

( )j jy y Y= ω ∈  within an accessible subset of entities 1{ , ..., }N
∗Ω = ω ω ⊂ Ω . It is 

required to continue this function onto the entire set Ω  for it would be possible to esti-

mate this characteristic ˆ( )y ω  for entities \ ∗ω∈Ω Ω  not represented in the original 

(training) data set [1, 2]. In particular, if ( )y ω  takes values from a finite set, for in-

stance, { }1, 1Y = − , the problem is usually called the pattern recognition problem, and 

                                                           
∗ This work is supported by the Russian Foundation for Basic Research (Grants 02-01-00107 

and 05-01-00679), Grant of the President of the Russian Federation for young scientists No. 
-3173.2004.09 (O. Seredin), INTAS Grant 04-77-7347, and NSF Grant CCR 0325398 

(I. Muchnik). 



 Principles of Multi-kernel Data Mining 53 

 

in the case of a real-valued characteristic Y =  it is referred to as the problem of re-
gression estimation. 

It is clear that the problem of function continuation is meaningless until some as-
sumptions are taken about the relations between the values )(ωy  and other characteris-

tics of entities Ω∈ω  that are more accessible to observation than the goal characteris-
tic. There exist many practical problems of data analysis, including pattern recognition 
and regression estimation, in which it is relatively easy to evaluate the degree of dis-
similarity of any pair of entities. The modern machine learning theory is based on the 
so-called compactness hypothesis, which consists in the assumption that if two entities 
are close to each other in the sense of an appropriate metric then so are also, in most 
cases, the respective values of the goal characteristic. This fact, actually, underlies the 
featureless (relational, similarity-based) approach to data analysis proposed by R. Duin 
and his colleagues [3, 4, 5]. In the featureless situation, a natural mathematical model of 
the general set of entities is a metric space, in which the compactness hypothesis can be 
expressed directly in terms of the given metric.  

At the same time, the mathematically most advanced methods of machine learning es-
sentially exploit the assumption that the universe of entities can be represented as a linear 
space. As the simplest instrument of introducing linear operations in the set of entities 

ω∈Ω , the vector of some observable numerical features ( ) nω ∈x  was traditionally 

considered, and the Euclidean metric produced by it ( , ) ( ) ( )′ ′′ ′ ′′ρ ω ω = ω − ωx x  served 

as the basis of function continuation in respective machine learning techniques.  
It became apparent soon that what immediately determines the result of training is 

the configuration of the training-set points, represented in n  by their pair-wise inner 

products ( ) ( ) ( )T′ ′′ ′ ′′ω ⋅ ω = ω ωx x , rather than the values of features. This observation 

resulted in the potential function method of machine learning [2], which later was 

named the kernel method [1]. The idea of a kernel ( , )K ′ ′′ω ω  consists in understanding 

it as inner product of two entities ( , ) ( )K ′ ′′ ′ ′′ω ω = ω ⋅ ω  in a linear space, maybe, a 

hypothetical one. If a kernel function ( , )K ′ ′′ω ω  is defined in an arbitrary set of entities 

Ω , it produces a Euclidean metric in it  

 [ ]1 2
( , ) ( , ) ( , ) 2 ( , )K K K′ ′′ ′ ′ ′′ ′′ ′ ′′ρ ω ω = ω ω + ω ω − ω ω   (1) 

which expresses a specific compactness hypothesis without the intervening notion of 
features.  

There is usually much freedom in measuring similarity or dissimilarity of entities, 
and, thus, several heuristic kernels may be suggested within the bounds of the same data 

analysis problem. However, the choice of features ( )ix ω ∈ , each of which defines, 

actually, a simplest kernel ( , )iK ′ ′′ω ω = ( ) ( )i ix x′ ′′ω ω , is also ever heuristic. The aim 

of this work is to study the ways of fusing the given set of kernels and to organize, 
thereby, a concurrence of several compactness hypotheses in finding empirical regulari-
ties in the given set of entities. The main requirement here is to avoid discrete selection 
of kernels with the purpose of achieving acceptable computational complexity of the 
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fusion algorithm. We use here the main idea of embedding the discrete problem of choos-
ing a subset into a continuous problem of finding optimal nonnegative weights assigned to 
the elements of the initial set. This idea was originally proposed in [6] as a means of con-
structing Relevance Vector Machines (RVM). 

2   The Linear Space Produced by a Kernel 

A kernel ( , )K ′ ′′ω ω  on a set of entities of arbitrary kind ω∈Ω  can be defined as a 

real-valued function Ω× Ω →  possessing two principal properties – symmetry 

( , )K ′ ′′ω ω = ( , )K ′′ ′ω ω  and positive semi-definiteness of the matrix 

( , ); , 1,...,i jK i j mω ω =  for any finite collection of entities 1{ ,..., }mω ω ⊂ Ω . The 

function ( , )′ ′′ρ ω ω  (1) produced by a kernel is a metric [7], and, so, the set of entities 

Ω  supplied with a kernel function becomes a metric space.  

Any kernel function ( , )K ′ ′′ω ω  allows for mentally embedding the set Ω  into a 

real linear space with inner product Ω⊆Ω ~
. The null element φ∈Ω  and linear op-

erations ( ):′ ′′ω + ω Ω × Ω → Ω  and ( ):cω × Ω → Ω  are defined in Ω  in a 

special way, whereas the role of inner product is played by the kernel function itself 

( , ) ( , )K′ ′′ ′ ′′ω ω = ω ω .  

As the basis for introducing linear operations in the extended set Ω , serves the no-

tion of coaxiality of elements in a metric space [7]. Let ,′ ′′<ω ω >  be an ordered pair 

of elements ,′ ′′ω ω ∈Ω . We shall say that the element ω∈Ω  is coaxial to the pair 

,′ ′′<ω ω >  with coefficient c∈  if ( , ) | | ( , )c′ ′ ′′ρ ω ω = ρ ω ω  and 

( , ) |1 | ( , )c′′ ′ ′′ρ ω ω = − ρ ω ω .This fact will be denoted by the symbol 

( )coax , ; c′ ′′ω = < ω ω > . The triangle inequality turns into equality for any three 

coaxial elements ′ω , ′′ω  and ω .  
A metric space will be said to be unboundedly convex if for any ordered pair 

,′ ′′< α α >  and any c ∈  it contains at least one element coaxial to this pair with 

coefficient c . It is proved in [7] that the coaxial element is unique if the metric form-
ing an unboundedly convex metric space is produced by a kernel function (1). Such 
metric spaces are called Euclidean metric spaces. It is assumed that the given set of 

entities Ω  is embedded into a greater set Ω ⊆ Ω  in which a kernel function is de-
fined and which is, so, a Euclidean metric space.  

It is possible to define linear operations in the Euclidean metric space Ω  in the 
following way (see [7] for details):  

- the null element is a hypothetical element φ∈Ω  for which ( , ) 0K φ φ = ;  

- multiplying by real coefficient ( )coax , ;c cω = < φ ω > ;  
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- summation ( )2coax , ;1 2′ ′′ ′ ′′ω + ω = < ω ω > ;  

- inner product and norm ( ) ( , )K′ ′′ ′ ′′ω ⋅ ω = ω ω , [ ]1 2
|| || ( , )Kω = ω ω .  

It is just this system of linear operations which is produced in the extended set Ω  

by a kernel function defined in the original set of entities Ω ⊆ Ω .  

The dimensionality of the linear space Ω  is the maximum number of elements 

1{ ,..., }mω ω ⊂ Ω  for which the matrix ( , ); , 1,...,i jK i j mω ω =  can be positive 

definite. We do not study here the question of the dimensionality of this space, which 
may be finite or infinite, but this issue is extremely important for the generalization 
performance of the decision rules inferred from a training set.  

3   The Class of Linear Decision Rules in the Linear Space 
Produced by a Kernel Function 

The convenience of a kernel function as a means of measuring dissimilarity of any two 
entities by the respective Euclidean metric (1) consists in that it involves the notion of a 
linear function ( ) :y ω Ω →  in the set of entities of any kind. This circumstance 

makes it possible to develop very simple algorithms of estimating dependencies be-
tween, generally speaking, arbitrary entities by exploiting, in the featureless situation, 
practically all known methods which had been worked up for linear spaces. 

In this Section, we consider the commonly adopted class of kernel-based decision 

rules as a class of linear functions in the extended set of entities Ω  supplied with linear 
operations and inner product produced by a continuation of the given kernel function. 

The class of linear functions in Ω  is defined by two parameters ϑ∈Ω  and b∈   

 ( | , ) ( , )y b K bω ϑ = ϑ ω + , ω∈Ω .  (2) 

We shall call parameter ϑ  the direction element of the linear function.  
If the real value of the linear function is immediately treated as the goal characteris-

tic of an entity, the choice of parameters ϑ∈Ω  and b∈  determines a regression 
dependence. If the sign of the linear function is understood as the goal characteristic, the 
parameters specify a classification of the set of entities into two classes: 

( ) ( , ) 0y K bω = ϑ ω + > → class 1, ( ) 0y ω ≤ → class 2.  

Such a way of specifying a linear function may appear nonconstructive because it 

involves a hypothetical element of a linear space Ω∈ϑ
~

 as direction element in (2), 
which is nothing else than product of our imagination. But when solving the problem of 
inferring the regression dependence or decision rule of pattern recognition from a train-

ing set { }Njy jj ,...,1);,( =ω by the principles of Support Vector Machines [1] or Rele-

vance Vector Machines [6], the only reasonable choice of ϑ  will be a linear combina-
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tion of really existing objects 
=

ω=ϑ N

j jja
1

ˆ  in accordance with the linear operations 

induced in the extended set Ω
~

 by the kernel function ),( ω′′ω′K  [8]. As inner product in 

Ω
~

, the kernel function is linear with respect to its arguments, hence, the linear function 
resulting from training will include the values of the kernel function only for objects 

existing in reality =ω)(ŷ = ωωN

j jj Ka
1

),( .  

4   Cartesian Product of Linear Spaces Produced by Several Kernel 
Functions 

It is natural to expect that different experts skilled in the specific knowledge area will 
propose different kernel functions. The main idea of this work is to shift the burden of 
the final choice onto the training algorithm by concurrently fusing the given set of heu-
ristically chosen kernels.  

Let ( , )iK ′ ′′ω ω , 1,...,i n= , be the kernel functions defined on the same set of enti-

ties ω∈Ω  by different experts. These kernel functions embed the set Ω  into different 

linear spaces iΩ ⊂ Ω , 1,...,i n= , with different inner products and, respectively, dif-

ferent linear operations. It is convenient to treat the n  linear spaces jointly as Cartesian 
product  

 { }1 1... ,..., :n n i iΩ=Ω × × Ω = ω =< ω ω > ω∈Ω   (3) 

formed by ordered n -tuples of elements from 1,..., nΩ Ω . The kernel function (i.e. 

inner product) in this linear space can be defined as the sum of the kernel functions 
(inner products) of the corresponding components in any two n -tuples 

1, ..., n′ ′ ′ω =< ω ω >  and 1, ..., n′′ ′′ ′′ω =< ω ω > :  

 
1

( , ) ( , )
n

i i ii
K K

=
′ ′′ ′ ′′ω ω = ω ω , ,′ ′′ω ω ∈Ω .  (4) 

The dimensionality of the combined linear space Ω  (3) will not exceed the sum of 
dimensionalities of the particular linear spaces.  

A really existing entity ω∈Ω  will be represented by its n -fold repetition 

,...,ω =< ω ω >∈Ω . Then any real-valued linear function Ω →  is specified by the 

choice of parameters ϑ∈Ω  and b∈  

 
1

( ) ( , ) ( , )
n

i ii
y K b K b

=
ω = ϑ ω + = ϑ ω + ,  (5) 

where ϑ  is a combination of hypothetical elements of particular linear spaces 

1, ..., nϑ=< ϑ ϑ > , i iϑ ∈Ω , produced by particular kernel functions ( , )iK ′ ′′ω ω  in iΩ .  
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Thus, to define a numerical dependence over a set of entities of any kind by combin-

ing several kernel functions ( , )iK ′ ′′ω ω , we have, first of all, to choose, as parameters, 

one element in each of linear spaces i iϑ∈Ω  into which the kernel functions embed the 

original set iΩ ⊆ Ω . It should be marked that the less the norm of the i th parameter in 

its linear space 2|| || ( , )i i i iKϑ = ϑ ϑ , the less the influence of the respective summand on 

the value of the function (5). If ( , ) 0i iK ϑ ϑ → , i.e. i i iϑ ≅ φ ∈Ω , the i th kernel will 

practically not affect the goal function.  
This means that the parametric family of numerical functions (5) implies also an in-

strument of emphasizing “adequate” kernels with respect to the available observations 
and suppressing “inadequate” ones. Which kernels should be considered as adequate is 
the key question for providing a good generalization performance of the decision rule 
when it is applied to entities not represented in the training set.  

5   Fusion of Kernel Functions 

If the total dimensionality of the combined extended linear space Ω  (3) is greater than 

the number of entities in the training set {( , );j jyω  }1,...,jy j N∈ =,  or 

{ }( , ); { 1,1}, 1,...,j j jg g j Nω ∈ − =  there always exist linear functions (5) that exactly 

reproduce the trainer’s data. Following the widely adopted principle [1], we shall prefer 
the function with the minimum norm of the direction element under the constraints of 
the training set: 

 

2
1

1

1

|| || min, ,..., ,

( , )

or ( , ) const.

n

n

i i j ji

n

j i i ji

K b y

g K b

=

=

ϑ → ϑ =< ϑ ϑ >∈Ω

ϑ ω + =

ϑ ω + ≥

 (6) 

However, the norm in Ω
~

 can be measured in several ways. The simplest version of 
norm follows from (4)  

 2|| ||ϑ =
1

( , )
n

i i ii
K

=
ϑ ϑ ,  (7) 

but any linear combination of kernel functions with nonnegative coefficients also possesses 

all the properties of norm 2

1
|| || (1 ) ( , )

n

i i i ii
r K

=
ϑ = ϑ ϑ . In this case, the criterion (6) 

will try to avoid kernels with small ir . If 0ir = , the respective kernel does not partici-

pate in forming the goal function.  
The idea of adaptive training consists in jointly inferring the direction elements iϑ  

and the weights ir  from the training set by additionally penalizing large weights [6]: 
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[ ]
1

1

1

(1 ) ( , ) log min( , ),

( , )

or ( , ) const, 1,..., .

n

i i i i i i ii

n

i i j ji

n

j i i ji

r K r r

K b y

g K b j N

=

=

=

ϑ ϑ + → ϑ

ϑ ω + =

ϑ ω + ≥ =

 (8) 

This adaptive training criterion displays a pronounced tendency to emphasize the kernel 
functions which are “adequate” to the trainer’s data and to suppress up to negligibly 
small values the weights ir  at “redundant” ones. 

The reasoning for the adaptive training criterion (8) is the view on the unknown  

direction elements ii Ω∈ϑ
~

 in each of the linear spaces iΩ
~

 as hidden independent  

random variables whose mathematical expectations coincide with the respective null 

elements iii Ω∈φ=ϑ
~

)(M . The parameter ir  has the sense of the unknown mean-

square distance of the random direction element from the null element in the sense of 
metric (1). Then (8) is equivalent to finding the joint maximum-likelihood estimate of 
the variables nϑϑ ,...,1  and their variances nrr ,...,1  under the additional assumption that 

the dimensionality of each of linear spaces iΩ
~

 is, maybe, very large but finite, and the 

respective direction element is normally distributed in it. 
Since ϑ  is element of an abstract linear space but not a vector, for minimizing the 

Lagrangian of the respective constrained optimization problem (8) we have to use the 
notion of Frechet differential instead of that of gradient [9]. The Frechet differential of a 

real-valued function over a linear space is element of this space: ( , )Kϑ∇ ϑ ω = ω , 

( , ) 2Kϑ∇ ϑ ϑ = ϑ . It can be shown that the following iterative procedure solves both 

regression estimation and pattern recognition problem: 

 ( ) ( 1) ( )

1

Nk k k
i i j jj

r −
=

ϑ = λ ω   or  ( ) ( 1) ( )

1
,

Nk k k
i i j j jj

r g−
=

ϑ = λ ω  (9) 

 ( ) ( 1) 2 ( ) ( )

1 1
( ) ( , )

N Nk k k k
i i i j l j lj l

r r K−
= =

= ω ω λ λ ,  (10) 

where the real numbers ( ) ( )
1 ,...,k k

Nλ λ  are the Lagrange multipliers (nonnegative in the 

case of pattern recognition) found as solutions of the respective dual problem. Updating 

the constant ( )kb  doesn’t offer any difficulty.  

As we see, the abstract variables ( )k
i iϑ ∈Ω  (9) are linear combinations of the enti-

ties of the training set in the sense of linear operations induced by the kernel functions 
as inner products in the respective linear spaces. Substitution of (9) and (10) into (5) 

eliminates ( )k
iϑ  and gives the completely constructive estimate of the sought function, 

respectively, for regression estimation and pattern recognition: 
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( ) ( ) ( ) ( )

1 1

( ) ( ) ( ) ( )

1 1

ˆ ( ) ( , ) ,

0,
ˆ ( ) ( , )

0.

N nk k k k
j i i jj i

N nk k k k
j j i i jj i

y r K b

y g r K b

= =

= =

ω = λ ω ω +

>
ω = λ ω ω +

<

 (11) 

As a rule, the process converges in 10-15 steps and displays a pronounced tendency to 

suppressing the weights at “redundant” kernel functions 0ir →  along with emphasiz-

ing 0ir  the kernel functions which are “adequate” to the trainer’s data. This fact 

provides a computationally effective selection of kernel functions without straightfor-
ward discrete choice of their subsets.  

6   A Particular Case: Feature Selection as Kernel Fusion 

There is no insurmountable barrier between the featureless kernel-based way of 
forming parametric families of numerical functions on a set of entities of any kind 
and the usual parametric family of linear functions on the set of entities repre-
sented by vectors of their numerical features. The latter way is particular case of 
the former one. 

Indeed, a numerical feature ( ):x ω Ω→  is equivalent to the simplest kernel 

function in the form of product ( , )K ′ ′′ω ω = ( ) ( )x x′ ′′ω ω  that embeds the set of 

entities into a one-dimensional linear space Ω ⊆ Ω . Respectively, a vector of 

features [ ]1( ) ( ) ( )nx xω = ω ωx  gives n  kernel functions at once 

( , )iK ′ ′′ω ω = ( ) ( )i ix x′ ′′ω ω  and n  versions of such an embedding iΩ ⊆ Ω . The 

choice of one entity in each of these spaces i iϑ∈Ω , 1,...,i n= , namely, n  real 

numbers ( )1 1( ) ( ) n
n nx xϑ ϑ ∈ , along with a numerical constant b∈  speci-

fies a linear function on the set of entities: ( )y ω =
1

( , )
n

i ii
K b

=
ϑ ω + =  

1
( )

n

i ii
a x b

=
ω +  where ( )i i ia x= ϑ .  

The less the i th coefficient, i.e. the norm of the i th imaginary entity 

|| || ( )i i ixϑ = ϑ , the less is the contribution of this feature ( )ix ω  to the value of the 

function. 

7   Experimental Results 

As the essence of feature selection is shown to be the same as that of kernel fusion, 
we tested the proposed approach, for obviousness sake, on a set 

{ }( , ); 1,...,j jy j N=x of 300N =  pairs consisting of randomly chosen feature 

vectors n
j ∈x R , 100n = , and scalars obtained by the rule 1 ,1 2 ,2j j j jy a x a x= + + ξ  
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with 1 2 1a a= =  and jξ  as normal white noise with zero mean value and some vari-

ance 2σ . So, only 2n′ =  features of 100n =  were rational in the simulated data. In 
the experiment with regression estimation this set was taken immediately, whereas for 

the experiment with pattern recognition we took the set { }( , ); 1,...,j jg j N=x where 

1jg = −  if 0jy <  and 1jg =  if 0jy ≥ .  

In both experiments, we randomly chose 20trN =  pairs for training. So, the size of 

the training set was ten times greater than the number of rational features, but five 
times less than the full dimensionality of the feature vector. The remaining 

280testN =  pairs we used as the test set.  

The comparative results of training with equal weights at features (6)-(7) and with 
adaptive weights (8) are presented in the following two tables: 

Regression estimation  
Error rate: ratio of the root-mean-square error in the test 
set to the actual root variance of the observation noise σ  

Training procedure 
Feature set 

equal weights adaptive weights 

2 rational features 1.01 inapplicable 

all 100 features 166.75 2.16 
 

Pattern recognition  
Error rate: misclassification percentage in the test set 

Training procedure 
Feature set 

equal weights adaptive weights 

2 rational features 0.36% inapplicable 

all 100 features 26.8% 0.36% 

As was expected, the classical training criterion with equal weights shows a dras-
tic increase in the error rate in both cases when confusing features (i.e. confusing 
kernel functions) participate in training. At the same time, the error rate with weights 
adaptation is little sensitive to the presence of purely noisy features. In both experi-
ments, the weights at redundant features turned practically into computer zeros after 
10 iterations.  

8   Conclusions 

A numerical feature, when assigned to entities of a certain kind, embeds the set of 
these entities into a one-dimensional linear space. The essence of assigning a kernel 
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function in a set of entities is also embedding it into a hypothetical linear space 
through the notion of coaxiality of elements of a Euclidean metric space.  

The important difference is that the dimensionality of the space induced by a ker-
nel function will be, as a rule, greater than one, if not infinite at all. The main point of 
the way of fusing several kernels is the idea to consider the Cartesian product of the 
respective linear spaces, just as the multidimensional feature space formed by a vector 
of features is the Cartesian product of the respective one-dimensional ones.  

Thus, treating the universal set of “all feasible” entities as a linear space practi-
cally wipes out the difference between a set of kernels and a set of features and, so, 
between the featureless and feature-based approach to data analysis. The featureless 
multi-kernel approach replaces the problem of choosing the features by that of choos-
ing the kernels. According to which of these two problems is easier, the feature-based 
or the featureless approach should be preferred.  

However, fusing too many kernels, just as training with too many features, will in-
evitably worsen the generalization performance of the decision rule inferred from a 
small training set unless some regularization measures are taken. The technique of 
kernel selection proposed here is only one of possible principles of kernel fusion and 
has its shortcomings. In particular, such a technique should involve elements of test-
ing on a separate set immediately in the course of training, for instance, on the basis 
of the leave-one-out principle.  
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Abstract. Neural network learning is the main essence of ANN. There are 
many problems associated with the multiple local minima in neural networks. 
Global optimization methods are capable of finding global optimal solution. In 
this paper we investigate and present a comparative study for the effects of 
probabilistic and deterministic global search method for artificial neural net-
work using fully connected feed forward multi-layered perceptron architecture. 
We investigate two probabilistic global search method namely Genetic algo-
rithm and Simulated annealing method and a deterministic cutting angle method 
to find weights in neural network. Experiments were carried out on UCI 
benchmark dataset. 

1   Introduction 

Artificial neural networks (ANN) are the interconnection of basic units called artifi-
cial neurons. Those are capable of performing classification, learning and function 
approximation. Learning is the main essence of ANN. Learning can be considered as 
a weight-updating rule of the ANN. Most of the neural learning method strictly de-
pends on the architecture of the ANN. The nonlinearity of ANN results in the exis-
tence of many sub-optimal solutions. There are many problems associated with the 
multiple local minima in neural networks [1][2][3]. Some of the aspects with existing 
learning methods for MLP can be summarized as the convergence tends to be ex-
tremely slow, learning constants must be guessed heuristically, convergence to the 
global minimum is not guaranteed. [4]. The global search method guarantees the 
global solution.  

There exist solutions that include multiple starts from randomly chosen initial 
points. Those are simulated annealing, random search, and evolutionary computing 
[5-14]. These methods are probabilistic in nature and they can find the globally opti-
mal solution with a certain probability. Hence the solution partly depends on the 
number of iterations of the algorithm. In contrast, there exist deterministic techniques 
which are capable of finding global optimal solution. Deterministic methods include 
tabu search, branch-and-bound, generalized cutting plane and systematic search 
[11,12]. But the computational costs of these methods are extremely high. 



 Comparative Analysis of Genetic Algorithm 63 

 

In this paper we investigate three different global optimization methods to find the 
weights of ANN. Two of them are probabilistic global search method namely genetic 
algorithm, and simulated annealing method respectively. The third one is a recently 
developed cutting angle method of deterministic global optimization [15-17]. 

2   Research Methodology 

In this section we describe Genetic algorithm, Simulated annealing and Cutting angle 
method. 

2.1   Genetic Algorithm 

Genetic algorithm (GA) learning provides an alternative way to learn for the ANN. 
The task involves controlling the complexity by adjusting the number of weights of 
the ANN. The use of GA for ANN learning can be viewed as follows: 

1. Search for the optimal set of weights 
2. Search over topology space 
3. Search for optimal learning parameters 
4. A combination to search for all the above [18] 

The fundamental work in this area was done by Holand, Rechenberg, Schwefel and 
Fogel during the 1970s [19]. Much of the research has focused on the training of feed 
forward networks [20] [21]. Miller et al, reported that evolutionary algorithm (EA), 
which is a slight variation of GA, is a better candidate than other standard neural 
network techniques, because of the nature of the error surface[22] [23]. Those charac-
teristics pointed out by miller are 

1. The architecture surface is infinitely large, hence unbounded for possible 
number of nodes and connections 

2. The surface is non-differentiable since changes in the number of nodes and 
connections are discrete 

3. The surface is complex and noisy since the mapping from the architecture to 
the performance is indirect, strongly epistasis, and dependent on the evalua-
tion method used. 

4. The surface is deceptive since similar architectures may have quite different 
results 

5. The surface is multi-modal since different architectures may have similar 
performance 

The steps in genetic algorithm are described as follows: 

Step 1: Initialize all the hidden layer weights using a uniform distribution of a closed 
interval range of [-1, +1]. A sample genotype for the  lower half gene from the popu-
lation pool for n input, h hidden units, m output, and p number of patterns can be 

written as hnhhnn wwwwwwwww ............ 212222111211  where, range(w) initially is 

set between the closed interval [-1 +1]. Also, the sample genotype will vary depend-
ing on the connection type as described later.  
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Step 2:  The fitness for the population is calculated based on the phenotype and the 
target for the ANN. 

)*( weighthidfnetOutput =  

where hid is the output matrix from the hidden layer neurons, weight is the weight 
matrix output neurons and f is the sigmoid function 

2

1

( )

*

n

i

n etO u tp u t n e t
R M S E rro r

n p
=

−
=  

)( ii RMSErrornormrpopRMSErro =  

norm function normalized the fitness of the individual, so the fitness of each indi-
vidual population is forced to be within certain  range. 

Step 3:  Generate a random number x from a Gaussian distribution of mean 0   and 
standard deviation 1.     

If (x < crossOverRate) 

Select two parents from the intermediate population 

ApplyCrossOver 

  End If 

  Generate another random number y from the same distribution 

  If (y < mutationRate) 
  ApplyMutation 

  End If 

The crossover method that is used for this algorithm is known as linear interpola-

tion with two point technique. Let’s consider two genes 1 2.. hw w w    and / / /
1 2... hw w w . 

Two points are selected randomly, lets assume point1 and point2, where 
point1<point2, and point1>1, point2<h. 

The two child after the crossover operation will be 
/ / / / // /

int1 int1 int1 1 int1 1 int 2-1 int 2-1 int 2 int 21 1 2 2
2 2 2 2 22 2

... ... ...
3 3 3 3 3 3 3

po po po po po po po po h h
w w w w w w w w w ww w w w + ++ + + + ++ +

 
/ / / / // /

int1 int1 int1 1 int1 1 int 2 1 int 2 1 int 2 int 21 1 2 2
2 2 2 2 22 2

... ... ....
3 3 3 3 3 3 3

po po po po po po po po h h
w w w w w w w w w ww w w w + + − −+ + + + ++ +  

For mutation, a small random value between 0.1 and 0.2, is added to all the weights. 

Let us assume a parent string hwww ..21 . After mutation the child string be-

comes εεε +++ hwww |..|| 21 , where ε is a small random number [0.1 0.2], 

generated using a   uniform distribution. 
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Step 4: If the convergence for the GA is not satisfied then goto step 2.2   Manuscript 
Preparation. 

2.2   Simulated Annealing  

In this section we will describe the Simulated Annealing method. Let us consider the 
following global optimization problem: 

minimize f(x) subject to Xx ∈  (1) 

where nRX ⊂ is a compact set. We describe a version of the simulated annealing 
(SA) method and its pseudo-code for solving this problem.  

Simulated annealing [24-27] is one of the few successful stochastic methods for the 
practical large-scale problems. Numerical experiments show that SA is successful for 
many discrete optimization problems. However, for some continuous optimization 
problems in high-dimensional space SA meets difficulties.  

Simulated annealing method differs from the traditional descent methods in that 
local search algorithm for a neighbourhood solution search allows not only downhill 
moves, while in an attempt to escape from it allows occasional uphill moves as well. 
The name “simulated annealing” comes from a physical process called annealing, the 
process for growing crystals. 

Starting with an initial solution x, and an initial “temperature’’ T0, which is a pa-
rameter, we obtain a neighbouring solution x′  and compare its cost with that of x. If 

the cost of x′ ' is smaller than that of x, i.e. ( ) ( )xfxf <′ , we accept the new solu-

tion x′ . The same thing would happen if we were applying the local descent method. 

On the other hand, if ( )xf ′  is greater than ( )xf  (in which case any local descent 

algorithm will not accept x′ ), the SA algorithm may accept x′ , but with a  probabil-

ity 
0T

xx

e
′Δ

−

where xx′Δ is the difference in the costs of x′ and x, i.e. 

( ) ( )xfxf
xx

−′=Δ ′ . This process is carried out for a certain number of times,  

which we call iterations, for each temperature. Then we reduce the temperature ac-
cording to a particular schedule, and repeat.  An essential element of the SA algorithm 

is the probability 
0T

xx

e
′Δ

−

of an uphill move of size xx′Δ  being accepted when the 

current temperature is T. This is dependent on both xx′Δ and T. For a fixed tempera-

ture T, smaller uphill moves xx′Δ have a higher probability of being accepted. On the 

other hand, for a particular uphill move xx′Δ , a higher temperature results in a higher 
probability for that uphill move to be accepted. In the words of [27], at a high tem-
perature any uphill move might be indiscriminately accepted with a high probability 
so that the objective function and the tumbles around the space are not very impor- 
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tant; as T is decreasing the objective function becomes more and more significant; 
until as T goes to zero the search becomes trapped in the lowest minima that it has 
reached. Simulated Annealing algorithm for solving a practical problem is typically 
implemented in two nested loops: the outer loop and the inner loop. The outer loop 
controls temperatures, while the inner loop iterates a fixed number of times for the 
given temperature. The inner loop is for the problem of specific decisions. The deci-
sions of the outer loop involve the setting of initial temperature (T0), the cooling 
schedule, the temperature length, which is the number of outer loop iterations per-
formed at each temperature, as well as the stopping criterion of the outer loop. The 
inner loop of SA typically consists of the following parts:  feasible solution space, 
initial feasible solution, neighbourhood move, objective function values, and the deci-
sion, which decides whether the decision is found acceptable or probability acceptable 
according to the so-called Metropolis criterion. Denote renew the counts of the solu-
tion being accepted in the inner loop, N_factor as an input parameter, which can be 
any positive integer, and frozen_num the stopping condition for the outer loop.  

The strength of the simulated annealing is that it can deal with highly nonlinear 
models, chaotic and noisy data and many constraints.  It is a robust and general tech-
nique. Its main advantages over other local search methods are its flexibility and its 
ability to approach global optimality. The algorithm is quite versatile since it does not 
rely on any restrictive properties of the model. The other advantage is that, it allows 
not only downhill moves while in an attempt to escape from local minima, occasion-
ally it also allow uphill moves. Hence it doesn’t get stuck to any narrow or broad local 
minima and can improve it further.  

2.3   Cutting Angle Method 

In this section we will describe the Cutting Angle method. The cutting angle method 
is based on theoretical results in abstract convexity [15]. The method calculates the 
value of the objective function at certain points. The points are selected in such a way 
that the algorithm does not return to unpromising regions where function values are 
high. The new point is chosen where the objective function can potentially take the 
lowest value. The function is assumed to be Lipschitz, and the value of the potential 
minim is calculated based on both the distance to the neighboring points and function 
values at these points. Let us consider the following global optimization problem: 

minimize f(x) subject to Sx ∈  
(2) 

where the objective function f is an increasing positively homogeneous of degree one 
and the set S is the unit simplex in nR .: 

=∈=
=

+

n

i
i

n xRxS
1

1:  

(3) 

where { }nixRxR i
nn ,....,1,0: =≥∈=+ . 

A function f defined nR+  is called increasing if yx ≥ implies ( ) ( )yfxf ≥ . The 

function f is positively homogeneous of degree one if ( ) ( )xfxf λλ =,  for all 
nRx +∈  and 0>λ . 
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For a given vector 0, ≠∈ + lRl n , we consider ( ) { }0:,....,1 >== ilnilI . We 

use the following notation for Rc ∈ and nRl +∈ : 

( ) ( )
( )∉

∈
=

lIiif

lIiiflc
lc i

i 0

/
/ . 

(4) 

An IPH function is nonnegative on nR+ . We assume that ( ) 0>xf for all Sx ∈ . 

It follows from the positiveness of f that I(l) = I(x) for all Sx ∈  and l=f(x)/x. Let 
ke be the kth orthant vector.  
The cutting angle method is as follows: 

Step0: Initialization: Consider the points Sx k ∈ , k=1,…,m, where nm ≥ , 

nkforxe kk ,...,1==  and .,....,10 mnkforxk +=≥  Let 

( ) .,...,1,/ mkxxfl kkk ==  Define the function mh : 

( ) ( ) ( )==
∈≤≤+≤∈≤

xlxlxlxh k
i

lIimkn
k

k
k

nk
i

k
i

lIimk
m kk

minmax,maxmaxminmax
1

 
 

(5)

And set j=m. 

Step1: Find a solution *x for the problem 

minimize ( )xh j  subject to Sx ∈ . (6) 

Step2: Set j = j+1 and *xx j = . 

Step3: Compute ( ) jjj xxfl /= , define the function 

( ) ( ) ( ) ( ) i
k
i

lIijk
i

k
i

lIi
jj xlxlxhxh

kj ∈≤∈
− ≡= minmaxmin,max 1  

(7)

And go to Step 1.  

3   Experimental Result 

Experiments were conducted using the following real-world benchmark data sets 
from UCI Machine Learning repository: Austral, Breast cancer (Wisconsin) and Heart 
Disease (Cleveland) and Diabetes data. The details of these datasets can be obtained 
from the UCI website. The datasets are described in Table 1. 

Table 1. Dataset details 

Dataset Instances Class Attribute 
Austral 690 2 14 

Wisconsin Breast Cancer Databases 699 2 9 
Heart Disease  Cleveland 297 2 13 

Diabetes 768 2 8 
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The results are compared in terms of test classification accuracy and computation 
time. The following tables (Table 2 & 3) show the classification accuracy and the 
time complexity of the ANN in percentage for all methods and data sets. 

Table 2. Classification Accuracy results for all data sets 

Classification Accuracy [%] 
Dataset GA SA CA 
Austral 88.5 89 92.2 

Breast Cancer 96.5 98.8 100 
Cleveland 89.7 87.5 89.7 
Diabetes 82.3 79.8 81.5 

Table 3. Time Complexity results for all data  

CPU Time [s] 
Dataset GA SA CA 
Austral 89 75.4 85.6 

Breast Cancer 75 69.8 70.3 
Cleveland 40 35.5 45 
Diabetes 51 46.5 49.8 

4   Analysis 

The following figures (Figure 1, Figure 2) show a comparison of classification accu-
racy and the time complexity for the three methods. From Figure 1 it is clear that CA 
performed more efficiently compare to SA for all datasets. But GA performed slightly 
better in case of diabetes dataset.  
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Fig. 1. Comparison of classification accuracy     Fig. 2. Comparison of computational time 

Figure 3 shows the convergence of GA, SA, and CA in astral dataset. Figure 3 
shows that SA has converged much quicker than GA and CA. This is because the 
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stopping criterion of SA was number restricted to number of iteration, because each 
iteration in SA takes long time to converge. GA has taken much longer time to con-
verge compare to CA.  

Comparison of Convergence 

0

0.2

0.4

0.6

0.8

1

GA

SA

CA

 

Fig. 3. Comparison of Convergence 

5   Conclusion 

This paper presents a comparative analysis of probabilistic and deterministic global 
search method to find neural network weights. The results show that both Cutting 
angle method, and Genetic algorithm performed much better than Simulated anneal-
ing method for all the dataset. While we compare Genetic algorithm with Cutting 
angle method, we see that that Cutting angle method performed slightly better that 
Genetic algorithm in most of the cases. For diabetes and Heart Disease dataset Ge-
netic algorithm performed slightly better than Cutting angle method.  
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Abstract. Derivative free optimization methods have recently gained a lot of at-
tractions for neural learning. The curse of dimensionality for the neural learning 
problem makes local optimization methods very attractive; however the error 
surface contains many local minima. Discrete gradient method is a special case 
of derivative free methods based on bundle methods and has the ability to jump 
over many local minima. There are two types of problems that are associated 
with this when local optimization methods are used for neural learning. The 
first type of problems is initial sensitivity dependence problem – that is com-
monly solved by using a hybrid model. Our early research has shown that dis-
crete gradient method combining with other global methods such as evolution-
ary algorithm makes them even more attractive. These types of hybrid models 
have been studied by other researchers also. Another less mentioned problem is 
the problem of large weight values for the synaptic connections of the network. 
Large synaptic weight values often lead to the problem of paralysis and conver-
gence problem especially when a hybrid model is used for fine tuning the learn-
ing task. In this paper we study and analyse the effect of different regularization 
parameters for our objective function to restrict the weight values without com-
promising the classification accuracy.  

1   Introduction 

Artificial neural networks (ANN) are the interconnection of basic units called artificial 
neurons. The performance of an ANN depends on both the weights and the transfer 
function. Most common form of transfer function used in literature is sigmoidal which 
makes the ANN model nonlinear. Using  non-linear transfer function such as sigmoidal 
in the hidden layer provides the power of non-linearity to the network. For classification 
task, a choice between a linear or non-linear transfer functions exist for the output layer. 
Least square based methods such as householder transformation etc for finding the 
output layer weights often produce very large weights. This is the case especially when 
non-linear transfer function is used. Using linear transformations on the other hand 
produce less weight values for the output layer however at the expense of an unafford-
able classification accuracy decrease. Large weights decrease the performance of ANN 
by affecting its Generalization ability, also causes paralysis during learning. 
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Another problem that causes due to large weight is known as network paralysis. 
When the weights of the neural network become very high, no change occurs in the 
weight updating process. So the Root mean square error does not get change. Hence 
the network never learns further. Often the network is required to be retrained for 
many purposes. Even in the simplest case using a hybrid model is sometimes a neces-
sity for fine tuning the learning task. Adaptation is another big issue quite often faced 
by many learning algorithms. Leaving large synaptic weights makes retraining ex-
tremely difficult and it requires a very long training time also. 

One way to avoid large weight is to apply linear transfer function in output layer. It 
decreases the weight in output layer but generates poor classification accuracy.  

The best way to avoid the problems is Regularization. Regularization is not a new 
term in the ANN community [22 – 27]. It is quite often used when least square based 
methods or ridge regression techniques are used for finding the weights in output 
layer. However the term regularization is not very common for multi-layered percep-
tron (MLP) as it is for radial basis function (RBF) network.  This can be justified by 
the fact that least square based techniques are not used often for MLP.  Regularization 
increases the generalization ability and avoid overfitting. There exists several way to 
regularize the weights. Regularization adds a penalty term to the error function. The 
usual penalty is the sum of squared weights times a decay constant. This process tends 
to minimize the large coefficients. The generalization ability of the network can de-
pend crucially on the decay constant. At the very least, we need two different decay 
constants for input to hidden layer weight, and hidden to output layer weights. Choos-
ing the decay constant is critical issue.  One way to calculate the decay constant is to 
iteratively update the decay constant during training.  Adjusting all these decay con-
stants to produce the best estimated generalization error often requires vast amounts 
of computation. 

In this research we apply a local search method to find the decay constant. The de-
rivative for local search method simultaneously minimize the classification error and 
estimates the decay constants which bounds the weights within certain limit.  

2   The Optimization Problem 

If we consider a network with differentiable activation functions, then the activation 
functions of the output units become differentiable functions of both the input vari-
ables and of the weights and biases. If we define an error function (E), such as the 
sum of squares function, which is a differentiable function of the network outputs, 
then this error function is itself a differentiable function of the weights. We can there-
fore evaluate the derivatives of the error with respect to the weights, and these deriva-
tives can then be used to find weight values, which minimize the error function, by 
using a variety of learning algorithms such as: backpropagation (BP), conjugate gra-
dient, quazi-Newton and Levenberg-Marquardt (LM) methods [1]. Viewed from the 
mathematical programming perspective [2, 3], supervised batch training of a neural 
network is a classical non-linear optimisation problem: find the minimum of the error 
function given some set of training data. Traditionally this is accomplished by a suit-
able local descent technique, such as backpropagation. The independent variables are 
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the weights w, and the objective function is usually the sum of squared errors (al-
though other measures of error are also used). It is formulated mathematically as 

( ) ( )( ) ( )k
T
kkkk

T
oko xwfzwhereyzwfwwE =−= ,,min

2

1  

Here f denotes the transfer function (in this work the transfer function was the 

standard sigmoid 1( ) (1 )tf t e− −= + ), ow  denote output weights, hw  denote hid-

den layer weights, kx  are the input training data, ky  is the desired output and kz  

denote the activations of hidden neurons. This problem is a global optimisation prob-
lem with many local minima. 

We can consider a second error function called the absolute error function which is 
the summation of  the absolute value of the error between the actual output and the 
desired output. It is mathematically formulated as 

( ) ( )( ) ( )k
T
kkkk

T
oko xwfzwhereyzwfwwE =−= ,\,min 0 . 

Despite its popularity, backpropagation has been widely criticized for its ineffi-
ciency [4, 5], and more advanced minimization techniques have been tried. Gradient 
based or gradient descent learning is named because of the learning characteristic of 
the algorithm, which uses gradient information of the error surface. Minimizing error 
with gradient descent is the least sophisticated but nevertheless in many cases a suffi-
cient method. Typical response surfaces often possess local minima. Optimization 
techniques based on gradient descent may stagnate at these potentially sub-optimal 
solutions, rendering the network incapable of sufficient performance. Newton and 
quasi-Newton methods may also fall prey to such entrapment. 

Research indicates that empirical MLP error surfaces have an extreme ratio of sad-
dle points. The results and experience of research into the properties of the error sur-
face have identified an important feature of MLP error surfaces, which has implica-
tions for successful training of the net. The presence of relatively steep and flat re-
gions is a fundamental feature of the error surface. Because of the complexity of the 
surface it is sometimes very hard and costly to compute the derivative. This is also 
known as the ill conditioning of the error surface. Algorithms that do not use gradient 
information directly will be affected implicitly through their reliance on the values of 
the error function. Algorithms such as Quasi-Newton (QN) and Levenberg-Marquardt 
[4], which use second order information, may not converge much faster than gradient 
methods in such a situation, and due to their increased computation effort may actu-
ally result in slower execution times.  

All these techniques converge to the closest local minimum of the error function, 
which is very unlikely to be the global one. As a consequence, the network trained 
with a local algorithm may exhibit marginal performance. In this connection, the 
primitive backpropagation may result in a better solution than more sophisticated 
methods, because its disadvantages turn to the benefits of avoiding some shallow 
local minima [4]. The problem of many local minima has been widely addressed in 
the past [3, 6]. It was shown that training even a simple perceptron with non-linear 
transfer function may result in multiple minima [7].  
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Many tricks have been invented for avoiding this problem, such as restarting with a 
new random set of weights, training with noisy exemplars, and perturbing the weights 
when they appear to prematurely converge. While these methods may lead to im-
proved solutions, there is no guarantee that such minima will not also be only locally 
optimal. Further, the same suboptimal solution may be rediscovered, leading to fruit-
less oscillatory training behaviour. Stochastic techniques offer an alternative to con-
ventional gradient methods. The new stochastic optimisation algorithms significantly 
outperform the local methods, yet they do not provide any guarantee that their solu-
tion is indeed the global minimum. What is more, the number of local minima of the 
error function grows exponentially with the number of neurons, and the likelihood 
that these stochastic methods will find the global minimum is not that high. Determi-
nistic global optimisation techniques could be found in  [8, 9, 10]. They are based on 
more or less systematic exploration of the search space, and involve some assump-
tions about the class of the error function, such as Lipschitz properties. With a suit-
able choice of neuron transfer functions, these properties are satisfied. The biggest 
problem of deterministic techniques is their computational complexity, which grows 
exponentially with the number of variables (weights). Hence they are applicable only 
to small dimensional problems. On the other hand, it is in the systems with few neu-
rons where global optimisation techniques are most needed. Indeed one of the goals 
of using global optimisation in ANN training is to reduce the number of neurons 
without sacrificing the performance, and this has been achieved in many cases [6]. 
The remedies include starting local descent from several random points, using tabu 
search, simulated annealing and genetic algorithms. 

As a stochastic process simulated annealing can serve to generate weight and bias 
sets [11]. The popularity of tabu search has grown significantly in the past few years 
as a global search technique. Glover initially introduced (1986) and later developed 
Tabu search [12] into a general framework. Independently, Hansen (1987) proposed 
the Steepest Ascent, Mildest Descent (SAMD) algorithm [13] that uses similar ideas. 
Tabu search can be thought of as an iterative descent method. The use of evolutionary 
based algorithms for training neural networks has recently begun to receive a consid-
erable amount of attention. Although the origins of evolutionary computing can be 
traced back to the late 1950’s, the field remained relatively unknown to the broader 
scientific community over the last few decades. The fundamental work of Holland, 
Rechenberg, Schwefel and Fogel served to slowly change this picture during the 
1970s [14]. Much of the research however has focused on the training of feed forward 
networks [Fogel, Fogel, and Porto, 1990; Whitley, Starkweather, and Bogart, 1990] 
[15] [16] [17]. Just as neurobiology is the inspiration for artificial neural networks, 
genetics and natural selection are the inspiration of the genetic algorithm (GA). It was 
developed by John Holland [18]. They are based on a Darwinian type, survival of the 
fittest strategy. An advantage of using GAs for training neural networks is that they 
may be used for network with arbitrary topologies.  

3   Regularization 

We add the decay constant and the weights as a penalty term in the error function. As 
large weights in the output layer can produce outputs that are far beyond the range of 



 Determining Regularization Parameters for Derivative Free Neural Learning 75 

 

the data hence it is more important to control the output layer weights. We use a linear 
penalty term for the hidden layer weights and nonlinear penalty term for output layer 
weights. If we consider the sum of square error function as 
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ized error function will be as follows 
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where kλ is the matrix of all hidden layer decay constant , and 0λ is the matrix of all 

output layer decay constant. The actual objective function becomes 
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If we consider the absolute error function as 
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4   Method 

In this section we will give a brief description of the discrete gradient method. The 
full description of this method can be found in [19]. The discrete gradient method can 
be considered as a version of the bundle method [22] when sub-gradients are replaced 
by their approximations - discrete gradients  

Let f be a locally Lipschitz continuous function defined on Rn. A function f is lo-

cally Lipschitz continuous on Rn if in any open bounded subset nRS ⊂  there exists 

a constant 0>L  such that 
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(1) 
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The locally Lipschitz function f is differentiable almost everywhere and one can de-
fine for it a set of generalized gradients or a Clarke sub-differential [93], by 
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Here ( )fD denotes the set where f is differentiable, co denotes the convex hull of 

a set and ( )xf∇ stands for a gradient of the function f at a point nRx ⊂ . 

Let 
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,0 nα is a fixed number. Here S1 is the unit sphere, G is a set of verti-

ces of the unit hyper cube in Rn and P is a set of univariate positive infinitesimal func-
tions. 

 

We define operators nnj
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Definition 1.  The discrete gradient of the function f at the point nRx ∈  is the vector 
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Remark1: From the definition of the discrete gradient we can see that it is defined 

with respect to a given direction 1Sg ∈  and in order to calculate the discrete gradi-

ent we use step 0>λ along this direction. The 1−n  coordinates of the discrete 
gradient are defined as finite difference estimates to a gradient in some neighborhood 
of the point gx λ+ . The ith coordinate of the discrete gradient is defined so that to 

approximate a sub-gradient of the function f. Thus the discrete gradient contains some 
information about the behavior of the function f in some region around the point x. 

5   Experimental Result 

All experiments were conducted for 5 different datasets (Austral, Breast Cancer, 
Cleveland Heart Disease, Diabetes and Liver) taken from UCI ML repository. The 
details of these datasets can be obtained from the UCI website. All results are given 
for weight determination using the discrete gradient method (DG) with two different 
error functions, the absolute error function and the sum of squared error function. Ten 
fold cross validation is used with 20 % of each dataset being withheld for testing. 
Each experiment is conducted for a range of hidden neurons (2-8). 

The following table (Table 1) shows the classification accuracy of the ANN as a 
percentage, CPU time in seconds and the corresponding initial weight range for the 
discrete gradient method with the absolute error function (Error function 0). B stands 
for the weight range before applying the regularization factor, and A stands for the 
weight range after applying the regularization factor.  The average classification accu-
racies were same before and after applying the proposed regularization factor. But our 
preliminary results have shown that the existing regularization factors produce less 
synaptic weight values at the expense of classification accuracy.  

Table 1. Results for all data sets for discrete gradient method with error function 0 

 

The following table (Table 2) shows the classification accuracy as a percentage, 
CPU time in seconds and the corresponding initial weight range for the discrete gradi-
ent method with sum of squares error function (Error function 1). B stands for the 
weight range before applying the regularization factor, and A stands for the weight 
range after applying the regularization factor.  
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Table 2. Results for all data sets for discrete gradient method with error function 1 

 

6   Conclusion and Further Research 

In this paper we have proposed a new weight regularization technique for MLP learn-
ing using a derivative free optimization method without loosing any classification 
accuracy. Less weight values increases the generalization ability and solve the prob-
lem of paralysis. Thus it helps to retrain the network to increase its adaptability and 
also fine tuning the learning task by applying further a hybrid model. In future we will 
modify our existing discrete gradient method to incorporate the constraints as a sec-
ondary objective function. 
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Abstract. The significant growth of consumer credit has resulted in
a wide range of statistical and non-statistical methods for classifying
applicants in ‘good’ and ‘bad’ risk categories. Traditionally, (logistic)
regression used to be one of the most popular methods for this task,
but recently some newer techniques like neural networks and support
vector machines have shown excellent classification performance. Self-
organizing maps (SOMs) have existed for decades and although they
have been used in various application areas, only little research has been
done to investigate their appropriateness for credit scoring. In this paper,
it is shown how a trained SOM can be used for classification and how
the basic SOM-algorithm can be integrated with supervised techniques
like the multi-layered perceptron. Classification accuracy of the models
is benchmarked with results reported previously.

1 Introduction

One of the key decisions financial institutions have to make is to decide whether
or not to grant a loan to a customer. This decision basically boils down to a
binary classification problem which aims at distinguishing good payers from bad
payers. Until recently, this distinction was made using a judgmental approach by
merely inspecting the application form details of the applicant. The credit expert
then decided upon the creditworthiness of the applicant, using all possible rele-
vant information concerning his sociodemographic status, economic conditions,
and intentions. The advent of data storage technology has facilitated financial
institutions ability to store all information regarding the characteristics and re-
payment behavior of credit applicants electronically. This has motivated the need
to automate the credit granting decision by using statistical or machine learning
algorithms. Numerous methods have been proposed in the literature to develop
credit-risk evaluation models. These models include traditional statistical meth-
ods (e.g. logistic regression [13]), classification trees [5], neural network models
[1, 4, 18] and support vector machines [2, 15]. While newer approaches, like neu-
ral networks and support vector machines, offer high predictive accuracy, it is
often difficult to understand the motivation behind their classification decisions.
In this paper, the appropriateness of SOMs for credit scoring is investigated.
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The powerful visualization possibilities of this neural network model offer a sig-
nificant advantage for understanding its decision process. However, the training
process of the SOM is unsupervised and initially the predictive power lies there-
fore slightly below classification accuracy of several supervised classifiers. In the
rest of the paper, we investigate how the SOM can be integrated with super-
vised classifiers. Two distinct approaches are adopted. In the first approach, the
classification accuracy of individual neurons is improved through the training of
a separate supervised classifier for each of these neurons. The second approach
is similar to a stacking model. The output of a supervised classifier is used as
input to the SOM. Both models are tested on two data sets obtained from a
major Benelux financial institution and benchmarked with the results of other
classifiers reported in [2].

2 Self Organizing Maps

SOMs were introduced in 1982 by Teuvo Kohonen [10] and have been used in
a wide array of applications like the visualization of high-dimensional data [16],
clustering of text documents [8], identification of fraudulent insurance claims [3]
and many others. An extensive overview of successful applications can be found
in [11] and [6]. A SOM is a feedforward neural network consisting of two layers.
The neurons from the output layer are usually ordered in a low-dimensional
grid. Each unit in the input layer is connected to all neurons in the output layer.
Weights are attached to each of these connections. This is similar to a weight
vector, with the dimensionality of the input space, being associated with each
output neuron. When a training vector x is presented, the weight vector of each
neuron c is compared with x. One commonly opts for the euclidian distance
between both vectors as the distance measure. The neuron that lies closest to x
is called the ‘winner’ or the Best Matching Unit (BMU). The weight vector of the
BMU and its neighbors in the grid are adapted with the following learning rule:

wc = wc + η(t)Λwinner,c(t)(x − wc) (1)

In this expression η(t) represents the learning rate that decreases during train-
ing. Λwinner,c(t) is the so-called neighborhood function that decreases when the
distance in the grid between neuron c and the winner unit becomes larger. Often
a gaussian function centered around the winner unit is used as the neighborhood
function with a decreasing radius during training. The decreasing learning rate
and radius of the neighborhood function result in a stable map that does not
change substantially after a certain amount of training.

From the learning rule, it can be seen that the neurons will move towards
the input vector and that the magnitude of the update is determined by the
neighborhood function. Because units that are close to each other in the grid,
will receive similar updates, the weights of these neurons will resemble each other
and the neurons will be activated by similar input patterns. The winner units
for similar input vectors are mostly close to each other and self-organizing maps
are therefore often called topology-preserving maps.
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3 Related Research

In [12], a model based on self-organizing maps is used to predict corporate
bankruptcy. A data set containing 129 observations and 4 variables was divided
into a training and a test data set with the proportion between bankrupt and
solvent companies being almost equal. A 12 by 12 map was trained and divided
into a zone of bankruptcy and a zone of solvency. This division of the map was
obtained by labelling each neuron with the label of the most similar training
example. Unseen test observations were classified by calculating the distance be-
tween the neurons of the map and the observations. If the most-active neurons
were in the solvent zone, the observation was classified as good. It is concluded
that the percentage correctly classified observations is comparable with the accu-
racy of a linear discriminant analysis and several multi-layered perceptrons. The
author’s conclusion is promising for the SOM: the flexibility of this neural model
to combine with and to adapt to other structures, wether neural or otherwise,
augurs a bright future for this type of model.

In [9], several SOM-based models for predicting bankruptcies are evaluated.
The first of the models, SOM-1, is very similar to the model described above,
but instead of assigning each neuron the label of the most similar observation, a
voting scheme is used. For each neuron of the map, the probability of bankruptcy
is estimated as the number of bankrupt companies projected onto that node
divided by the total number of companies projected on that neuron. A second,
more complex model was also proposed (SOM-2). It consists of a small variation
to the Basic SOM-algorithm as explained above. Each input vector consists of
two types of variables: the financial indicators and the bankruptcy indicators.
Only the financial indicators are used when searching which unit is the BMU.
Afterwards, the weights are updated with the traditional learning rule from
equation 1. These weight updates are not only made for the financial indicators
but also for the bankruptcy indicators. The weight of the bankruptcy indicator
after training is used as an estimate for the conditional probability of bankruptcy
given the neuron. Compared to other classifiers, like LDA and LVQ, SOM-1 was
clearly outperformed. SOM-2 performed much better and more importantly: its
classification accuracy was quite insensitive to the map grid size.

4 Description and Preprocessing of the Data

For this application, two different data sets were at our disposal. The charac-
teristics of these data sets are summarized in Table 1. The same data sets are
described in detail in a benchmarking study of different classification algorithms
[2]. In this benchmarking study, two thirds of the data were used for training
and one third as test set. The same training and test sets will be used in this
paper. Additional measures like sensitivity and specificity for these classifiers are
also given in Table 1. Sensitivity measures the number of good risks that are
correctly identified while specificity measures the number of bad risks that are
correctly classified.
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Table 1. Description of the Datasets

name Bene1 Bene2

number of obs. 3123 7190

number of variables 27 27

good/bad 67:33 70:30

best classifier RBF LS-SVM(73.1%) MLP(75.1%)

sens/spec 83.9%/52.6% 86.7%/48.1%

Both data sets contain several categorical variables, like goal of the loan and
residential status. A weights of evidence encoding [14] was performed to trans-
form them into numerical variables. After performing the weights of evidence
encoding for the categorical variables, an additional normalization was done for
all variables.

5 Exploratory Data Analysis

5.1 Visualization of the SOM

SOMs have mainly been used for exploratory data analysis and clustering. In
this section, the basic SOM-algorithm will be applied to the Bene1 data set. A
map of 6 by 4 neurons is used because it is small enough to be conveniently
visualized. All analyzes are performed with the SOM-toolbox for Matlab [7].

To examine if ‘good’ and ‘bad’ risk observations are projected onto different
units, we can calculate for each observation the winner neuron. For the Bene1
data set, this results in Figure 1(a). In each neuron, the number of good and bad
risk observations that were projected onto that neuron, are given. For example,
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Gray Bars indicate Good risks; Light
Gray Bars represent Bad Risks)

Fig. 1. Number of hits per neuron
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the upper-left neuron was the BMU for 219 training observations, from which
122 were good and 97 were bad. The same information is also given in the left
part of Figure 1(b). In this figure, the size of the bar indicates the number of
good and bad observations projected onto each neuron. Notice that the scale
of the bars is different for ‘good’ and ‘bad’ risk categories. The right part of
Figure 1(b) contains the same information, but this time for the unseen test
data. From the graphs, it can be noticed that bad risks tend to be projected
onto the neurons in the upper half of the grid, but that the SOM is not able
to achieve a clear separation. This corresponds with the results from [2], even
powerful techniques like Support Vector Machines are not able to obtain a very
high degree of accuracy on the Bene1 data set.

6 Classification

The SOM we created can also be used for classification. In [12], a SOM is created
and each neuron is assigned the label of the closest training observation. Pre-
dictions for the test data are based on the label of their BMU. Using the same
labelling on our map of the Bene1 data, results in 4 nodes that are assigned the
bad status and 20 nodes a good status. The labelling is shown in Figure 2(a). It
can be seen that most of the nodes labelled ‘bad’ are situated in the lower part
of the map. From Figure 1(b) however, we know that most bad risk observations
are projected on the upper half of the map. The accuracy, specificity and sen-
sitivity of this classification method are therefore rather low (respectively 58%,
22% and 76%). Changes in grid size do not considerably alter these results. For
the Bene2 data set, with a grid of 6 by 4, accuracy, specificity and sensitivity are
respectively 66%, 14% and 88%. These numbers are considerably below the per-
formance of several supervised classifiers reported in [2]. Instead of using only
the closest training observation for labelling each neuron, more sophisticated
techniques, like k-nearest neighbor, might prove useful.

(a) nearest-
observation
method

(b)
Majority-
vote method

Fig. 2. Classification of neurons (White: nodes assigned Bad status, Black: nodes as-
signed Good Status
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Fig. 3. Accuracy in each node for Majority-vote method (Bene1 Test Data)

A second way of labelling the neurons was proposed in [9]: each node receives
the label of the class from which most training observations are projected on the
node. This method will always result in a greater classification accuracy on the
training data. Figure 2(b) shows this labelling for the Bene1 data with a 6 by 4
grid. The accuracy, specificity and sensitivity of this map are respectively 71.0%,
44.57% and 84.9%. For the Bene2 data, with the same map size, classification
performance was 69.7% because the model assigns the ‘good’ label to all-but-one
neuron and will therefore mainly just predict the majority class.

However, it is more interesting to identify the neurons of the map that are
responsible for most misclassifications. Figure 3 gives an overview of the clas-
sification accuracy in each node for the Bene1 data. Dark nodes are neurons
with low classification accuracy. The size of the neurons is an indicator of the
number of observations for which that neuron is the BMU. We can see that
some neurons are the BMU for lots of observations, while others are the BMU
for only a few examples. The presence of large and dark neurons in Figure
3 will indicate a bad classification accuracy of the map. For the Bene1 data
set, it can be seen that the lower part of the map has a good classification
accuracy. The upper half of the grid shows worse accuracy. For some nodes,
the accuracy is below 50%. Fortunately, only few observations are projected
onto these nodes. From the figure, we conclude that many observations are pro-
jected onto the first neuron of the top row and that not all of these observa-
tions belong to the category ‘good’, because classification accuracy is low. In
the following section, a more detailed model is elaborated. Observations that
are projected onto neurons with low accuracy, will not receive the standard
labelling of these nodes, but will instead be classified by independent mod-
els. If a SOM is used as new model, a hierarchy of SOMs for prediction is
obtained.

7 Integration of SOMs with Other Classification
Techniques

In the previous sections, we have shown that SOMs offer excellent visualiza-
tion possibilities that leads to a clear understanding of the decisions made by
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these models. But due to their unsupervised nature, SOMs seem not able to
obtain the degree of accuracy achievable by several supervised techniques, like
multi-layer perceptrons or support vector machines. In this part, the classifi-
cation performance of the SOMs will be improved by integrating them with
these supervised algorithms. There are two possible approaches for obtaining
this integration. One possibility is to first train a SOM and then use the other
classification techniques to improve the decisions made by the individual neu-
rons of this SOM. A second possibility is to use the predictions of the supervised
classifiers as inputs of the SOM. These two approaches are now discussed in
more detail.

7.1 Improving the Accuracy of Neurons with Bad Predictive
Power

From Figure 3, we can observe that not all neurons achieve the same level of
accuracy when predicting the risk category of an applicant. The lack of accu-
racy of the predictions made by the neurons in the top rows is compensated
by the almost perfect predictions in the lower half of the map. A two-layered
approach is suggested in this section. For neurons that achieve almost perfect
accuracy on the training data when using one of the models from the previ-
ous section, nothing changes. All the observations projected on one of these
neurons, will therefore receive the same label. There are only changes for neu-
rons whose level of accuracy on the training data lies below a user-specified
threshold. For each of these neurons, we build a classifier based on the train-
ing examples projected on that neuron. In our experiments, we used feedfor-
ward neural networks as classifiers for each of the neurons, but there is no
necessity for the classifiers being of the same type. The user-specified accu-
racy threshold was fixed at 58% for the Bene1 data set with a 6 by 4 map.
This value has been estimated by a trial-and-error procedure. A threshold that
is set too low will give no improvement over the above mentioned classifiers
because no new models will be estimated. The opposite, a very high thresh-
old, will result in too many new classifiers to be trained. With a threshold
of 58%, three models will be trained: two for the first two neurons of the
top row and one for the third neuron of the third row. We tested with sev-
eral different values for the number of hidden neurons in the neural networks.
The simplest case, with only one hidden neuron delivered best results with
an accuracy on the test set of 71.3% averaged over 100 independent trials.
This is almost no improvement over the majority vote classifier that showed
an accuracy of 71.0%. It seems that the increase in accuracy of the 3 newly
trained classifiers is only marginal. For some neurons, a decrease in the per-
centage correctly classified can even be noted. It seems extremely difficult to
separate the applicants that are projected on these neurons. A possible im-
provement might result from requesting additional information if an applicant
is projected on one of the low-accuracy neurons and then training the feed-
forward neural networks with this additional information. For applicants that
are projected on one of the other neurons, requesting this additional informa-
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tion is not necessary. The results for Bene2 are similar. A threshold of 65%
results in 9 additional classifiers to be trained of which most are situated in
the upper half of the map. The accuracy, averaged over 100 independent trials,
improves to 71.9% compared with the original performance of the majority-
vote method of 69.7%. Specificity and sensitivity are respectively 26.8% and
91.1%.

7.2 Stacking Model

A stacking model [17] consists of one meta-learner that combines the results of
several base learners to make its predictions. In this section, a SOM will be used
as the meta-learner . The main difference with the previous section is that the
classifiers are trained before training the SOM and not afterwards. The classifiers
also learn from all available training observations and not from a small subpart
of it.

In our experiments, we start with only one base learner, a multi-layer percep-
tron with 2 hidden neurons, which achieves an average classification accuracy of
72.5% on the Bene1 data set (75.1% on Bene2). The input of the meta-learner,
the SOM, consists of the training data augmented with the output of this MLP.
A small variation to the above described basic SOM-algorithm is used. Instead
of finding the BMU by calculating the euclidian distance between each neuron
and the sample observation, a weighting factor is introduced for each variable.
Heavily weighted variables, in our case the output from the MLP, will contribute
more during formation of the map. The distance measure, with n the number of
variables, can be written as:

‖ x − wc ‖=
n∑

i=1

weighti | xi − wc,i |2 (2)

The update rule from equation 1 does not change. So introducing the weights
only affects finding the BMU’s of the SOM [7].

Fig. 4. Stacking Model: Accuracy in function of weighting factor
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Table 2. Overview of Classification Results (accuracy, specificity and sensitivity)

Classifier Bene1 Bene2

NTO 57.5 / 22.3 / 76.1 66.1 / 14.5 / 88.3

MV 71.0 / 44.6 / 84.9 69.7 / 00.6 / 99.34

IA 71.3 / 52.6 / 81.5 71.9 / 26.8 / 91.1

SM Fig. 4 Fig. 4

C4.5 68.9 / 52.6 / 77.4 69.8 / 43.0 / 81.3

NTO=‘Nearest Training Observation’-method, MV= ‘Majority vote’-method, IA=
Improving Accuracy of Neurons with bad Predictive Power, SM= Stacking Model

For the experimental study, all the weighting factors of the original variables
were fixed at a value of one while the weighting factor of the MLP-input was
varied between 1 and 100. Classifications were made by both methods discussed
above: the majority-vote method and the nearest-distance method. Figure 4
gives an overview of the classification accuracy for each method and for both
data sets with a grid size of 6 by 4.

It can be seen that performance of the nearest-distance method is always
below the performance of the majority-vote method. Second, we conclude that
the weighting factor of the MLP plays a crucial role in the classification per-
formance of the integrated SOM. In general, the larger the weighting factor
is, the more the output of the integrated SOM resembles the output of the
MLP. There is however a large amount of variance present in the results. A
small change in weighting factor can significantly change the performance
observed.

In theory, the stacking model can be used in combination with the previous
method of integration, but the degree of complexity of the resulting model is
high and the advantage of the SOM’s explanatory power is lost. This approach
was therefore not analyzed in greater detail.

8 Conclusion

In this paper, the appropriateness of self organizing maps for credit scoring has
been investigated. It can be concluded that integration of a SOM with a super-
vised classifier is feasible and that the percentage correctly classified applicants
of these integrated networks is higher than what can be obtained by employing
solely a SOM. The first method, which trains additional classifiers for neurons
with bad predictive power withstands competition of other white-box techniques
like C4.5. Several topics are still open for future research. For instance, we did
not investigate in detail what the influence of the map size is on the results. A
combination of SOMs with several different types of supervised classifiers was
also not tested. Comparison of the component planes of these different classifiers
might visually show where the predictions of the models agree and where they
disagree.
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Abstract. We propose a new nonparametric classification framework
for numerical patterns, which can also be exploitable for exploratory
data analysis. The key idea is approximating each class region by a fam-
ily of convex geometric sets which can cover samples of the target class
without containing any samples of other classes. According to this frame-
work, we consider a combinatorial classifier based on a family of spheres,
each of which is the minimum covering sphere for a subset of positive
samples and does not contain any negative samples. We also present a
polynomial-time exact algorithm and an incremental randomized algo-
rithm to compute it. In addition, we discuss the soft-classification version
and evaluate these algorithms by some numerical experiments.

1 Introduction

The goal of pattern classification is, given a training set as examples, to develop
a classifier which can assign the class label to any possible patterns in the
feature space and minimizes the probability of error[1, 2, 3]. We consider the
classification on the feature space R

d such that all patterns are described as
d numerical measurements (features). Thus, an m-class classification involves
partitioning the feature space into m disjoint regions corresponding to each class.
Such regions should consist of points which are likely to belonging to that class.

In pattern classification, we can use only a finite training set although the
background probability distribution is often unknown. Moreover, if we assume
the i.i.d. property behind data, the training patterns must be very carefully
labeled as example patterns, thus it is often a heavy task and requires high cost
to obtain a good training set in general. Consequently, the size of training set is
often too small to obtain enough result by classic statistical methods.

Hence we focus attention on the nonparametric classification framework mo-
tivated by Vapnik’s principle[4] “When solving a given problem using a restricted
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amount of information, try to avoid solving a more general problem as an inter-
mediate step.” Even for given training samples, we will need a nonlinear discrim-
ination in general. Thus, we introduce a decomposition of such a complicated
discriminative structure of data into smaller, easy-to-handle convex pieces.

This paper proposes such a framework as a generalization of the subclass
method based on rectangles by Kudo et al.[5]. According to that, we develop the
new combinatorial classifier based on spheres.

2 The Convex Subclass Method

2.1 General Methodology

We focus attention on a geometric intuition for problems such as how data are
and how the classification will be done. Any learning algorithms encode some
a priori knowledge on the given problem. Actually, many conventional classifier
uses, explicitly or implicitly, some kind of computational geometric structures to
classify incoming patterns. For examples, SVM uses a hyperplane (or a halfspace)
and Nearest neighbor method uses a Voronoi diagram. Using a hyperplane is the
simplest way to distinguish two classes, but it is still unsure whether it fits tasks
for more than 3 classes or not.

In our approach, we consider representing the dispersion of each class data
against other classes by covering all samples of each class with some simple convex
sets (such as boxes, balls, ellipsoids, halfspaces, convex hulls, or cylinders) which
does not contain any samples of other classes. Each convex set R(Z) is defined by
a certain subset Z of positive samples1 (Figure 1). When given such convex sets
for each class, we can assign the class label to every point x ∈ R

d, based on the
minimum distance between the convex sets for each class and the point x.

Convex subclasses are a family of subsets of positive samples (it forms a
hypergraph) constrained by all negative samples and the type of used convex
set. This idea is motivated by Kudo’s subclass method [5, 6] which uses the
minimum bounding box (i.e. axis-parallel rectangle) containing the subset Z
as the corresponding convex set R(Z). Rectangles are, however, sometimes not
suitable for given classification problems because they depend on the choice of
the coordinate systems, there may exist too long and thin boxes, or the resultant
decision boundary is not smooth enough.

Thus, in this paper, we extend the original subclass method et al.[5] to more
general framework and develop the method based on spheres according to it.
Our method can give a combinatorial classifier which can be exploitable for ex-
ploratory data analysis of given classification problem, such as examining the dif-
ficulty (or complexity) of problem or the effectiveness of used features. Moreover,
this framework can introduce relaxation for the exclusion of negative samples,
and also have a potentiality for realizing a parallel computable classifier.

1 Besides Z, we can also use all negative samples in order to define a consistent convex
set R(Z), but we do not mention it here.
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Fig. 1. The idea of the convex subclass method

2.2 Subclass Covering for Target Class

Now, we can give more formal definition of our framework. Given two finite
point sets S+, S− ⊂ R

d as a positive set and a negative set for the target class,
respectively. In this paper, although we regard R(Z) as the smallest enclosing
ball of a point set Z basically, any computable convex set will be available if it
can be defined by only Z ⊂ S+ (and possibly S−).

Definition 1 (Subclass Cover). Let R(Z) ⊂ R
d be a convex set defined by

a point set Z ⊂ R
d. The subclass family F of S+ (against S−) is a family of

subsets of S+, which satisfies the following conditions:

1.1 Inclusion of positive samples: S+ ⊂ (∪Z∈FR(Z)),
1.2 Exclusion of negative samples: S− ∩ (∪Z∈FR(Z)) = ∅,
1.3 Maximality of each element: for each Z ∈ F ,

∀W ⊂ S+ \ Z, S− ∩ R(Z ∪ W ) 	= ∅.

We call each subset Z ∈ F a subclass. If 1.1 and 1.2 are satisfied, the sub-
class family is said to be feasible. We can obtain the unique subclass family by
collecting subsets which satisfy 1.1-1.3 among all subsets.

In other words, for the union of R(Z), Z ∈ F , the condition 1.1 means “it
contains all positive samples”, the condition 1.2 means “it cannot contain any
negative samples”, and the condition 1.3 means that for any Z ∈ F , if we add
any other positive samples to Z, it must violate the condition 1.2. In addition,
from the condition 1.2, each R(Z), Z ∈ F cannot also contain any negative
samples (Figure 2).

2.3 Weak Subclass and Relaxed Subclass

Computation of subclass is often demanding. We can use a weak subclass in-
stead which is approximately maximal. This weak subclass is often sufficient for
pattern classification, and it can reduce the computational cost as we see later.
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Fig. 2. An example of subclass covering by smallest enclosing balls of subsets. Maximal
condition means that we cannot add any other positive samples W to Z1 (and Z2). In
this example, W = {7} violates exclusion of negative samples (dashed circle)

For this purpose, we define another condition instead of maximality. A sub-
class family F has no elements which becomes a subset of other element. Such
a family of subsets is called Sperner family [7] (also known as antichain), and
hence we call this property Sperner condition.

Definition 2 (Weak Subclass). We consider the Sperner condition

1.4. Sperner Condition: A ∈ F ⇒ ∀B ∈ F \ {A}, A 	⊂ B,

as a weaken condition instead of the maximality condition 1.3 in Definition 1.
We call the subclass family satisfying 1.1,1.2 and 1.4 a weak subclass.

Strong subclasses always produce perfectly a consistent hypothesis, but in
some applications we often need to tolerate training error in order to avoid
overfitting. We can relax the condition 1.1 or 1.2. The relaxed condition can
depend on the type of R(·) or the type of problem, and we will give later the
definition of relaxed subclass for spheres in the subsection 3.3.

2.4 Related Previous Approach: Class Cover Problem

In this paper, we will examine the subclass method based on balls. From this
viewpoint, we here refer the previously proposed framework called class cover
problem which has a similar flavor to the subclass cover problem with balls, and
discuss the difference between them.

To the best of our knowledge, the class cover problem was introduced by
Cannon and Cowen[8] originally as a conference paper in 2000. Subsequently,
Priebe et al.[9], Marchette[10], and DeVinney[11] studied and developed this
framework, and proposed the graph-theoretic method called Class Cover Catch
Digraph(CCCD) for computing it.
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Let B(c, r) be a ball centered at c ∈ R
d with a radius r ∈ R. The class

cover problem is the following problem: Suppose we draw a ball centered at each
positive sample with a radius of the distance to the nearest negative sample.
Then, find a minimal subset of positive samples, such that the corresponding
balls can cover all positive samples. This problem is a generalization of the classic
set cover problem (see for example [12]).

The subclass cover appears to be an unconstrained and inhomogeneous class
cover neglecting that the balls are open or close, but it is not necessarily the
minimal family; the class cover problem requires the minimality of a resultant
cover while the subclass cover problem requires the maximality of each subclass.
Another difference is that the class cover considers a subset of S+ whereas the
subclass cover considers a family of subsets.

The previous work mainly focused on the constrained class cover, which can
give a method for prototype selection from positive samples, and can provide
a prototype-based classifier[10]. Altough the class cover problem of this type
becomes NP-hard problem[8, 13] unfortunatelly, the subclass cover problem has
a polynomial-time algorithm as presented later.

The property of such a multi-spheres classifier is also discussed by Adam et
al.[13]. This study extended the classical Vapnik-Chervonenkis learning theory
to the data-dependent hypothesis classes. As an example, they discussed the
constrained class cover classifier, and showed some interesting properties.

In these contexts, the proposed classification method based on spheres will
be also interesting.

3 The Subclass Method Based on a Family of Spheres

We will develop the subclass method based on balls. Hereafter, R(Z) denotes
the minimum enclosing ball for the point set Z. It should be noted that the
minimum enclosing ball for a set consisting of only one point is defined as a ball
centered the point with radius 0.

3.1 Algorithms for Constructing Subclass Family

Exact Algorithm. First, we show a polynomial-time exact algorithm which
can enumerate all sets in the unique subclass family of target class. This is
based on the simple fact that a sphere in R

d can be determined by at most d+1
points[14]. Thus, it is always available when R(Z) is defined by at most d points
and the number d does not depend on the size |Z|.

Algorithm 1. For two given point sets S+ and S−, do the following:

1. Set H := {V ⊂ S+ : |V | � d + 1}.
2. Remove sets which cannot exclude negative samples from H.
3. Set F := {S+ ∩ R(V ) : V ∈ H} and eliminate duplication.
4. For each element in F , if it becomes a subset of other element, remove it.
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Roughly speaking, this algorithm first enumerates all subsets of size at most
d + 1 which can exclude all negative samples. Then, we can obtain a subclass
family F as an irreducible set with respect to the Sperner condition 1.4.

Note that the condition 1.3 is satisfied. Suppose F does not satisfy the maxi-
mality condition 1.3, there exists Z ∈ F such that ∃W ⊂ S+\Z, S−∩R(Z∪W ) =
∅ . Since this Z ∪W can exclude all negative samples, therefore Z ∪W ∈ F con-
tradicting our assumption for the existence of Z because Z ⊂ Z ∪ W must be
removed in step 4. Hence this algorithm can enumerate all elements of the unique
subclass family of S+.

The number of subsets of size at most d + 1 is polynomial with respect to
the size of inputs. Assuming that the other steps requires only polynomial-time,
Algorithm 1 is also polynomial-time computable. This is one of the advantages
against the constrained class covers, which are NP-hard[8, 13].

Incremental Algorithm. Practically, since the computational cost of Algo-
rithm 1 is still high, improvement of its efficiency should be required. Instead
of the enumeration of unique subclasses, we consider the enumeration of ele-
ments in any of weak subclass families. In this approach, the maximality and
the uniqueness of subclass family are not always satisfied, but such a subclass
family is often sufficient in order to construct a pattern classifier.

Algorithm 2. For two given point sets S+ and S−, do the following:

1. Let D be a randomly ordered set of S+.
Set C ← ∅ for the set of tested points, F ← ∅ for the output family,
respectively.

2. Repeat the following until D \ C = ∅ is satisfied:
(a) Select randomly x ∈ D \ C, set Z ← {x} and C ← C ∪ {x}.
(b) For all x̃ ∈ D \ {x}, do the following sequentially: If a point set Z ∪ {x̃}

can exclude S− then, set Z ← Z ∪ {x̃} and C ← C ∪ {x̃}.
(c) F ← F ∪ Z.

3. After eliminating duplication, for each element in F , if it becomes a subset
of other element, remove it.

3.2 Classification Based on Subclass Family

We now turn to the pattern classification problem. To implement the original
idea described in section 2.1, we use the directed length of the minimal projection
onto spheres for classifying the test samples. The directed length of projection
of the point x onto sphere B(c, r) is defines as

d̃(x,B(c, r)) := ‖x − c‖ − r.

It should be noted that if the point x is in B(c, r), the value of d̃(x,B(c, r))
becomes negative.

For given subclass families F1, . . . ,FC for each class i = 1, . . . , C, the classi-
fication is based on

f(x) := arg min
i=1,...,C

min
Z∈Fi

d̃(x,R(Z)).
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We can have no training error when the exclusion of negative samples are per-
fect. Under this quasi-distance, each subclass ball acts like prototypes for the
corresponding class.

3.3 Relaxed Subclass Family for Balls

As touched in 2.3, the perfect exclusion of negative samples often yields overfit-
ting for practical problems; Thus we often need the relaxed version of exclusion
condition to tolerate training error.

In Definition 1 of subclass family, the condition 1.2 can be relaxed. As a ben-
efit from the formalization, we can easily develop the soft-classification version
of subclass method by replacing the condition 1.2 by the relaxed condition. For
both Algorithm 1 and 2, the required modification is only this replacement when
we check the exclusiveness of subclass. In soft-classification version, for a given
parameter ξ, “B(c, r) can exclude negative samples” means

r = 0 or
∑

x∈S−
max

(
0, 1 − ‖x − c‖

r

)
� ξ.

From the definition, when ξ = 0, it is consistent with the perfect exclusion of
negative samples (i.e. hard-classification version). In addition, we consider the
second additional condition: For a given parameter δ,

δ >
# of containing negatives

# of all negatives
.

This additional condition is sometimes needed for avoiding excessively incorpo-
ration of negative samples to the subclass ball when we use the relaxed condition.

3.4 Computational Issues

Monotonicity of Representation. We identify R(·) with a function that
maps any Z ⊂ R

d to R(Z). We call R(·) a representation. For a given rep-
resentation R(·) and any two point sets U, V ⊂ R

d, if U ⊂ V ⇒ R(U) ⊂ R(V )
holds true, we say that the representation R(·) is monotonic.

The axis-parallel rectangles are monotonic. When the representation is mono-
tonic, the incremental algorithm does not violate the maximality condition. How-
ever the minimum enclosing balls are non-monotonic, and thus the incremental
algorithm will compute just a approximation of maximal subclasses. It should
be noted that the exact algorithm can enumerate the unique subclasses in both
cases.

Minimum Enclosing Ball Computation. For an implementation of Algo-
rithm 1 or 2, the efficient method computing the minimum enclosing ball for a
given point set is required. Computation of the minimum enclosing ball has a
long history[14] and many algorithms have been developed. Recently, computa-
tion in higher-dimensional space or computation for large-scale problem has been
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studied. Our implementation is based on the simple algorithm [15] which works
efficiently for d < 30. For more higher-dimensional problems, we can use alter-
natively the computational geometric method[16] or the aggregation function
method and second-order cone programming-based method[17].

4 Examples

In Figure 3, we showed the illustrative example in 2-dimensional classification
problem including the result by class cover catch digraph method[9] for compar-
ison. The results were computed by Algorithm 1 and we can see that the original
idea of convex subclass method described in section 2.1 was realized well.

In order to examine the behavior for more higher dimensional data, we com-
pared three methods: (1) the subclass method based on balls, (2) the relaxed sub-
class method, (3) support vector machines [4] with Gaussian kernel K(x, y) :=
exp(−γ‖x − y‖2) and a regularization parameter C, and (4) k-nearest neighbor
method. The numerical experiments were based on 10 fold cross-validation for
3 numerical datasets from UCI machine learning repository[18]: iris (4 features,
3 classes, 150 samples), glass (9 features, 6 classes, 214 samples), and wine (13
dimensional, 3 classes, 178 samples). The result shown in Table 1 was computed
by Algorithm 2. Therefore, it depends on randomness in Algorithm 2 and the ob-
tained subclass is not unique. But the result seems to be good enough compared
with the conventional classifiers and the approximated subclasses will work well
in higher-dimensional spaces. We can also see the effect of the second additional
condition.

Subclass balls Relaxed balls CCCD balls

Subclass method Relaxed method CCCD method

Fig. 3. Balls and decision boundaries of subclass method, relaxed subclass method
with ξ = 1, and class cover catch digraph method[9]
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Table 1. Estimated classification rate by 10-fold CV (correct number)

Subclass Subclass(ξ = 0.5) SVM(C = 1) SVM(C = 100) k-NN
δ γ γ k

- 0.1 0.01 0.25 0.01 0.25 1 5

iris 96.0 90.0 94.0 88.0 96.0 96.0 94.7 96.0 96.0
(150) (144) (135) (141) (133) (144) (144) (142) (144) (144)

glass 72.0 63.1 65.0 50.5 68.7 67.3 61.9 70.1 65.9
(214) (154) (135) (139) (108) (147) (144) (136) (150) (141)

wine 94.9 89.9 94.9 97.8 96.6 96.1 97.2 94.9 96.1
(178) (169) (160) (169) (174) (172) (171) (173) (169) (171)

5 Conclusion

We proposed a new nonparametric classification framework: The (convex) sub-
class method. According to that, we developed a combinatorial classifier based
on a family of spheres, and showed a polynomial-time exact algorithm and an
incremental algorithm. Additionally, the relaxed subclasses were considered and
through some numerical examples we confirmed its effectiveness. Further re-
searches will include some theoretical analysis on the dependency of randomness
and the expected computational cost, developing more efficient computational
methods, implementing parallel computing of subclasses, examining the sub-
classes based on various convex sets, and considering better relaxed conditions.
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Abstract. Subspace clustering is an extension of traditional clustering
that seeks to find clusters in different subspaces within a dataset. This
is a particularly important challenge with high dimensional data where
the curse of dimensionality occurs. It has also the benefit of providing
smaller descriptions of the clusters found.

Existing methods only consider numerical databases and do not pro-
pose any method for clusters visualization. Besides, they require some
input parameters difficult to set for the user. The aim of this paper is
to propose a new subspace clustering algorithm, able to tackle databases
that may contain continuous as well as discrete attributes, requiring as
few user parameters as possible, and producing an interpretable output.

We present a method based on the use of the well-known EM algo-
rithm on a probabilistic model designed under some specific hypotheses,
allowing us to present the result as a set of rules, each one defined with as
few relevant dimensions as possible. Experiments, conducted on artificial
as well as real databases, show that our algorithm gives robust results,
in terms of classification and interpretability of the output.

1 Introduction

Clustering is a powerful exploration tool capable of uncovering previously un-
known patterns in data [3]. Subspace clustering is an extension of traditional clus-
tering, based on the observation that different clusters (groups of data points)
may exist in different subspaces within a dataset. This point is particularly
important with high dimensional data where the curse of dimensionality can
degrad the quality of the results. Subspace clustering is also more general than
feature selection in that each subspace is local to each cluster, instead of global
to everyone. It also helps to get smaller descriptions of the clusters found since
clusters are defined on fewer dimensions than the original number of dimensions.

Existing methods only consider numerical databases and do not propose any
method for clusters visualization. Besides, they require some input parameters
difficult to set for the user. The aim of this paper is to propose a new subspace
clustering algorithm, able to tackle databases that may contain continuous as
well as discrete attributes, requiring as few user parameters as possible, and
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producing an interpretable output. We present a method based on the use of a
probabilistic model and the well-known EM algorithm [14]. We add in our model
the assumption that the clusters follow independent distributions on each dimen-
sion. This allows us to present the result as a set of rules since dimensions are
characterized independently from one another. We then use an original tech-
nique to keep as few relevant dimensions as possible to describe each of these
rules representing the clusters.

The rest of the paper is organized as follows: in section 2, we present existing
subspace clustering methods and discuss their performances; we then describe
our proposed algorithm called SSC in section 3; the results of our experiments,
conducted on artificial as well as real databases, are then reported in section 4;
finally, section 5 concludes the paper and suggests topics for future research.

2 Subspace Clustering

The subspace clustering problem has been recently introduced in [2]. Many other
methods emerged then, among which two families can be distinguished according
to their subspace search method:

1. bottom-up subspace search methods [2,6,9,8] that seek to find clusters in sub-
spaces of increasing dimensionality, and produce as output a set of clusters
that can overlap,

2. and top-down subspace search methods [1,13,15,12,7] that use k-means like
methods with original techniques of local feature selection, and produce as
output a partition of the dataset.

In [10], the authors have studied and compared these methods. They point
out that every method requires input parameters difficult to set for the user, and
that influence the results (density threshold, mean number of relevant dimensions
of the clusters, minimal distance between clusters, etc.). Moreover, although a
proposition was made to integrate discrete attributes in bottom-up approaches,
all experiments were conducted on numerical databases only. Finally, let us note
that no proposition was made for producing an interpretable output. This is
however crucial because although dimensionality of clusters is reduced in the
subspaces specific to them, it can still be too high so that a human user can
easily understand it. Yet we will see that in many cases, it is possible to ignore
some of these dimensions although keeping the same partition of the data.

The next section presents a new subspace clustering algorithm called SSC.
It is top-down like and provides as output a set of clusters represented as rules
that may overlap.

3 Algorithm SSC

Let us first denote by N the number of data points of the input database and
M the number of dimensions on which they are defined. These dimensions can
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be continuous as well as discrete. We suppose values on continuous dimensions
are normalized (so that all values belong to the same interval), and denote by
Categoriesd the set of all possible categories on the discrete dimension d, and
Frequencesd the frequences of all these categories within the dataset.

3.1 Probabilistic Model

One aim of this paper is to propose a probabilistic model that enables to pro-
duce an interpretable output. The basis of our model is the classical mixture of
probability distributions θ = (θ1, ..., θK) where each θk is the vector of param-
eters associated with the kth cluster to be found, denoted by Ck (we set to K
the total number of clusters). In order to produce an interpretable output, the
use of rules (hyper-rectangles in subspaces of the original description space) is
well suited because rules are easily understandable by humans. To integrate this
constraint into the probabilistic model, we propose to add the hypothesis that
data values follow independent distributions on each dimension. Thus, the new
model is less expressive than the classical one that takes into account the possi-
ble correlations between dimensions. But it is adapted to the presentation of the
partition as a set of rules because each dimension of each cluster is characterized
independently from one another. Besides, the algorithm is thus faster than with
the classical model because the new model needs less parameters (O(M) instead
of O(M2)) and operations on matrices are avoided.

In our model, we suppose data follow gaussian distributions on continuous
dimensions and multinomial distributions on discrete dimensions. So the model
has the following parameters θk for each cluster Ck: πk denotes its weight, μkd its
mean and σkd its standard deviation on continuous dimensions d, and Freqskd

the frequences of each category on discrete dimensions d.

3.2 Maximum Likelihood Estimation

Given a set D of N data points −→
Xi, Maximum Likelihood Estimation is used

to estimate the model parameters that best fit the data. To do this, the EM
algorithm is an effective two-step process that seeks to optimize the log-likelihood
of the model θ according to the dataset D, LL(θ|D) =

∑
i log P (−→Xi|θ):

1. E-step (Expectation): find the class probability of each data point according
to the current model parameters.

2. M-step (Maximization): update the model parameters according to the new
class probabilities.

These two steps iterate until a stopping criterion is reached. Classicaly, it stops
when LL(θ|D) increases less than a small positive constant δ from one iteration
to another.

The E-step consists of computing the membership probability of each data
point −→

Xi to each cluster Ck with parameters θk. In our case, dimensions are
assumed to be independent. So the membership probability of a data point to a
cluster is the product of membership probabilities on each dimension. Besides,
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to avoid that a probability equal to zero on one dimension cancels the global
probability, we use a very small positive constant ε.

P (−→Xi|θk) =
M∏

d=1

max(P (Xid|θkd), ε)

P (Xid|θkd) =

⎧⎪⎨
⎪⎩ 1√

2πσkd
e
− 1

2

(
Xid−μkd

σkd

)2

if d continuous
Freqskd(Xid) if d discrete

P (−→Xi|θ) =
∑K

k=1 πk × P (−→Xi|θk) and P (θk|−→Xi) = πk×P (
−→
Xi|θk)

P (
−→
Xi|θ)

Then the M-step consists of updating the model parameters according to the
new class probabilities as follows:

πk =
1
N

∑
i

P (θk|−→Xi)

μkd =
∑

i
Xid×P (θk|−→Xi)∑

i
P (θk|−→Xi)

and σkd =
√∑

i
P (θk|−→Xi)×(Xid−μkd)2∑

i
P (θk|−→Xi)

Freqskd(cat) =

∑
{i|Xid=cat} P (θk|−→Xi)∑

i P (θk|−→Xi)
∀ cat ∈ Categoriesd

It is well known that with the classical stopping criterion, convergence can
be slow with EM. In order to make our algorithm faster, we propose to add
the following k-means like stopping criterion: stop whenever the membership of
each data point to their most probable cluster does not change. To do this, we
introduce a new view on each cluster Ck, corresponding to the set Sk, of size
Nk, of data points belonging to it: Sk = {−→Xi|ArgmaxK

j=1P (−→Xi|θj) = k}.
It is also well known that the EM algorithm results are very sensitive to the

choice of the initial solution. So we run the algorithm many times with random
initial solutions and finally keep the model optimizing the log-likelihood LL(θ|D).

At this stage, our algorithm needs one information from the user: the num-
ber of clusters to be found. This last parameter of the system can be found
automatically with the widely used BIC criterion [14]:

BIC = −2 × LL(θ|D) + mM log N

with mM the number of independent parameters of the model. BIC criterion
must be minimized to optimize the likelihood of the model to the data. So,
starting from K = 2, the algorithm with fixed K is run and BIC is computed.
Then K is incremented, and iterations stop when BIC increases.

3.3 Output Presentation

To make the results as comprehensible as possible, we now introduce a third
view on each cluster corresponding to its description as a rule defined with as
few dimensions as possible.
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Relevant Dimensions Detection. In order to select the relevant dimensions
of the clusters, we compare on each dimension the likelihood of our model with
that of a uniform model. Thus, if the likelihood of the uniform model is greater
than the one of our model on one dimension, this dimension is considered to be
irrelevant for the cluster. Let us first define the likelihood of a model θ′ on a
cluster Ck and a dimension d:

LL(θ′|Ck, d) =
∑

−→
Xi∈Sk

log P (Xid|θ′)

In the case of a uniform model θUc
on continuous dimensions, as we suppose

the database is normalized, we set P (Xid|θUc
) = 1, and so LL(θUc

|Ck, d) = 0.
Thus, a continuous dimension d is considered to be relevant for a cluster Ck if

LL(θkd|Ck, d) > 0

In the case of discrete dimensions, let θUd
be the uniform distribution. Then

we set P (Xid|θUd
)=1/|Categoriesd|. So LL(θUd

|Ck, d)=−Nk×log |Categoriesd|.
For our model on discrete dimensions,

LL(θkd|Ck, d) =
∑

−→
Xi∈Sk

log Frekskd(Xid)

As LL(θkd|Ck, d) is always greater than LL(θUd
|Ck, d) and both are negative,

we need to introduce a constant 0 < α < 1 and set that d is relevant for the
cluster if

LL(θkd|Ck, d) > α × LL(θUd
|Ck, d)

Dimension Pruning. Although we have already selected a subset of dimen-
sions relevant for each cluster, it is still possible to prune some and simplify the
clusters representation while keeping the same partition of the data.

See figure 1 as an example. In that case, the cluster on the right is dense on
both dimensions X and Y . So its true description subspace is X × Y . However,
we do not need to consider Y to distinguish it from the other clusters: define it
by high values on X is sufficient. The same reasoning holds for the cluster on
the top.

X

Y

Fig. 1. Example of minimal description
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To do this dimension pruning, we first create the rule Rk associated with
the current cluster Ck. We now only consider the set of dimensions considered
as relevant according to the previous selection. On continuous dimensions, we
associate with the rule the smallest interval containing all the coordinates of the
data points belonging to Sk. For discrete dimensions, we chose to associate with
the rule the most probable category.

We then associate a weight Wkd with each dimension d of the rule Rk. For
continuous dimensions, it is the ratio between local and global standard deviation
according to μkd. And for discrete dimensions, it is the relative frequence of the
most probable category.

Wkd =

⎧⎪⎪⎨
⎪⎪⎩

1 − σ2
kd

σ2
d

, with σ2
d =

∑
i
(Xid−μkd)2

N if d continuous
Freqskd(cat)−Frequencesd(cat)

1−Frequencesd(cat) if d discrete
with cat = Argmax{c∈Categoriesd}Freqskd(c)

We then compute the support of the rule (the set of data points comprised
in the rule). This step is necessary since it is possible that some data points
belong to the rule but not to the cluster. And finally, for all relevant dimensions
presented in ascending order of their weights, delete the dimension from the rule
if the deletion does not modify its support.

4 Experiments

Experiments were conducted on artificial as well as real databases. The first ones
are used to observe the robustness of our algorithm faced with different types
of databases. In order to compare our method with existing ones, we conducted
these experiments on numerical-only databases. Then real databases are used to
show the effectiveness of the method on real-life data (that may contain discrete
attributes).

4.1 Artificial Databases

Artificial databases are generated according to the following parameters: N the
number of data points in the database, M the number of (continuous) dimen-
sions on which they are defined, K the number of clusters, MC the mean dimen-
sionality of the subspaces on which the clusters are defined, SDm and SDM the
minimum and maximum standard deviation of the coordinates of the data points
belonging to a same cluster, from its centroid and on its specific dimensions.

K random data points are chosen on the M -dimensional description space
and used as seeds of the K clusters (C1, ..., CK) to be generated. Let us denote
them by (−→O1, ...,

−→
OK). With each cluster is associated a subset of the N data

points and a subset (of size close to MC) of the M dimensions that will define
its specific subspace. Then the coordinates of the data points belonging to a
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Fig. 2. LAC versus SSC

cluster Ck are generated according to a normal distribution with mean Okd and
standard deviation sdkd ∈ [SDm..SDM ] on its specific dimensions d. They are
generated uniformly between 0 and 100 on the other dimensions.

Our method is top-down like. Among the most recent ones, LAC [7] is an
effective method that, as ours, only needs one user parameter: the number of
clusters to be found (if we do not use BIC). So we propose to compare our
method with LAC and provide to both algorithms the number of clusters to be
found. LAC is based on k-means and associates with each centroid a vector of
weights on each dimension. At each step and for each cluster, these weights on
each dimension are updated according to the dispersion of the data points of the
cluster on the dimension (the greater the dispersion, the less the weight).

Figure 2 shows the result of LAC and SSC on an artificial database. On
this example, we can observe a classical limitation of k-means like methods
over EM like methods: the first ones do not accept that data points belong to
multiple clusters whereas the second ones give to each data point a membership
probability to each cluster. Thus, contrary to EM like methods, k-means like
methods are not able to capture concepts like the one appearing in figure 2 (one
cluster is defined on one dimension and takes random values on another, and
conversely for the other one) because of the intersection between clusters.

Experiments conducted on artificial databases with different generation pa-
rameters pointed out the robustness of our method. In particular, we observe
that it is resistant to noise (see figure 3(a)). Accuracy of the partition is measured
by the average purity of the clusters (the purity of a cluster is the maximum
percentage of data points belonging to the same initial concept). With 20% of
noise in the database, the average purity of the clusters is 90 for SSC while only
76 for LAC.

Our method is also robust to missing values. When summing over all data
values on one dimension, the only thing to do is to ignore the missing values.

Concerning the execution time of our algorithm, experiments pointed out
that the acceleration heuristic we proposed in section 3.2 is effective: for results
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of the same quality, the computing times of SSC with the heuristic are nearer
to that of LAC (k-means like methods are well known for their efficiency) than
to that of SSC without the heuristic (see figure 3(b)).

Let us finally note that the results of our method are still robust even if data
were generated by uniform distributions inside given intervals on the specific
dimensions of the clusters, instead of normal distributions.

4.2 Real Databases

Experiments were also conducted on real databases. Among them, the Automo-
bile database coming from UCI repository [4] contains the description of 205 cars
defined by a mix of 16 continuous and 10 discrete attributes. On this database,
the three clusters found by SSC are characterized with a mean of only four
dimensions. It thus points out that our method is effective in reducing the di-
mensionality, and thus giving an interpretable description of the clusters found.

Besides, this reduced description also allows us to compute with few cost a
weight associated with each couple of relevant dimensions corresponding to the
visualization power of this couple (remind Wki is the weight, for the cluster Ck,
of the dimension i):

Vij =
K∑

k=1

max(Wki,Wkj)

The graphical visualizations corresponding to the two more visual couples of
dimensions in the case of the Automobile database are provided figure 4. It thus
visually shows that the price of cars increases a lot when their length exceeds
170 (figure 4(a)), that the cars with rear-wheel drive (rwd) have an average
higher curb-weight than cars with front-wheel drive and 4-wheel drive (figure
4(b)), and that the majority of the most expensive cars are rear-wheel drive
(correspondance between both figures concerning cluster C2).
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Fig. 4. Results of SSC on the Automobile database for K = 3

5 Conclusion

We have presented in this paper a new subspace clustering method based on the
use of a probabilistic model with the specific assumption that data were following
independent distributions on each dimension. This idea has already been studied
in [11]. But the method described by the authors differs from ours on some points.
First, instead of using a mixture of gaussians on continuous dimensions, they use
a mixture of uniform density M-dimensional hyper-rectangles supplemented with
gaussian “tails”, depending on a parameter σ that decreases during execution.
Thus, their method is not adapted for incremental learning, whereas SSC can
update its model when new data points arise. Moreover, we effectively integrated
the problem of handling discrete dimensions whereas it was just mentioned as
potential improvements in [11]. We have also proposed an original technique of
dimension selection allowing us to provide as output an interpretable and visual
representation of the clusters found.

Besides, we have proposed an original heuristic to speed up our algorithm.
To continue our investigation in that direction, it seems interesting to take into
account the work of [5] that is about the acceleration of the EM algorithm in
the general case. Another way should be to consider only relevant dimensions
during the iteration process.

Finally, we think it can be interesting to adapt our method for supervised or
semi-supervised learning. And it should also be interesting to study the effec-
tiveness of our method in a feature selection task.
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Abstract. By identifying characteristic regions in which classes are
dense and also relevant for discrimination a new, intuitive classification
method is set up. This method enables a visualized result so the user is
provided with an insight into the data with respect to discrimination for
an easy interpretation. Additionally, it outperforms Decision trees in a
lot of situations and is robust against outliers and missing values.

1 Introduction

Classification or supervised learning often involves two goals: the first is allo-
cation or prediction, i.e. assigning class labels to new observations. The second
goal, which can be even more important, is descriptive and involves the discovery
of the underlying differences between the classes. The new Different Subspace
Classification (DiSCo) method is a method to simultaneously visualize and clas-
sify multi-class problems in high dimensional spaces and is therefore designed to
attain both predictive and descriptive goals.

Decision trees and Naive Bayes classifiers are two of the most often used
data mining techniques. In case of Decision trees this may be due to the fact
that the result of a tree can often be interpreted in terms of the subject matter
(see e.g. Hastie et al. 2001, p. 267). Furthermore, Decision trees perform variable
selection: variables which are not relevant for classification are not used to build
the tree. A shortcoming of trees is that in the final tree only parts of the marginal
distribution of the variables are used, conditional on the split. Another major
problem caused by the hierarchical structure of a tree is the inherent instability
to small changes in the data resulting in high variance (Hastie et al. 2001, p.274).
To overcome this, Random Forests (Breiman 2001) and Bagging (Breiman 1996)
can be applied but then the easy interpretation is lost. The Naive Bayes method
is somewhat different. There, all class-conditional univariate marginal densities
are estimated independently. Especially in high dimensional feature spaces Naive
Bayes often performs well (see e.g. Hastie et al. 2001, p. 185). Unfortunately the
result of Naive Bayes is not so easy to interprete and it can not be used to select
variables. Also it is not robust against outliers.
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Fig. 1. Density estimation of five classes

The higher the dimension of the data the more challenging is the under-
standing of the data. So if there are many observed variables, methods of vari-
able selection are often used to reduce the dimension of the data. Such methods
identify and retain those of the variables that separate the classes best – like
a Decision tree does. Afterwards, a classification method is (re-)applied to the
resulting subspace of variables. A problem may be that in general the variables
do not contain relevant separating-information for all classes. So, a variable can
contain information for separating class i from the rest but no information for
the discrimination of class j �= i. This may be illustrated by Figure 1. Density
estimation of five classes is shown and it can be seen that by this variable, an
object of class 5 may be probably well separated from the others. But a value
of e.g. −2 will not tell us much about its real class (which may be probably one
of the classes 1 to 4). The new DiSCo method can be considered as a mixture
of both Decision trees and Naive Bayes: calculate all class-conditional univari-
ate marginal densities by an appropriate kind of histogram estimate comparable
to Naive Bayes and find out the so called dense regions, where many objects
of a class fall in. Check whether these regions are relevant to distinguish this
class from others and take away all dispensable information like a Decision tree.
Both ideas together are used in the new method to tackle classification problems.
Moreover, it can be seen that it is robust against outliers, missing values and can
be used with metric and categorical data. In DiSCo variable selection is intrinsic
to the classification method. The resulting subsets of variables which are used for
discrimination of the classes can differ between the classes. Another focus of the
new classification method lies on the visualization of the class-characteristics.
The proposed method does not make any assumptions about the underlying dis-
tribution of the data. The only, not very strong assumption is that objects of
the same class are similar in some of their observed variables.

In the following section the concept of characteristic regions is defined and a
classification rule is developed. Section 3 explains the visualization of the results.
Section 4 briefly summarizes the choice of parameters for the implementation of
the method while section 5 contains results of a comparative study of the three
mentioned methods on simulated data.
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2 Notation and Method

The idea of the new method is to search for characteristic regions, i.e. sets of
values in some variables that indicate the class-membership. To build up these
characteristic regions two steps are needed. The first step is to search for intervals
of the realizations of the random variables that contain a large probability mass
of the classes. The resulting ”regions” are called dense regions. The second step,
which is independent of the first, identifies regions that discriminate at least
one class from the others because of a relatively high density. These regions are
called relevant regions. Regions that are both dense and relevant are then called
characteristic regions.

2.1 Characteristic Regions

The concept of the characteristic regions is given as follows:

Definition 1.

– For metric variables Xd (where d is the variable index):
Sd being the set of all possible realizations of an object xn in variable Xd,
for each d let {Rd

m : 0 ≤ m ≤ Md + 1} be a contiguous segmentation of an
interval covering Sd following
1.
⋃Md+1

m=0 Rd
m ⊇ Sd

(All possible realizations of Xd are covered by the union of all its regions.)
2. ∀x1, x2 ∈ Rd

m and α ∈ [0, 1] : αx1 + (1 − α)x2 ∈ Rd
m

(The regions of every variable are contiguous.)
3. ∀x1 ∈ Rd

m1
, x2 ∈ Rd

m2
, m1 < m2 : x1 < x2

(In every variable the regions are disjoint and also ordered.)
Rd

m are called regions of variable Xd. Md(+2) denotes the number of re-
gions variable Xd. A possible choice is proposed in section 4.1.
By restriction 2 all the objects that fall into one region can be considered to
be similar.

– For categorical variables Xd:
If a variable is categorical the regions are implicitly given by all its possible
values. Sometimes it may be reasonable for the user to merge some of the
values to one region if there are too many levels or because of the subject
matter.

Definition 2. Let xd
n be the value taken by object n in variable Xd and let kn

be the corresponding, known index of its class. Then

nd
m(k) :=

N∑
n=1

I[Rd
m](x

d
n) I[k](kn) (1)

with I[·] as the indicator function is called the corresponding frequency of
class k in Region m of variable d.
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As the nd
m(k) should represent the density of the data it is assumed for simplicity

of comparisons that for any fixed d and all 1 ≤ m ≤ Md :

sup
x∈Rd

m

− inf
x∈Rd

m

≡ const.,

so the regions of a variable have equal width. m = {0, Md + 1} are necessary to
form ”outer regions” (see section 4.1). By this the corresponding frequencies are
proportional to heights of histogram bars of the classes if the bandwidths are
given by the regions.

Let dense regions be those regions which contain most of the classes’ prob-
ability masses. Let SDR > 0 be a threshold to construct class wise dense regions.
Then, dense regions are regions Rd

m0
(k) with

nd
m0

(k) ≥ SDR

∑Md+1
m=0 nd

m(k)
Md

(2)

This proceeding corresponds to comparing the observed corresponding frequency
to the mean over all regions.

Relevant regions should be the regions where the density of one class k
is high compared to those of the other classes and so a new observed object
lying in this region strongly indicates its membership to class k. Let SRR > 0 be
a threshold to construct class-wise relevant regions. Then, relevant regions are
regions Rd

m(k0) with:

nd
m(k0)
Nk0

≥ SRR

∑K
k=1

nd
m(k)
Nk

K
(3)

with K being the number of different classes. To be able to compare the re-
gions’ densities of different classes by corresponding frequencies they have to
be weighted by their observed absolute frequencies Nk. Finally, characteristic
regions are regions that are both dense and relevant.

Missing values in one or more variables can simply be omitted when building
the (variable-wise) regions without loss of information for the other variables.

2.2 Classification Rule

Let wd
m(k) ≥ 0 be a class wise weight of a region of class k connected to

region Rd
m.

The characteristic regions are used to build up the classification rule by sum-
ming the weights over all variables. Then the assignment of the class is obtained
by

k̂(xnew) = arg max
k

D∑
d=1

Md+1∑
m=0

I[Rd
m](xnew)wd

m(k) (4)

where the weights of the characteristic regions are defined by
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wd
m(k0) :=

⎧⎨
⎩

0 if (2) or (3) do not hold
nd

m(k0)
p(k0)N

Nk0∑K

k=1
nd

m(k)
p(k)N

Nk

if Rd
m is characteristic for class k0

(5)

where p(k)N
Nk

adjusts the corresponding frequencies if the observed class frequen-
cies differ from known a priori class probabilities p(k). The weights are motivated
by the marginal probability of knew = k given xd

new ∈ Rd
m, if Rd

m is ”character-
istic” for class k.

3 Visualization

The weights wd
m(k) described above mimic marginal conditional probability of

the different classes. As only characteristic regions will be shown in our visual-
ization only robust information relevant for classification is given. So plotting
these class wise weights of the regions (see equation 5) provides a visualization
of the class characteristics and an interpretation may be simplified.

As example we illustrate the method in Figure 2 on the well known Iris
data set.The values of the variables are shown on the x-axes while the different
colours of the bars symbolize the different true classes (black = ”Setosa”, light

Fig. 2. Example: Visualization of a result for Iris data
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grey = ”Virginica” and dark grey = ”Versicolor”). The heights are the weights
of the characteristic regions. It can be seen that the variable ”Sepal length” only
serves to indicate membership of one of the classes ”Virginica” or ”Setosa” but
not for ”Versicolor”, while the variable ”Sepal width” just serves to characterize
a plant of class ”Setosa” or ”Versicolor”. The ”Petal” variables seem to separate
all three classes with the lowest values for class ”Setosa”. The upper extreme
values indicate the class ”Virginica”. As the plots of these two variables are of
the same structure one can suppose a correlation between these variables.

4 Implementation of the Method

4.1 Building the Regions for Metric Variables

As mentioned earlier the corresponding frequencies are proportional to heights
of histogram bars for simplicity, so we can refer to the theory of nonparametric
density estimation to build the regions. In histogram density estimation a prob-
lem consists in smoothing but not over-smoothing the empirical distribution of
the data. Thus the bin-width of a histogram should be chosen neither too small
nor too large. Freedman et al. 1981 suggest a choice of

bw =
2

3
√

N
IQR (6)

as bin-width where IQR is the interquartile range. Under weak assumptions
this histogram is L2-convergent for density estimation (Freedman et al. 1981).
As the distribution may be different in the classes this bin-width calculation
must be done for every class and every variable separately, returning bw(k, d).

The number of class-wise bins is then Md(k) = r(
xd
(Nk)−xd

(1k)

bw(k,d) ) with xd
(Nk) and

xd
(1k) being the class-wise maximum or minimum, respectively, r(·) being the

rounding operator. With IV d := [xd
(1), x

d
(N)] and IV d

k := [xd
(1k), x

d
(Nk)] let:

Md := r

({∑
k

(
Md(k)

∫
IV d

k

{
∑

k
I[IV d

k
](s)}−1ds

)}
∗
∫

IV d 1dt∫
∪kIV d

k
1dt

)
(7)

In the simplest case, if the densities of the classes do not overlap and also
there is no interspace between them, (7) reduces to Md =

∑
k Md(k). If there is

space between the classes this space must be filled also with bins. Therefore, in
(7) with

∫
IV d 1dt, the width of the whole interval IV d, is related to

∫
∪kIV d

k
1dt,

the width of those parts of the whole interval which are covered by values of the
different classes. If there is some free space between the classes this is smaller
than the whole interval and the number of bins is linearly projected. In cases
when densities of the classes do overlap this must also be corrected. By the
calculation of {∑k I[IV d

k
](s)}−1 it is assured that those parts of IV d

k which are
covered by more classes than just class k are not repeatedly counted in the
calculation of Md. So the class wise number of bins is linearly projected or
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averaged, respectively, for intervals covered by 0, 1, 2, . . . classes. In other words
Md is a linear projection of the k class-wise number of bins Md(k) of the parts
covered by the different classes to the whole range of the data averaged for the
classes’ overlap. The regions of variable d are IV d divided into Md equal parts.
Rd

0 and Rd
Md+1 cover the upper and lower rest.

By construction DiSCo is robust to outliers as outliers are not dense by
definition. The only problem that may occur is that an unnecessarily high value
for the number of bins is calculated. Therefore class wise outliers can be removed
in the calculation of the number of bins without any loss of information. Outliers
can be for example all observations that differ more than a fixed value (for
example 3

2 times the standard deviation) from the variables’ median.

4.2 Optimizing the Thresholds

There remains the question how to choose the thresholds in equation 2 and
equation 3. So far no theoretical background is known for an optimal choice of
both SDR (dense regions) and SRR (relevant regions). The optimal parameters
are found by a 2-dimensional grid-search algorithm. As the criterion for opti-
mization the cross validated error rate (on training data) is used. Concerning
the parameters one can suppose that a rather small threshold SDR eliminates
outliers but keeps a large probability mass in the remaining regions. SRR rather
large keeps only regions in the model that strongly indicate one class.

5 Benchmark Study

In the previous sections, we focussed on classification methods that work on
the variables separately, namely Classification trees, Naive Bayes and the newly
developed DiSCo method. We will now compare these methods in a quite general
simulation study to investigate the advantages of each method.

We will start with the simple case of normally distributed data in the follow-
ing subsection. Then, we turn to situations where the assumption of normality
is violated. Subsection 5.2 simulates situations with multimodality in the data
and in subsection 5.3 the effect of outliers is investigated.

5.1 Normally Distributed Data

We simulated data consisting of three classes and three variables. Each class
is separated from the other classes by a different mean in one variable – while
the other two classes have the same mean in that variable (compare Figure 1
where the mean of class 5 is separated from classes 1-4). All variables are nor-
mally distributed with variance 1. The location difference is chosen to be twice
the α-quantile of the standard normal distribution, guaranteeing a controlled
probability of overlap and therefore misclassification of the classes. So the Bayes
risk for the separated class is α. For the other two classes with same means
the expected error rate equals 0.5 so that a random choice will be as good. All
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Table 1. Test error rates on normally distributed data at varying probabilities of
class-overlap

Class overlap Naive Bayes CART DiSCo

0.010 0.001 0.021 0.016
0.050 0.017 0.065 0.043
0.100 0.063 0.109 0.099
0.400 0.525 0.572 0.578

simulations rely on 300 objects in both training and test data set each class
having the same prior probability. The results are averaged over all 30 repeated
simulations.

Table 1 shows the effect of the classes’ overlap in normally distributed data
on the misclassification rate for the different methods. Of course, since the as-
sumption of normality holds Naive Bayes turns out to have lowest error rates.
For large location differences (i.e. small overlapping probabilities) all methods
show very small error rates, as expected. In such situations, DiSCo is preferable
to Classification trees since the error rates of the trees are up to 50% higher
compared to those of DiSCo. We also tested deviation from normality by dif-
ferent skewness levels, but this had almost no influence the performance of the
methods compared to each other so these results are omitted here.

5.2 Effect of Multimodality

Another violation of normality may be caused by multimodality of the data.
This seems to be an important case for practical applications since classes may
consist of several different ”subclasses”, leading to multimodal distributions. We
constructed data as in section 5.1 but with each class possessing a bimodal dis-
tribution. The distributions are designed as follows: an object is with probability
p = 0.5 from one of two normal distributions N(0, 1) or N(2∗α, 1). In each of the
three variables two of the classes are identically distributed following the bimodal
distribution specified before. The third class differs in location to both others
in a manner that the two underlying distributions are shifted to be N(−α, 1)
or N(α, 1). α is varied to investigate different levels of overlap of the classes. It
determines the overlap of two neighbouring modes and is varied as in section
5.1. The results (Table 2) show unacceptably large error rates when wrongly
assuming (unimodal) normally distributed data as for the Naive Bayes method.
The DiSCo error rates dominate those of the Classification tree. With increasing
overlap the performance of Naive Bayes is approximating those of the the other
methods. The visualization of the results of the three different methods is shown
in Figure 3. The Decision tree visualizes the whole decision rule and is therefore
maybe the most comprehensive way to display the entire decision. Nevertheless,
since there are many conditional splits in the tree, the specific characteristics
of the three classes are hardly identifiable. The results of Naive Bayes and the
DiSCo method can be visualized for each variable separately. For Naive Bayes,
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Table 2. Test error rates on bimodal data at varying overlap percentages between two
neighbouring densities

% overlap Naive Bayes CART DiSCo

0.001 0.379 0.010 0.004
0.050 0.386 0.125 0.094
0.100 0.406 0.232 0.192
0.200 0.432 0.416 0.401

Fig. 3. Visualization of the results of the different methods on bimodally distributed
data, only one variable is shown for Naive Bayes and DiSCo

one can plot the density estimation of the different classes. This here gives a
completely wrong impression of the structure of the classes, while DiSCo (as
introduced in section 3) nicely displays the classes’ characteristics: all modes are
identified and it can be seen whether their locations are characteristic for one
single or more than one class.

5.3 Effect of Outliers

The last study investigates the behavior of the three methods if the data are con-
taminated with outliers. The data sets are generated as in section 5.1 except that
with chance of 5% an object is an outlier following a distribution N(0, σ2) with
variance much larger than those of the classes’ distributions. The classification
errors are examined for different sizes of σ.

Classification trees and DiSCo behave relatively robust to outlier contami-
nation while Naive Bayes becomes much worse with increasing variance of the
outliers. We further observe that the misclassification rates of Classification trees
are systematically worse than those of DiSCo.
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Table 3. Test error rates on outlier contaminated data at varying variance of the
outlier distribution

SD of outliers Naive Bayes CART DiSCo

3 0.032 0.070 0.054
10 0.052 0.079 0.057
20 0.099 0.077 0.059
50 0.331 0.078 0.067

6 Summary

Motivated by the fact that different regions in the variable may discriminate
some but not all classes a new classification method is set up. By identifying
characteristic regions that indicate whether regions of values are dense and also
relevant for discrimination this method implicitly includes a feature selection.
Moreover, it is robust to outliers and missing values in the observed data. Also
the descriptive aspect of data analysis is addressed by an informative visualiza-
tion of the DiSCo result.

A benchmark study is performed where the new method is compared to Clas-
sification trees and the Naive Bayes classifier since both methods also work on the
marginal data. Different situations are examined. Comparing the missclassifica-
tion rates, the Naive Bayes classifier performs better than both other classifiers
if the assumption of normality holds while DiSCo has smaller error rates than
the Classification tree. If the data are generated from multimodal distributions
or contaminated with outliers, Naive Bayes’ error rates become unacceptably
high. The other two methods are able to handle such data while the misclassi-
fication rates of the Classification trees are slightly dominated by those of DiSCo.
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Abstract. In this paper we describe a new cluster model which is based
on the concept of linear manifolds. The method identifies subsets of the
data which are embedded in arbitrary oriented lower dimensional linear
manifolds. Minimal subsets of points are repeatedly sampled to construct
trial linear manifolds of various dimensions. Histograms of the distances
of the points to each trial manifold are computed. The sampling corre-
sponding to the histogram having the best separation between a mode
near zero and the rest is selected and the data points are partitioned on
the basis of the best separation. The repeated sampling then continues
recursively on each block of the partitioned data. A broad evaluation
of some hundred experiments over real and synthetic data sets demon-
strates the general superiority of this algorithm over any of the competing
algorithms in terms of stability, accuracy, and computation time.

1 Introduction

The problem of clustering can be loosely defined as the partitioning of a set of
points in a multidimensional space into groups (clusters) such that the points
in each group are similar to one another. Finding these clusters is important
because their points correspond to observations of different classes of objects
that may have been previously unknown. A second kind of latent information
that may be of interest, are correlations in a data set. A correlation is a linear
dependency between two or more attributes of the data set. Knowing about the
existence of a relationship between attributes may enable us to learn hidden
causalities. For example, the influence of the age of a patient and the dose rate
of medication on the length of his disease.

Due to recent technology advances in data collection many applications of
clustering are now characterized by high dimensional data, some of whose dimen-
sions are non-information carrying. Thus, clusters or correlations may be visible
only in linear combinations of subsets of the dimensions. Conventional clustering
algorithms such as K-means [10], and DBSCAN [8] are ”full-dimensional” in the
sense that they give equal relevance to all dimensions, and therefore are likely
to fail when applied to such high-dimensional data. Subspace clustering is an
extension to traditional clustering in that it attempts to find clusters embedded
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in different subspaces of the same data set. A subspace cluster consists of a sub-
set of points and a corresponding subset of attributes (or linear combinations
of attributes), such that these points form a dense region in a subspace defined
by the set of corresponding attributes. Most subspace clustering methods such
as CLIQUE [3], MAFIA [11], and PROCLUS [1] are restricted to finding clus-
ters in subspaces spanned by some subset of the original measurement features.
However, examination of real data often shows that points tend to get aligned
along arbitrarily oriented subspaces. ORCLUS [2] the most relevant algorithm
to our problem is an extension to PROCLUS which allows clusters to exist in ar-
bitrarily oriented subspaces. Dasgupta [5] presents two important results related
to random projections which have implications to clustering in high dimensional
spaces. These results show that it is possible to project high dimensional data
into substantially lower dimensions while still retaining the approximate level
of separation between clusters. In a recent paper Haralick at el. [6] use random
projections in the context of projection pursuit to search for interesting one
dimensional projections that reveal inter-cluster separations. Their algorithm,
called HPCluster, uses an hierarchical approach that repeatedly bi-partitions
the data set using interesting one-dimensional projections.

In this paper we describe a new cluster model that is based on the concept of
linear manifolds. It takes into account both linear dependencies among features
and distances betweens points. In section 2 we formalize our model of a cluster.
Based on this model, we present in section 3 the algorithm-LMCLUS. In section
4 we present a broad evaluation of LMCLUS applied on synthetic and real data
sets, and in section 5 we conclude the paper giving hints on future work.

2 The Cluster Model

The goal is to find clusters with an intrinsic dimensionality that is much smaller
than the dimensionality of the data set, and that exhibit correlation among some
subset of attributes or linear combinations of attributes. The cluster model which
we propose has the following properties: the points in each cluster are embedded
in a lower dimensional linear manifold 1. The intrinsic dimensionality of the
cluster is the dimensionality of the linear manifold. The manifold is arbitrarily
oriented. The points in the cluster induce a correlation among two or more
attributes (or linear combinations of attributes) of the data set. In the orthogonal
complement space to the manifold the points form a compact densely populated
region.

Definition 1 (Linear Manifold). L is a linear manifold of vector space
V if and only if for some subspace S of V and translation t ∈ V , L = {x ∈
V |for some s ∈ S, x = t + s}. The dimension of L is the dimension of S.

1 A linear manifold is a translated subspace. A subspace is a subset of points closed
under linear combination.
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Definition 2 (Linear Manifold Cluster Model). Let D be a set of d-
dimensional points, C ⊆ D a subset of points that belong to a cluster, x some
point in C, b1, . . . , bd an orthonormal set of vectors that span R

d, (bi, . . . , bj) a
matrix whose columns are the vectors bi, . . . , bj, and μ some point in R

d. Then
each x ∈ C is modeled by,

x = μ + (b1, . . . , bl)λ + (bl+1, . . . , bd)ψ, (1)

where μ is the cluster mean, λ is a zero mean random l× 1 vector whose entries
are i.i.d. U(−R/2,+R/2), ψ is a zero mean random vector with small variance
independent of λ, and R is the range of the data.

The idea is that each point in a cluster lies close to an l-dimensional linear
manifold, which is defined by μ + span{b1, . . . , bl}. It is easy to see that μ is the
cluster mean since

E[x] = E[μ + (b1, . . . , bl)λ + (bl+1, . . . , bd)ψ] =

μ + (b1, . . . , bl)E[λ] + (bl+1, . . . , bd)E[ψ] = μ + (b1, . . . , bl)0 + (bl+1, . . . , bd)0 = μ

Classical clustering algorithms such as K-means take l = 0 and therefore omit the
possibility that a cluster has a non-zero dimensional linear manifold associated
with it. In the manifold we assume the points are uniformly distributed in each
direction according to U(−R/2,+R/2). It is in this manifold that the cluster is
embedded, and therefore the intrinsic dimensionality of the cluster will be l. The
third component models a small disturbance, or error factor associated with each
point in the manifold. The idea is that each point may be perturbed in directions
that are orthogonal to the manifold, i.e., the vectors bl+1, . . . , bd. We model this
behavior by requiring that ψ be a (d− l)×1 random vector, normally distributed
according to N(0, Σ), where the largest eigenvalue of Σ is much smaller than
R. Since the variance along each of these directions is much smaller than the
range R of the embedding, the points are likely to form a compact and densely
populated region, which can be used to cluster the data.

Figure 1 is an example of data set modeled by eq. (1). The data set contains
three non-overlapping clusters, where C1, C2 which are almost planner are em-
bedded in 2D manifolds. Their points are uniformly distributed in the manifold
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100
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100

150

200
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Fig. 1. A data set demonstrating the concept of linear manifold clusters
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and they include a random error element in the orthogonal complement space
to the manifold. Similarly, C3 an elongated line like cluster, is embedded in a
1D linear manifold.

3 The Algorithm

LMCLUS can be viewed as an hierarchical-divisive procedure, which marries the
ideas of random projection via sampling and histogram thresholding, in order
to detect clusters embedded in lower dimensional linear manifolds. It expects
three inputs: L, an estimate of the highest dimension of the manifolds in which
clusters may be embedded. K̂, an estimate of the largest number of clusters
expected to be found, which is used to compute the number of trial manifolds
of a given dimensionality that will be examined in order to reveal the best pos-
sible partitioning of the data set. Γ , a sensitivity threshold which is used to
determine whether or not a partitioning should take place. We note that unlike
related methods K̂ does not impose a restriction on the number of clusters the
algorithm actually finds. The output of LMCLUS is a set of labeled clusters
together with the intrinsic dimensionality of each cluster. Knowing the dimen-
sionality associated with each cluster can then be used with methods such as
PCA to model the data in each cluster. The algorithm operates by detecting
one cluster at a time and successively reapplying itself on the remaining set of
points. It iterates over a range of manifold dimensionalities, in an a priori fash-
ion, starting from the lowest-1, and terminating with the highest-L. For each
dimensionality the algorithm invokes a procedure which we call FindSeparation
in an attempt to reveal separations among subsets of the data. Its underlying
idea is to successively randomly sample subsets of points that can define a lin-
ear manifold of a given dimension. Of the linear manifolds constructed, the one
closest to a substantial number of data points is selected. The proximity of the
input data points to the manifold is captured by a distance histogram. If the
manifold indeed has some subset of points near it, then the distance histogram
will reveal a mixture of two distributions. One of the distributions has a mode
near zero and is the distribution of distances of points that potentially belong to
a cluster, and the other is the distribution of the remaining points in the data
set. The problem of separating the cluster points from the rest is then cast into
a histogram thresholding problem, which is solved using Kittler and Illingworth
minimum error thresholding technique [9]. FindSeparation returns four values γ-
which is a measure of the “goodness” of the separation, τ - a proximity threshold
that is computed from the histogram and is used to split the data, B- the basis
of the manifold which exposed the separation, and x0-the origin of the manifold.
When γ exceeds the value of the sensitivity threshold Γ , indicating that a worthy
separation has been found, then the data set is split according to τ . This split
corresponds to the partitioning of all the points which are located close enough
to a manifold, i.e. all points that potentially belong to a given cluster, and those
that belong to other clusters. In addition the dimensionality of the manifold
which revealed the separation, corresponding to the intrinsic dimensionality of
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the cluster is recorded. An attempt to further partition the cluster which may
consist of sub-clusters is executed by reapplying FindSeparation until the cluster
can not be further separated. At this point the algorithm will attempt to par-
tition the cluster in higher dimensions, a process which will continue until the
dimension limit L is reached. When L is reached we have a subset of points that
cannot be partitioned any more, and declare that a cluster is found. We note
that if outliers exist then the last partition will contain this set of points. By
definition outliers do not belong to any cluster and therefore will remain the last
group of points to be associated to any other group. Moreover, since they are
unlikely to form any clusters the algorithm will not be able to partition them,
and therefore will all be grouped together.

Sampling Linear Manifolds. To construct an l-dimensional linear manifold
by sampling points from the data we need to sample l + 1 points. Let x0, . . . xl

denote these points. We choose one of the points x0 as the origin. Then the l
vectors spanning the manifold are obtained by x′

i = xi−x0 where i = 1 . . . l. As-
suming each of these sampled points came from the same cluster, then according
to eq. (1)

x′
i = (μ0 + Bλi + Bcψi) − (μ0 + Bλ0 + Bcψ0) = B(λi − λ0) + Bc(ψi − ψ0)

where B = (b1, . . . , bl) and Bc = (bl+1, . . . , bd). If the cluster points did not have
an error component, that is, they all lie at distance zero from the manifold, then
sampling any l+1 which are linearly independent, and belong to the same cluster
would enable us to reconstruct B. Therefore in order to get a good approximation
of B we would like each of the sampled points to come from the same cluster, and
to be as close as possible to the linear manifold spanned by the column vectors
of B. In other words we would like each of the l+1, . . . , d components of each x′

i

to be close to zero, and this occurs when ψi − ψ0 ≈ 0. A good indication as to
why this is likely to occur when the sampled points come from the same cluster,
is given by the fact that E[ψi − ψ0] = 0. Therefore the problem of sampling a
linear manifold that will enable us to separate a cluster from the rest of the data
basically reduces to the problem of sampling l + 1 points that all come from the
same cluster.

Assuming the data set contains K clusters all having approximately the same
number of points. Then the probability that a sample of l+1 points all come from
the same cluster is approximately

(
1
K

)l. The probability that out of n samples
of l+1 points, none come from the same cluster, is approximately (1− (1/K)l)n

and 1− (1− (1/K)l)n will be the probability that at least for one of the samples
all of its l + 1 points come from the same cluster. Therefore the sample size n
required such that this probability is greater than some value 1 − ε is given by

n ≥ log ε

log(1 − (1/K)l)
(2)

Thus, by computing n given ε, and K = K̂ we can approximate a lower bound
on the number samples required or trial manifolds that will be examined. Note
that by varying K̂ we can tradeoff accuracy with efficiency.
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Fig. 2. Histograms used to separate the clusters from Fig. 1. (a) C3 is separated from
C2 and C3 by sampling 1D linear manifolds. (b) C1 is separated from C2 by sampling
2D linear manifolds. (c) a histogram for which no separation can be found

For each sample of points (x′
1, . . . , x

′
l) we construct an orthonormal basis B

of a linear manifold, measure distances to it, and then using Kittler and Illing-
worth’s method we compute a threshold τ . Of all possible thresholds correspond-
ing to different linear manifolds we prefer the one which induces the best sepa-
ration. That is to say, the one which induces the largest discriminability given
by (μ1(τ)−μ2(τ))2

σ1(τ)2+σ2(τ)2 , and the one which causes the deepest broadest minimum in
the Kittler and Illingworth criterion function J [9]. This can be measured by the
difference/depth of the criterion function evaluated at τ and the value evaluated
at the closest local maxima τ ′, i.e., depth = J(τ ′) − J(τ). Thus, our composite
measure of the “goodness” of a separation is given by

γ = discriminability × depth (3)

A set of typical histograms generated during the clustering process are de-
picted in Fig. 2, corresponding to a subset of the histograms used to cluster the
data set given in Fig. 1.

4 Empirical Evaluation

LMCLUS as well as three other related methods: DBSCAN a representative
of the full-dimensional clustering methods, ORCLUS a representative of sub-
space clustering methods, and HPCluster a random projection based clustering
method, were implemented in C++. The aim of the experiment was to evaluate
LMCLUS’s performance in comparison to the other methods with respect to
accuracy, efficiency, scalability and its stability as a stochastic algorithm.

4.1 Synthetic Data Generation

In order to generate clusters embedded in different arbitrary oriented linear
manifolds of various dimensions, and following the model given by eq. (1) we
used a method similar to one described in the ORCLUS paper. The underlying



138 R. Haralick and R. Harpaz

idea is to first generate the clusters in an axis parallel manner and then randomly
translate and rotate each cluster to achieve the effect of an arbitrary orientation
in the space. A candidate data set that we would like to produce is one in which
the clusters are relatively close in some subspace with minimal overlap, and yet
sparse enough that canonical clustering algorithms would not be able to detect.
We also used the cluster sparsity coefficient proposed in the ORCLUS paper to
measure the relative hardness of clustering a given data set, and selected only
data sets which yielded a measure within a specific range.

4.2 Accuracy

To measure the accuracy of LMCLUS we have generated several dozen syn-
thetic data sets of various sizes, space/manifold dimensionalities, and number of
clusters. Table 1 summarizes the properties of fifteen representative data sets,
along with the performance of each of the algorithms when applied to these
data sets. The ones marked with a star (′∗′) denote star data sets due to their
star like geometry, which are likely to present difficulties to many clustering
algorithms. Accuracy was measured by means of a Confusion Matrix. In ad-
dition the amount of time (in hours, minutes, and seconds) required by each
algorithm to cluster a data set was recorded. These results clearly demonstrate
LMCLUS’s superiority over the other clustering algorithms. LMCLUS was the
only one able to discover (over 85% accuracy) all the clusters. DBSCAN’s poor
performance emphasizes the ineffectiveness of distance metrics that utilize the
full space. Note that only LMCLUS and ORCLUS were able to handle the star
clusters. However requiring the number of clusters and the dimensionality of
the subspaces in which the clusters are embedded makes ORCLUS impractical
for real data sets. The fact that HPCluster was not able to cluster the star
data sets also comes at no surprise since it searches for 1D projections, and
any 1D projection of these type of data sets will only reveal unimodal distri-

Table 1. Data set properties along with accuracy and running time results used for
the Accuracy benchmark

size clusters dim LM dim LMCLUS ORCLUS DBSCAN HPCluster
D1 3000 3 4 2-3 95% / 0:0:08 80% / 0:0:22 34.6% / 0:0:9 72% / 0:0:51
D2 3000 3 20 13-17 98.4% / 0:0:33 58.8% / 0:2:18 65.5% / 0:0:36 97.4% / 0:1:39
D3 30000 4 30 1-4 100% / 0:15:38 64.9% / 1:5:30 100% / 1:31:52 99.3% / 0:1:32
D4 6000 3 30 4-12 99.9% / 0:9:22 98.3% / 0:8:20 66.5% / 0:3:49 97.1% / 0:0:12
D5 4000 3 100 2-3 100% / 0:0:20 87.9% / 0:54:30 65.3% / 0:5:24 99% / 0:3:54
D6 90000 3 10 1-2 99.99% / 0:0:29 100% / 0:29:02 66.7% / 4:58:49 100% / 0:1:23
D7 5000 4 10 2-6 99.24% / 0:2:05 99.3% / 0:2:41 74.1% / 0:0:54 96% / 0:0:35
D8 10000 5 50 1-4 99.9% / 0:1:42 63.64% / 1:33:52 100% / 0:17:00 99.2% / 0:3:43
D9 80000 8 30 2-7 99.9% / 3:12:46 96.9% / 13:30:30 100% / 10:51:15 99.9% / 0:4:57
D10 5000 5 3 1-2 86.5% / 0:0:48 68.2% / 0:0:45 59.6% / 0:0:5 78% / 0:0:33
∗D11 1500 3 3 1 98.5% / 0:0:01 99.6% / 0:0:10 42.6% / 0:0:02 33.3% / 0:0:52
∗D12 1500 3 3 2 97% / 0:0:02 99% / 0:0:11 33.8% / 0:0:02 33.3% / 0:0:26
∗D13 1500 3 7 3 97.7% / 0:0:05 99.1% / 0:0:17 33.9% / 0:0:04 33.3% / 0:0:34
∗D14 5000 5 20 4 99.9% / 0:5:46 100% / 0:10:42 21.1% / 0:1:39 20% / 0:1:30
∗D15 4000 4 50 3 99% / 0:9:14 100% / 0:25:52 25% / 0:2:34 25% / 0:3:20
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butions. However its ability to cluster well the first type of data sets supports
the concept of random projections which LMCLUS also implements. In terms
of running time, LMCLUS ranked second after HPCluster. The remarkable low
running times of HPCluster can be attributed to the fact that it is based on a
stochastic procedure which tries a constant number of 1D projections to discover
inter-cluster separations, and thus invariant to the size of the data set. Nonethe-
less LMCLUS runs faster than the other algorithms on seven of the fifteen data
sets, and when compared to ORCLUS and DBSCAN only, demonstrates a sig-
nificant gain in efficiency, especially when applied on large or high dimensional
data sets.

4.3 Scalability

We measured the scalability of LMCLUS in terms of size and dimensions. In the
first set of tests, we fixed the number of dimensions at ten, and the number of
clusters to three, each of which was embedded in a three-dimensional manifold.
We then increased the number of points from 1,000 to 1,000,000. In the second
set of tests we fixed the number of points, and clusters as before, but increased
the number of dimensions from 10 to 120. Fig. 3 is a plot of the running times
of LMCLUS in comparison to the other algorithms. The figure shows that in
practice, for data sets with a small number of clusters which are embedded in
low dimensional manifolds, LMCLUS, like ORCLUS scales linearly with respect
to the size of the data set. This can be attributed to the sampling scheme it uses
and to the fact that each cluster that is detected is removed from the data set.
We note however that as the dimensionality of manifolds increases, performance
is likely to degrade. The figure also shows that LMCLUS, like DBSCAN scales
linearly with respect to the dimensionality of the data set. Combined together,
linearity in both the size and dimensionality of the data set makes LMCLUS one
of the fastest algorithms in its class.
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4.4 Real Data and Applications

Time Series Clustering/Classification. In this experiment we applied LM-
CLUS on a Time Series data set obtained from the UCI KDD Archive [7] con-
sisting of 600 examples with 60 attributes each, divided into 6 different classes.
The donors of this data set claim the this is a good data set to test time series
clustering because Euclidean distance measures will not be able to achieve good
accuracy. LMCLUS was able to achieve an average of 87% with a high of 89%
accuracy. ORCLUS was only able to achieve a high of 50% accuracy, while DB-
SCAN with extensive tuning of its parameters achieved a high of 68% accuracy,
and HPCluster a high of 63.5%.

Handwritten Digit Recognition. The data used in this experiment consists
of 3823 handwritten digit bitmaps of 64 attributes each, obtained from the UCI
Machine Learning Repository [4]. We divided the data into the even and odd
digits, and clustered each separately. LMCLUS was able to achieve an average
of 95% and 82% for the even and odd digits respectively, whereas DBSCAN 82%
and 58%, ORCLUS 84.7% and 82.9%, and HPCluster 50.3% and 93%.

E3D Point Cloud Segmentation. DARPA’s “Exploitation of 3D Data” iden-
tification system must take as input a 3D point cloud of a military target and then
compare it to a database of highly detailed 3D CAD models. The first step to ac-
complish this task usually involves segmenting the targets into their constituent
parts. In this experiment we demonstrate LMCLUS’s usefulness as a segmenta-
tion procedure. Specifically, LMCLUS was applied on 3D vehicle point cloud CAD
models obtained from ALPHATECH Inc., as these provide a similar level of com-
plexity, to that of military vehicles. The applicability of LMCLUS to this problem
results from the fact that the surfaces constituting the vehicles closely correspond
to 2D linear manifolds embedded in a 3D space. The results of this experiment ap-
plied on two different vehicles are depicted in Fig. 4. These results clearly demon-
strate LMCLUS’s ability to identify with high precision 2D linear manifolds.

(a) (b)

Fig. 4. (a) 2D view of a segmented Aeromate delivery van 3D point cloud (b) 2D view
of a segmented Ford Explorer 3D point cloud
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5 Conclusion

In this paper we explored the concept of linear manifold clustering in high di-
mensional spaces. We proposed a new cluster model and showed its relevance
to subspace and correlation clustering. Based on this model we presented our
algorithm LMCLUS, and demonstrated its superiority over methods such as
ORCLUS, DBSCAN, and HPCluster for linear manifold clustering. In addition
we presented a successful application of our algorithm to the problem of 3D
point cloud segmentation. In the feature we plan to investigate the applicability
of linear manifold clustering to microarray gene expression clustering, and its
usefulness as a tool for modeling high dimensional probability distributions.
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Abstract. We propose universal clustering in line with the concepts
of universal estimation. In order to illustrate above model we introduce
family of power loss functions in probabilistic space which is marginally
linked to the Kullback-Leibler divergence. Above model proved to be
effective in application to the synthetic data. Also, we consider large web-
traffic dataset. The aim of the experiment is to explain and understand
the way people interact with web sites.

The paper proposes special regularization in order to ensure consis-
tency of the corresponding clustering model.

1 Introduction

Clustering algorithms group empirical data according to the given criteria into
several clusters with relatively stable and uniform statistical characteristics.

In this paper we consider prototype-based or distance-based clustering model.
The corresponding solution may be effectively approximated using k-means algo-
rithm within Clustering-Minimization (CM) framework [1] which may regarded
as an analog of the EM (Expectation-Maximization) framework for soft cluster-
ing or segmentation.

Recently, the Divisive Information-Theoretic Feature Clustering algorithm in
probabilistic space Pm was proposed by [2]. It provides an attractive approach
based on the Kullback-Leibler divergence. According to [3], the probabilistic
model can be extremely useful in many applications including information re-
trieval and filtering, natural language processing, machine learning from text
and in related areas.

As it is outlined in [4] and [5], in practice, however, an exact form of a loss
function is difficult to specify. Hence, it is important to study the domination cri-
terion simultaneously under a class of loss functions. Respectively, we introduce
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the family of power loss functions in probabilistic space with KL-divergence as
a marginal limit.

Pollard [6] demonstrated that distance-based clustering model in R
m is con-

sistent under some conditions of general nature. Further, [7] introduced definition
of trimmed or robustified k-means and proved consistency of the corresponding
model, [8] extended result of [6] to the clustering model with Projection Pursuit
which is regarded as a common technique in data analysis with such main advan-
tage as to reduce dimensionality of the data in order to improve its visualization.

We propose definition of α-regularized KL-divergence. On the one hand, in
most cases, the corresponding α-regularized clustering model may be made close
to the original model with KL-divergence according to the given requirements.
On the other hand, α-regularized model will be always consistent.

2 Prototype-Based Approach

Suppose that X := {x1, . . . , xn} is a sample of i.i.d. observations drawn from
probability space (X ,A, P) where probability measure P is assumed to be un-
known.

We denote by Q ∈ X k a codebook as a set of prototypes q(c) indexed by the
code c = 1..k where k is a clustering size.

Following [6] we estimate actual distortion error

�(k)[Q, Φ] := E Φ(x‖Q)

by the empirical error

�(k)
emp[Q, Φ] :=

1
n

n∑
t=1

Φ(xt‖Q) (1)

where Φ(x‖Q) := Φ(x, q(c(x))), Φ(·, ·) is a loss function, and

c(x) := argmin
c∈{1..k}

Φ(x, q(c)). (2)

Above rule will split the given sample X into k empirical clusters: Xc := {xt :
c(xt) = c}, X = ∪k

c=1Xc,Xi ∩ Xc = ∅, i �= c. Similarly, we can define set of k
actual clusters Xc, c = 1..k.

Definition 1. We will call Q as an optimal actual codebook if

�(k)[Q, Φ] := inf
Q∈Xk

�(k)[Q, Φ]. (3)

We will call Qn as an optimal empirical codebook if

�(k)
emp[Qn, Φ] := inf

Q∈Xk
�(k)

emp[Q, Φ]. (4)

Note that an outcome of the k-means algorithm is not necessarily Qn as it is
defined in (4).
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2.1 CM Framework

The algorithm 2.1 represents a typical structure of an algorithm within CM -
framework.

The following Proposition 1, which may be proved similarly to the Theo-
rems 4 and 5 of [2], formulates the most important descending and convergence
properties of the CM -algorithm.

Proposition 1. The algorithm 2.1
1) monotonically decreases the value of the objective function (1);
2) converges to the local minimum in a finite number of steps if equation (5) has
unique solution.

3 Probabilistic Framework

Let Pm be the m-dimensional probability simplex or probabilistic space of all m-
dimensional probability vectors. Following [2] we assume that the probabilities
pit = P (i|xt),

∑m
i=1 pit = 1, t = 1..n, represent relations between observations xt

and attributes or classes i = 1..m, m ≥ 2. Accordingly, we define the clustering
model (Pm,KL) with Kullback-Leibler divergence:

KL(v,u) :=
m∑

i=1

vi · log
vi

ui
= 〈v, log

v
u
〉,v,u ∈ Pm. (6)

The following notations will be used below p(xt) = {p1t, · · · , pmt}, q(c) =
{q1c, · · · , qmc}.

3.1 Power Loss Functions in Probabilistic Space

Let us consider 2 families of loss functions

LΦγ(v,u) :=
m∑

i=1

v1+γ
i u−γ

i − 1, 0 < γ < ∞; (7)

Algorithm 1. CM

1: Clustering: encode any observation xt according to the rule (2).
2: Minimization: re-compute centroids specifically for any particular empirical

cluster
q(c) := arginf

a∈X

∑
xt∈Xc

Φ(xt, a). (5)

3: Test: compare previous and current codebooks Q. Go to the step 1 if
convergence test is not fulfilled, alternatively, stop the algorithm.
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RΦγ(v,u) := 1 −
m∑

i=1

v1−γ
i uγ

i , 0 < γ < 1. (8)

Proposition 2. The loss functions (7) and (8) are non-negative and equal to 0
if and only if u = v.

Above statement may be proved using the method of mathematical induction.

Proposition 3. Suppose that v �= u, min {vi} > 0 and min {ui} > 0. Then, the
loss function (7) is convex and strictly increasing as a function of γ.

Proof. The required result follows from the structure of the corresponding first

∂LΦγ(v,u)
∂γ

=
m∑

i=1

vi log
(

vi

ui

) (
vi

ui

)γ

(9)

and second derivatives where the first derivative is strictly positive for γ = 0
and is strictly increasing for all γ > 0. �

Proposition 4. Suppose that v �= u, min {vi} > 0 and min {ui} > 0. Then, the
loss function (8) is concave and strictly increasing locally as a function of γ at
the point of origin 0:

∃ε > 0 : RΦα(v,u) < RΦγ(v,u) ∀α, γ : 0 ≤ α < γ ≤ ε.

Proof. The required result follows from the structure of the corresponding
derivative

∂RΦγ(v,u)
∂γ

= −
m∑

i=1

vi log
(

ui

vi

) (
ui

vi

)γ

(10)

and
∂2RΦγ(v,u)

∂γ2
= −

∑
vi log2

(
ui

vi

) (
ui

vi

)γ

< 0 (11)

where the first derivative is strictly positive for γ = 0 and is strictly decreasing for
all 0 < γ ≤ 1. Respectively, ∃ε > 0 so that the first derivative is strictly positive
for 0 < γ ≤ ε as a continuous function of γ. �

We can compute centroids for the loss functions (7) and (8) in analytical form
similar to (12). For example, the following formula represents centroids for (7)

qi(c) ∝ 1+γ
√

Aic(γ), 0 ≤ γ < ∞, (12)

where Aic(γ) =
∑

xt∈Xc
p1+γ

it .
Using result of the Proposition 2 we can define a new family of loss functions

as an average of (7) and (8)

Φγ(v,u) :=
1
2

(LΦγ(v,u) + RΦγ(v,u)) , 0 < γ < 1. (13)

The following result demonstrates that the KL-divergence may be regarded
as a marginal limit in relation to the family of loss functions (13).
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Proposition 5. The family of power loss functions (13) is marginally linked to
the KL-divergence: limγ→0

Φγ(v,u)
γ = KL(v,u).

Proof. The statement of the proposition follows from the structure of the deriva-
tive:

∂Φγ(v,u)
∂γ

=
1
2

m∑
i=1

vi log
vi

ui

[(
vi

ui

)γ

+
(

ui

vi

)γ]
. (14)

In the case if γ = 0 the right part of (14) equals to the KL-divergence. �

Proposition 6. Suppose that v �= u, min {vi} > 0 and min {ui} > 0. Then, the
loss function Φγ defined in (13) is strictly increasing locally as a function of γ
at the point 0 ∃ε > 0 : Φα(v,u) < Φγ(v,u) ∀α, γ : 0 ≤ α < γ ≤ ε.

Proof follows from above Propositions 3 and 4.

Remark 1. The results of the Propositions 4 and 6 may not necessarily take
place for ε = 1, because KL(u,v) → ∞ if v1 → 0 and min {ui} ≥ δ > 0. As a
consequence, the derivative (9) is limited. At the same time derivative (10) tends
to −∞ if γ → 1 (see Figure 1(d)).

Minimizing
∑

xt∈Xc
Φγ(p(xt), q) =

∑m
i=1

(
Aic(γ)q−γ

i − Aic(−γ)qγ
i

)
as a func-

tion of q ∈ Pm we will formulate iterative algorithm for the computation of
centroids in the sense of the loss function (13) with fixed value of the parameter
γ > 0

qi(c, j + 1) ∝ 1+γ

√
Aic(γ) + Aic(−γ)q2γ

i (c, j) (15)

where j is a sequential number of iteration, initial values of q(c, 1) may be com-
puted using (12).

Remark 2. According to [5], it seems rather natural to investigate the situation
where the estimator is the same for every loss from a certain set of loss functions
under consideration. In line with Propositions 3, 4 and 6 we can use parameter
γ in order to increase differentiation between observations. Comparing clustering
results for different input parameters γ we can make assessment of the stability
of clustering: the smaller fluctuation of the centroids will indicate the higher
quality of clustering (see Figure 1).

3.2 Consistency of the Clustering Model

According to [9], p. 33, it is extremely important to use concepts that describe
necessary and sufficient conditions for consistency. This guarantees that the con-
structed theory is general and cannot be improved from the conceptual point of
view.

Definition 2. We say [9] that the clustering model (X , Φ) is consistent if

�(k)
emp[Qn, Φ] ⇒

n→∞ �(k)[Q, Φ] a.s. (16)
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We say [6] that the clustering model (X , Φ) is ν-strongly consistent if

ν(Qn,Q) −→
n→∞ 0 a.s. (17)

where ν is a distance in X k.

Definition 3. We will call the element v ∈ Pm as 1) an uniform vector if
vi = 1

m , i = 1..m; and 2) as i-margin if vi = 0.

Definition 4. We will call KLα(v,u) := KL(vα,uα) as α-regularized KL-
divergence where vα = αv + (1 − α)v0 and uα = αu + (1 − α)v0, v0 is an
uniform vector and 0 < α ≤ 1.

The following result represents an essential generalization of the Lemma 3 [2].

Proposition 7. Centroids q(c) in (Pm, KLα) are not dependent on 0 < α ≤ 1
and must be computed using k-means (12).

Corollary 1. Suppose that q(c) ∈ Qn and qi(c) = 0. Then, P (i|xt) = 0∀xt ∈
Xc. Suppose that q(c) ∈ Q and qi(c) = 0. Then, P (i|x) = 0∀x ∈ Xc a.s.

Theorem 1. Suppose that the clustering size k and parameter 0 < α < 1 are
fixed. Then, the model (Pm, KLα) is consistent.

Proof. The required result

�(k)
emp[Q(α)

n ,KLα] ⇒
n→∞ �(k)[Q(α)

,KLα] a.s.

follows from uniform continuity of the KLα(v,u) as a function of both arguments
if 0 < α < 1 where Q(α)

n and Q(α)
are optimal empirical and actual codebooks

which correspond to KLα. �

Corollary 2. Suppose that the optimal actual codebook Q(α)
is unique. Then,

the model (Pm, KLα) is ν-strongly consistent where a distance ν may be
defined as maxk

c=1 mink
j=1 KL(qn(c), q(j)) where qn(c) ∈ Q(α)

n and q(j) ∈ Q(α)
.

3.3 Extension to the Euclidean Space

Monograph [10], pp. 255-258, discusses characterization of families of distribu-
tions for which the Pitman estimator of the location parameter in R does not
depend on the loss function. Generally speaking, for the same distribution func-
tion F , the Pitman estimator differs from loss function to loss function. However,
if F is a normal distribution function, then it is easy to see that, for quadratic
trigonometrical and following below exponential loss functions (18), the Pitman
estimator is one and the same, namely, sample mean.
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The G-means algorithm [11] which is based on the Gaussian fit of the data
within particular cluster is relevant here. The G-means algorithm is based on
a statistical test for the hypothesis that a subset of data follows a Gaussian
distribution. G-means runs k-means with increasing k in a hierarchical fashion
until the test accepts the hypothesis that the data assigned to each centroid are
Gaussian.

Similar to the Sect. 3.1 we can define model of universal clustering in R
m

with the following family of exponential loss functions: Φγ(v,u) := ϕγ(v − u)
where v,u ∈ R

m, and γ ∈ R
m
+ is m-dimensional regulation parameter,

ϕγ(v) :=
m∑

i=1

cosh(γi · vi) − m, (18)

and corresponding centroids:

q
(γ)
i (c) =

1
2γi

log

∑
xt∈Xc

eγixti∑
xt∈Xc

e−γixti

which represent a unique k-means solution for the loss function (18).

4 Experiments

The sample of the 3D-probability data, which is displayed in the Figures 1 was
generated using the following procedure.

Firstly, the cluster code c was drawn randomly according to the probabilities
p, see Table 1, using standard uniform random variable. Secondly, we used the
multinomial logit model in order to generate coordinates of the 3D-probability
data: vi ∝ exp {bci + ecr},

∑3
i=1 vi = 1, where r is a standard normal random

variable.
By definition, the family of power loss functions (13) is marginally linked to

the KL-divergence if γ → 0. By the increase of γ we will increase the power of
diversification. Respectively, any centroid, which corresponds to a non significant
empirical cluster will move around. Figure 1 illustrates that centroids of the

Table 1. Simulation coefficients for the 3D-synthetic data, see Figure 1

Cluster Coefficients Probabilities

c b1 b2 b3 e p

1 1 -1 -1 0.5 0.15
2 -1 1 -1 0.5 0.15
3 -1 -1 1 0.5 0.15
4 -0.4 -0.4 -0.8 0.4 0.25
5 -0.4 -1.9 -0.4 0.3 0.15
6 -1.9 -0.4 -0.4 0.3 0.15



Universal Clustering with Regularization in Probabilistic Space 149

Fig. 1. 3D-synthetic data, n = 3000 with 6 clusters, (a): k=6: random selection of the
cluster seeds; centroids were re-computed using loss function (13) with γ = 0.09+0.13 ·
(i − 1), i = 1..8; symbol � marks centroids which corresponds to γ = 0.09; ∗ marks
centroids which corresponds to γ = 1.0, other centroids are marked by bold black dots ·;
(b): k=5; (c): k=7; (d): loss (13) as a function of γ where m = 10, ui = 1

m
, i = 1..m,

v1 = ε, vi = 1−ε
m−1

, i = 2..m, ε = 0.001

“strong” empirical clusters are stable as a consequence of correct selection of the
number of clusters k = 6.

The second experiment was conducted using a large Web navigation msnbc
dataset. This dataset comes from Internet Information Server msn.com for the
entire day of September, 28, 1999 [12]. The dataset [13] includes n = 989818
sequences of events with lengths ranging from 1 to 12000.

Each sequence in the dataset corresponds to page views of a user during that
twenty-four hour period. Each event in the sequence corresponds to a user’s
request for a page. In total, there are 4698794 events.

The page categories were developed prior to investigation. There are m = 17
particular web categories. The number of pages per category ranges from 10 to
5000.

Analysis of the msnbc data had revealed the following general properties: 1)
users have tendency to stay within particular category; 2) transitions from one
category to another are relatively rare.
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Respectively, we considered an ultimate simplification of the model by ignor-
ing 1) dependencies between subsequent events and 2) length of the sequence of
events for any particular user. As a result, we reduced the given variable-length
data to the fixed length data where any user is represented by the m-dimensional
probability vector of the frequencies of m categories.

The aim of this experiment is to explain and understand the way people
interact with web sites, explore human behavior within internet environment.
Briefly, we observed that the table of centroids in the case of k = 8 demonstrates
clearly user’s preferences. Detailed numerical and graphical illustrations may be
found in [1].

Also, the paper [1] introduced clustering regularisation based on the balanced
complex of two conditions: 1) significance of any particular cluster; 2) difference
between any 2 clusters. Subject to some input regulation parameters the corre-
sponding system detected the interval 34 ≤ k ≤ 47 as the most likely range for
the number of significant clusters in msnbc. Another solution for the same task
may be found using principles of universal clustering.

Table 2. 3D-probabilistic synthetic data: determination of the clustering size k where
D is defined in (19), used parameters: γ0 = 0.002, δ = 0.01, τ = 20, C = 1000

k: 3 4 5 6 7 8 9

D: 0.6478 0.0263 0.0045 0.0011 0.8535 0.9264 2.7150

k: 10 11 12 13 14 15 16

D: 0.8041 1.9056 0.1474 0.3063 0.9377 5.0651 12.1121

Algorithm 2. (Universal Clustering)

1: Order number of clusters k, and select randomly initial codebook with k

probability vectors which will be used for all τ ≥ 2 runs of the CM algorithm
in the next step.

2: Run CM -algorithm using loss function (13) with γ = γ0 +(j−1) ·δ, j = 1..τ,

where 0 < γ0 < 1 and 0 < δ ≤ 1−γ0
τ−1 . As an outcome we obtain a set of k · τ

probability vectors {q̃(j, c), j = 1..τ, c = 1..k}.

3: Compute maximum distance between first and other codebooks

D := C · max
c=1..k

max
j=2..τ

KL(q̃(1, c), q̃(j, c)) (19)

where C > 0 is a constant.
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A Pentium 4, 2.8GHz, 512MB RAM, computer was used for the compu-
tations. The overall complexity of a CM cycle is O(k · n · m). The computer
conducted computations according to the special program written in C. The
computation time for one CM cycle in the case of 51 clusters was 110 seconds.

5 Concluding Remarks

Experiments on the real and synthetic data had confirmed fast convergence of
the CM -algorithm [1]. Unfortunately, the final results of the CM -algorithm de-
pend essentially on initial settings, because the algorithm may be trapped in
local minimum. In this regard, the proposed in the Section 3.2 α-regularization
is significant because it will guarantee consistency of the corresponding cluster-
ing model. On the other hand, the proposed in the paper universal clustering
represents a promising direction. We can make an assessment of quality of clus-
tering using set of codebooks as a function of regulation parameter. The quality
function may be computed as a decreasing function of the fluctuation of code-
books.

Acknowledgments. We are grateful to Peter Hall for the consideration and
very valuable support. Our thanks go also to anonymous referees for the helpful
comments and suggestions.
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Abstract. Case-based object recognition requires a general case of the object 
that should be detected. Real world applications such as the recognition of 
biological objects in images cannot be solved by one general case. A case-base 
is necessary to handle the great natural variations in the appearance of these 
objects. In this paper we will present how to learn a hierarchical case base of 
general cases. We present our conceptual clustering algorithm to learn groups 
of similar cases from a set of acquired structural cases. Due to its concept 
description it explicitly supplies for each cluster a generalized case and a 
measure for the degree of its generalization. The resulting hierarchical case base 
is used for applications in the field of case-based object recognition. 

Keywords: Case Mining, Case-Based Object Recognition, Cluster Analysis. 

1   Introduction 

In case-based object recognition a group of similar objects is represented by a 
generalized case for the purpose of efficient matching. If this representative case is 
not known a-priori it must be learnt from real examples. There arise special problems 
if the objects of interest have a great variation so they can not be generalized by one 
single case. A case base is necessary which describes the different appearances of the 
objects. But then it is also not known in advance how many cases are necessary to 
detect all objects with a sufficiently high accuracy. 

Clustering techniques can be used to mine for groups of similar cases in a set of 
acquired cases. For each group it is possible to determine a generalized case to 
represent this group. Because we do not know the number of cases in advance we will 
use hierarchical cluster analysis method to learn a hierarchy of increasing generalized 
cases. Applying a hierarchical instead of a flat case-base for case-based object 
recognition might speed up the recognition process especially in CBR applications 
with very large case bases. 

When learning a representative case of a cluster this case should average over all 
cases in this cluster by generalizing common properties of the instances. We offer two 
different approaches to calculate such a representative. While the first one is to learn 
an artificial case that is positioned in the centroid, the second one selects that case out 
of a cluster which has the minimum distance to all other cases in this cluster. 
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It is also important to know the permissible dissimilarity from this generalized 
case. The degree of generalization of the cases decreases from the top to the bottom of 
the hierarchal case base and has to be taken into account in the matching process. The 
more groups are established in a hierarchy level the less generalized these 
representatives will be. When matching those cases for object recognition the 
similarity measure has to be set according to the degree of its abstraction. The less 
generalized the cases are, the higher the required similarity for the matched objects. 

We will present in this paper our study on learning generalized cases. First we 
review related work on clustering in Section 2 and describe the material used for our 
study in Section 3. After having reviewed some agglomerative clustering methods in 
Section 4 we describe our novel algorithm for learning general cases in Section 5. The 
description of the calculation of cluster representatives is given in Section 6. We 
discuss experimental results in Section 7 and, finally, give conclusions in Section 8. 

2   Related Work 

Cluster analysis [1], [2] is used to mine for groups of similar observations in a set of 
unordered observations. In conclusion, similar cases should belong to the same cluster 
for strong internal compactness and dissimilar cases should belong to different 
clusters for a maximum of external separation. 

There are plenty of different clustering algorithms [3], [4] and which one is best 
suited depends on the dataset and on the special properties and aims coupled with the 
cluster analysis. One main difference between several clustering algorithms is the 
resulting organization of the instances. Clustering algorithms can be distinguished 
into overlapping, unsharp, and disjunctive. While overlapping clustering algorithms 
allow that one case is located in one or more clusters, unsharp clustering algorithms 
assign to each case membership values related to all clusters. Disjunctive clustering 
algorithms are best suited for our application because every case has to be assigned to 
exactly one cluster. 

Another main criterion concerning the choice of a clustering method is if the 
number of resulting groups is known. If the number of clusters is known a-priori 
partitioning clustering [5], [6] can be used, where an initial partition of the cases 
becomes optimized. If it is unknown or impossible to determine the number of 
clusters in advance it might be better to create a sequence of partitions using 
hierarchical clustering methods. 

A hierarchical clustering method [1], [4] divides the set of all input cases into a 
sequence of disjunctive partitions. They can be distinguished between agglomerative 
and divisive methods. Initially, in the agglomerative methods each case is hosted in its 
separate cluster. With increasing distances the clusters become merged in cluster that 
are more general until finally all cases are hosted in the same cluster. The opposite is 
given in the divisive methods, where initially all cases are hosted in one cluster and 
were splitted until all cases form their own cluster. The main drawback of these 
algorithms is that once a cluster has been formed there is no way to redesign this 
cluster if necessary when other examples have been seen. 

Another main problem with these conventional clustering algorithms is that it is 
only possible to draw conclusions about the composition of the clusters. They do not 
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explain why a cluster was established and they supply no real indication about the 
quality of single partitions. To determine the partition with the optimal number of 
clusters different cluster validity indices [7], [8] can be used to prove the quality of 
single partitions. However these indices have to be calculated in an off-line phase 
after the clustering has been done. Besides conventionally clustering methods supply 
no precise description about the clusters. One has to calculate this manually for each 
cluster in a post-processing step which is not sufficient for our purpose. 

Alternatively, different conceptual clustering algorithms [9], [10], [11] were 
developed. They establish clusters with a utility function, which can be built on a 
probabilistic concept [9], [11], or a similarity based concept [10]. On the basis of this 
function they explain why a set of cases confirm a cluster and automatically supply a 
comprehensive description of the established concepts. Their concept forming 
strategy is more flexible than the one of the conventional hierarchical clustering 
algorithms. 

3   Material 

In our application we are studying the shapes of six different airborne fungal spores. 
Table 1 shows one of the images for each analyzed fungal strain. The objects have a 
great variance in the appearance so that it is impossible to represent their shape by 
only one case. But for the purpose that these object shapes should be effectively 
detected in new images, it is indispensable to generalize the shapes. 

Table 1. Images of six different fungal strains 

Alternaria Alternata Aspergillus Niger Rhizopus Stolonifer 

Scopulariopsis Brevicaulis Ulocladium Botrytis Wallenia Sebi 

From the real images we acquired a set of shapes for each species. These shapes 
were pair-wise aligned to obtain a measure of distance between them. A detailed 
description of our shape acquisition and alignment process was presented in [12]. The 
alignment of every possible pair of shapes leads us to NN ×  distance measures 
between N  acquired cases. These distances can be collected in a matrix where each 
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row and each column corresponds to a shape instance. This square symmetric distance 
matrix will be used as input for the hierarchical cluster analysis. 

4   Agglomerative Clustering Methods 

There are plenty of different agglomerative clustering methods. Each method has its 
special characteristic and should be used in compliance with the aims of the 
application, e.g. detection of outlier. We will analyze how they can be used for our 
problem of learning groups of similar cases and group representatives with its concept 
description. 

Usually in agglomerative clustering methods the resulting sequence of partitions is 
graphically represented by a dendrogram (see Fig. 1). The set of all input cases is 
shown on the left side. In the initial partition each case forms its own cluster. They 
become merged with increasing distances from left to right until all cases are 
combined in only one cluster. The distance where two clusters become one cluster for 
the first time depends on the particular clustering method. This distance is called 
cophenetic proximity measure and is drawn on the abscissa of the dendrogram. Note 
that this proximity measure is not equal to the pair-wise dissimilarity measure. 
However the aim while calculating the cophenetic proximity measure is that the real 
proximity relation between the objects should not be distorted. 

To obtain the partition of one level in the hierarchy the dendrogram has to be cut at 
some distance. The cut-point drawn in Fig. 1 splits the input cases into three clusters. 

 

Fig. 1. Dendrogram of eight instances of strain Ulocladium Botrytis using single linkage with 
generalized cases calculated at distance of 0950.0  

Since the clusters are merged together on specific converted distances, every 
method has an own ultra-metric [2]. In the single linkage method two clusters become 
merged to a new cluster at their minimum distance, the smallest distance between a 
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case in one cluster and its nearest neighbor in the second cluster. Graphically this can 
be interpreted as the shortest link between two clusters. The length of this link is the 
cophenetic proximity measure in the dendrogram where the two clusters become 
united. It usually leads to long, elongated clusters in the formation of chains which is 
disadvantageous in most applications. Note that only one single case out of the cluster 
establishes the link to the second cluster. This means the other cases have no 
influence on the cophenetic proximity measure. The calculated pair-wise distances 
between two cases within a cluster might be much greater than the cophenetic 
proximity measure at this hierarchy level. 

By contrast the complete linkage method merges two partitions at their maximum 
distance, the greatest of all pair-wise distances between a case in the first and a case in 
the second cluster. If this method has merged the two clusters at some cophenetic 
proximity, it is guaranteed that every pair-wise distance between two arbitrary cases 
within the new cluster is smaller than or equal to this measure. Complete linkage 
usually establishes homogeneous, spherical clusters. Outlier cases stay unrecognized. 
This might be disadvantageous, because a single outlier might prevent the merging of 
two groups, although all other cases are very similar. But, the cophenetic proximity 
measures obtained with complete linkage give a first impression about the expansions 
of the clusters. An agglomerative clustering method which is a midway between these to 
extreme methods is average linkage: Two clusters are merged at the average distance of 
all pair-wise distances between comprised cases. In addition it is possible to weight each 
cluster according to the number of hosted cases. The average linkage methods establish 
spherical clusters while outlier cases stay unrecognized for a long time. 

In the centroid method the cophenetic proximity between two clusters is the 
distance between their centroids. The weighting included in the centroid method 
emphasizes clusters which consist of many cases while small sized clusters tend to get 
lost [13]. Therefore, in the median method, the weights of the comprised clusters are 
not included when calculating the centroid of the new cluster. These methods are 
most suited for our purpose because we are interested in determining a representative 
case in the cluster centroids. But they also give no real indication about the degree of 
generalization of the two clusters at a hierarchy level. If necessary we have to 
calculate this measure in an off-line phase. 

In summary it can be said that the agglomerative hierarchical clustering methods 
give a good impression about the organization of the underlying dataset. However, 
these algorithms only produce a sequence of partitions but give no further indication 
about why this cluster was established. Thus all other information concerning a more 
detailed description of a cluster, e.g. cluster mean, inner-cluster-variance, have to be 
calculated manually. This fact is a main drawback in all applications where the 
number of classes is not known in advance. The agglomerative clustering methods are 
simple but also rigid and inflexible. They offer merging as the only possibility to 
incorporate a case into a hierarchy. If a case is merged once it is impossible to 
separate it or to change the cluster again. If it turns out later that a classification was 
wrong, this is irreversible. Besides that these clustering methods can not be used for 
incremental learning. 
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5   Our Conceptual Clustering Algorithm 

Conceptual clustering is a type of flexible learning the hierarchy by observations. The 
partitioning of the cases is controlled by a category utility function [1]. Conceptual 
clustering algorithms can be distinguished by the type of this utility function which 
can be based on a probabilistic [9], [11] or a similarity concept  [10]. Our conceptual 
clustering algorithm presented here is based on similarities, because we do not consider 
logical but numerical concepts. The algorithm works directly with structural objects. In 
our study this is a set of acquired cases, each comprised by an ordered array of contour 
points. In contrast to agglomerative clustering methods where the distance matrix is 
used as input it is not necessary to calculate pair-wise distances in advance. 

In addition to merging cases our algorithm allows incorporating new cases into 
existing nodes, opening new nodes, and splitting of existing nodes at every position in 
the hierarchy. Each new case is successively incorporated, so the algorithm 
dynamically fits the hierarchy to the data. The resulting sequence of partitions is 
represented by a directed graph (concept hierarchy) where the root node contains the 
complete set of input cases and each terminal node represents an individual case. 

Initially the concept hierarchy only consists of an empty root node. The algorithm 
implements a top-down method. A new case is placed into the actual concept 
hierarchy level by level beginning with the root node until a terminal node is reached. 
In each hierarchy level one of these four different kinds of operations is performed: 

• The new case is incorporated into an existing child node, 
• A new empty child node is created where the new case is incorporated, 
• Two existing nodes are merged to form a single node where the new case is 

incorporated, and 
• An existing node is splitted into its child nodes. 

The new case is tentatively placed into the next hierarchy level by applying all of 
these operations. Finally that operation is performed which gives the best score of the 
partition according to the evaluation criteria. A proper evaluation function prefers 
compact and well separated clusters. These are clusters with small inner-cluster 
variances and high inter-class variances. Thus we calculate the score of a partition by 

( )ii
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 , 
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where m  is the number of clusters in this partition, ip  is the relative frequency of the 

i -th cluster, iSB  is the inter-cluster variance and iSW  is the inner-cluster variance of 

the i -th cluster. The normalization according to m  is necessary to compare partitions 
of different size. The relative frequency ip  of the i -th cluster is 

n
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where in  is the number of cases in the i -th cluster and n  is the number of cases in 

the parent node. The output of our algorithm for applying the eight exemplary shape 
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cases of strain Ulocladium Botrytis is shown in Fig. 3. On top level the root node is 
shown which comprises the set of all input cases. Successively the tree is partitioned 
into nodes until each input case forms its one cluster. 

We introduced a pruning criterion into the algorithm which can be used optionally. 
It says that the clusters in one partition are removed if the sum of their inner-cluster-
variances is zero. Fig. 2 shows the complete, un-pruned concept hierarchy, where a 
new case was incorporated supplementary. The darker nodes were those clusters 
which had to be updated because the new case was incorporated into them. The white 
nodes in the hierarchy are clusters which were not attached. 

 

Fig. 2. Complete, not-pruned concept hierarchy after incrementally incorporating a new case. 
The darker nodes are those clusters which are modified because the new case was inserted. 
Their new representative cases are depicted as yellow shapes. The white nodes were not 
attached while the hierarchy was modified to fit the new data 

The main advantage of our conceptual clustering algorithm is that it brings along a 
concept description. Thus, in comparison to agglomerative clustering methods it is 
easy to understand why a set of cases forms a cluster. The algorithm calculates the 
inner-cluster-variances direct on the cases within this cluster or rather on their contour 
points instead of using a given distance matrix. During the clustering process the 
representative case, and also the variances and maximum distances in relation to this 
representative case are calculated since they are part of the concept description. The 
algorithm is of incrementally fashion because it is possible to incorporate new cases 
into the existing learnt hierarchy.  

6   Calculation of General Cases 

The representative case of a cluster is a more general representation of all cases 
hosted in this cluster. Since this case should average over all cases in that cluster, a 
good case might be positioned in the centroid of the cluster. In our conceptual 
clustering algorithm the concept description is based on the inner-cluster-variance. 
The inner-cluster-variance of a cluster X  is calculated by 
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where Xμ  is the centroid and xn  is the number of cases in the cluster X . Thus, a 

direct output of the clustering process is the calculation of the cluster centroids. 
In our application the cluster centroid is an artificial mean shape defined by an 

ordered set of points. To calculate this shape it is necessary to determine 
corresponding points [12] between the shapes in the cluster. For each set of 
corresponding points between all shapes in one cluster we calculate its centroid. The 
centroid of a set of Sn  corresponding 2D-points ( )y,xsi , sn,,2,1i =  is given by 
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All calculated mean points are set as points on the contour of the representative shape 
of this cluster. This results in an artificial mean shape case positioned in the centroid 
of the cluster. 

A second approach is to select the medoid as a natural representative case for a 
cluster. The medoid medoidx  of a cluster X  is the shape case which is positioned 

closest to the cluster centroid. It is the case which has the minimum distance to all 
other cases in the cluster 
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In addition to the representative of a cluster we are interested in leaning the 
maximum permissible distance from this generalized case. The maximum permissible 
distance XD  to the representative case is 

( )X
Xx

X ,xdmaxD μ
∈

=  . (6) 

When matching objects with a hierarchical case-base of increasing specialized 
cases it is important to know the degree of generalization for each case. This measure 
will be used as threshold for the similarity score while matching. 

7   Experimental Results 

Our conceptual clustering algorithm was directly applied to the set of shape cases 
instead of the matrix of pair-wise distances between those cases. The pruned version 
of the resulting hierarchy for eight exemplary cases is shown in Fig. 3. The 
established groups appear useful and logical. If we compare this hierarchy to the 
outputs of the agglomerative clustering algorithms it is very similar to the median 
method, which is based on the distances between un-weighted cluster centroids. The 
outputs are similar but the main difference is how these results were obtained. 
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In comparison to the agglomerative methods our conceptual clustering algorithm is 
incremental and more flexible. If during the process it turns out that a classification 
was wrong, it is still possible to split or merge a formed cluster afterwards. If a new 
case is incorporated into the concept hierarchy, the algorithm dynamically fit the 
hierarchy to the new data. It has linear time complexity ( )NO . By contrast the 
agglomerative clustering methods have to calculate the complete hierarchy again if a 
new case should be incorporated supplementary. Thus, conceptual clustering is better 
suited for huge databases and all applications where it is necessary to adapt the 
hierarchy by learning new cases over time. 

 

Fig. 3. The pruned version of the concept hierarchy resulting from the eight instances of strain 
Ulocladium Botrytis is shown. On the top of each node the generalized representative of this 
cluster is shown 

Our algorithm brings the right concept description for our purpose of learning case 
groups and generalized cases. The calculated general cases represent the clusters and 
are stored into the case base. The measures inner-cluster variance, inter-cluster 
variance, and maximum permissible distance to the cluster centroid help us to 
understand on what hierarchy level we should stop to generalize the cases so that we 
can achieve good results during the matching process. 

8   Conclusion 

We have described how to learn a hierarchical case base of general cases from a set of 
acquired cases. It has shown that classical hierarchical clustering methods give a good 
impression about the organization of the cases but fail if further information is 
necessary. Our presented conceptual clustering algorithm is directly working on the 
set of structural cases, while the resulting hierarchy is similar to those of classical 
hierarchical clustering methods. 

We have also shown that our algorithm is more flexible since the establishing of 
the hierarchy is not only based on merging, but it is also possible to split, incorporate, 



162 S. Jänichen and P. Perner 

 

and create cluster. In addition to that it allows incremental incorporation of new cases 
while the hierarchy is only adapted to fit the new data. Due to its concept description 
our conceptual clustering algorithm supplies for each cluster a generalized case and a 
measure for the degree of its generalization. This output in form of a hierarchical case 
base with decreasingly generalized cases is the basis for efficient application in case-
based object recognition. 
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Abstract. In this paper we present a method to cluster large datasets that change
over time using incremental learning techniques. The approach is based on the
dynamic representation of clusters that involves the use of two sets of representa-
tive points which are used to capture both the current shape of the cluster as well
as the trend and type of change occuring in the data. The processing is done in
an incremental point by point fashion and combines both data prediction and past
history analysis to classify the unlabeled data. We present the results obtained us-
ing several datasets and compare the performance with the well known clustering
algorithm CURE.

1 Introduction

Clustering is the process of discovering sets of similar objects and grouping them into
classes based on similar patterns. Existing clustering algorithms can be grouped into
several categories with each category attempting to address a different set of problems.
Most current algorithms use static models. Hence, they generally have a poor perfor-
mance when confronted with sets of data that do not fit their choice of static model.
This happens in particular when dealing with data that contains clusters of varying
sizes, shapes and attributes.

Another significant problem is that many of the current algorithms do not scale
well when handling large data sets. Furthermore, the majority of the existing algorithm
are designed to work with static datasets. The work we present in this paper attempts
to address the problems of scalability and static models. We also introduce a further
requirement: that of processing dynamic datasets.

The term dynamic means that the data representation changes from time to time.
There are two reasons for focusing on dynamic datasets. The first is that many of the
existing data mining applications involve datasets which change over time while the sec-
ond reason is the fact that in many domains extracting information about the trend and
the changes that occur in the clusters/classes provides crucial clues on how the informa-
tion should be interpreted (e.g. medical studies that are used to identify the changes in
conditions that can trigger the onset of a particular mental/behavioural problem). Most
current algorithms do not reflect or interpret these changes in their computation as they
merely produce a snapshot of the data. In this paper, the proposed approach detects the
changes that occur and tries to incorporate this information to predict future data. As a
result, it is able to represent the data dynamically.

P. Perner and A. Imiya (Eds.): MLDM 2005, LNAI 3587, pp. 163–173, 2005.
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We use a hierarchical approach to group the data that uses a subset of represen-
tative points to define the clusters discovered. The processing is done incrementally.
However, unlike previous clustering methods, we use a number of machine learning
techniques derived from drift tracking techniques which enable our algorithm to handle
more effectively the dynamic aspect of the data.

The paper is organised as follows: Section 2 presents an overview of the previous
research that is related to our work. Section 3 describes the algorithm while in Section
4 we present the two sets of results as well as a comparison with the CURE algorithm.
The conclusions are covered in Section 5.

2 Related Work

Clustering is the process of segmenting data sets into groups of similar objects. It usu-
ally consists of two basic steps. The first step is to determine the number of possible
clusters. Based on that number of clusters, the program tries to fit the best possible
clustering[1]. Fields of study such as statistics, pattern recognition, and machine learn-
ing utilize clustering in their applications[2]. Clustering algorithms can be categorized
into classes such as hierarchical , partitioning , grid-based and density based methods.
In hierarchical clustering, a series of partitions take place before the optimal number of
clusters is produced. Hierarchical clustering has the advantages of flexibility regarding
the level of granularity. However the termination criteria is quite subjective as it dif-
fers from case to case. Moreover, the general approach does not perform any general
refinement and improvement to clusters that have been constructed.

BIRCH [3] (Balanced Iterative Reducing and Clustering using Hierarchies) is an
example of an agglomerative hierarchical clustering algorithm that allows additional
passes to improve the cluster quality. BIRCH incrementally and dynamically clusters
incoming multi-dimensional metric data points to try to produce the best quality clus-
tering with the available resources. CURE [4] is a hierarchical clustering algorithm
that integrates the centroid-based and all-point extremes approach when representing a
cluster. The number of points to represent a cluster is determined by a constant number
c previously selected by the user. By using well scattered points, CURE can handle
clusters with varying sizes. Moreover, this approach results in a better performance
compared to BIRCH in discovering non-spherical clusters. CURE allows the user
to select the parameter α, that is used as a fraction when it tries to shrink the chosen
scattered-points toward the centroid. These shrunken new points will reside between
the centroid and the outline of the clusters. However, using representative points may
not achieve an accurate result when selected points are insufficient to define the cluster
representation. The problem is compounded when the shrinking phase eliminates some
points that are ideal to represent the cluster. CHAMELEON [5] solves this short-
coming by determining the pair of most similar sub-clusters by considering both the
inter-connectivity (RI) as well as the closeness (RC) of the clusters. CHAMELEON
utilizes dynamic modeling in cluster aggregation. The algorithm works by finding the
K-nearest neighbors for each point in the starting phase. Combined with the graph parti-
tioning technique [6], this first stage produces small tight clusters. In the next stage, the
algorithm performs the agglomerative process. It tries to merge the small tight clusters
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based on the relative inter-connectivity and relative closeness; both are locally normal-
ized by quantifiers. The approach used by CHAMELEON provides the solution for
finding clusters with irregular shapes, sizes and densities. It achieves this by using dy-
namic modeling that requires the sets of data to be constructed as a sparse graph in the
early stage. Constructing the sparse graph from the data has proven to be time consum-
ing, and therefore inefficient to be used when processing large sets of data. However,
this algorithm can be used as an initial stage in processing data incrementally. In our
work, CHAMELEON will be used to build the initial clusters. The best represen-
tation of the initial clusters is crucial because when processing a new data point, the
clustering decision will be based on these clusters. Medoid-based approaches, such as
CLARANS [7] and PAM [8] try to find representative points (medoids) to minimize
the sum of the distances of points from the closest medoid. This offers two advantages:
(1) it solves the metric spaces-specific data problem faced by the centroid approaches
and (2) it eliminates outliers by selecting the medoids based on the location of the pre-
dominant fraction of points inside a cluster. However, this method fails when dealing
with natural data where points in a given cluster are closer to the center of another clus-
ter than to the center of their own cluster. A clustering approach similar in some aspects
to our work is used by DEMON [9]. DEMON is an algorithm that takes the temporal
aspect of data evolution into account and allows an analyst to ”mine” relevant subsets
of the data. This algorithm has the limitation that it uses the windowing approach when
processing the new data. Furthermore, DEMON assumes a supervised scenario (all
data has been previously labeled) and it deals with only a restricted number of points.

3 Algorithm

The algorithm we have developed was initially based on CHAMELEON. The reason
for selecting CHAMELEON was its ability to handle clusters of different shapes and
sizes with high accuracy. Unfortunately, the processing done by CHAMELEON uti-
lizes a k-nearest neighbor approach [10], which has two major drawbacks: it requires
a significant amount of processing time and it does not scale well to large datasets.
Furthermore, CHAMELEON does not incorporate incremental processing, hence the
algorithm needs to reprocess old data points when the new data arrives. This makes it
unsuitable for dynamic sets where the data is observed as a sequential stream of infor-
mation. However, for our clustering algorithm to be effective, it is desirable to generate
an initial set of clusters which closely mirror the groupings found in the data. Hence,
our algorithm generates the initial set of clusters using the CHAMELEON approach.
Once the initial set of clusters is developed, the processing involved in our approach is
completely different from that of CHAMELEON.

3.1 Cluster Representation

We developed a data structure specifically designed to allow fast, incremental updates.
The data structure has two levels. The first level stores all the data points observed while
the second level stores only the summary definitions of the clusters. To reduce the com-
putational complexity of the method most of the processing is done at the second level
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of the data structure which is stored in the memory. Fundamental to our work is the clus-
ter representation. Each cluster representation contains three dynamic sets of points: an
exemplar set, a predictor set and a knowledge repository set. The exemplar points are
used to define the basic summary representation of the cluster and each exemplar point
has three attributes: reinforcement, age and coverage. All three attributes are dynamic
and indicate the “contribution” of the exemplar to the cluster definition. The reinforce-
ment is computed based on the number of new data points observed which have been
similar to the exemplar. The age of the exemplar is defined by the time interval over
which the exemplar has been consistently reinforced. The coverage is determined by an
analysis of the distance between the exemplar and all other exemplars used to define
the cluster. Apart from the three attributes, each exemplar has a link to a list of points
which are associated with the exemplar at the first level of the data structure. Thus, if
a very detailed analysis of the data previously observed is required, the algorithm only
needs to retrieve the list from the disk. The exemplar points are extracted from the ini-
tial set of clusters generated by the algorithm. From each cluster discovered in the data,
the algorithm extracts k points which best capture the shape and size of the cluster. The
points are extracted based on reinforcement and spread (average distance to the other k
points). The k points are sorted and the best 10 k points (that maximize both reinforce-
ment and average distance) become the exemplar points representing the cluster. As
more data becomes available the exemplar points representing the cluster may change
to reflect the new trends in the data. In our work we have investigated a range of values
for k before choosing k=10. The results from the experiments indicate that while larger
values such as k=15 do not impact significantly on the algorithm processing, the accu-
racy gained from the extra points was not statistically significant. On the other hand,
a smaller k value such as k=5 was insufficient to represent some of the more unusual
types of clusters that were used in the experiments. The novel aspect of the cluster rep-
resentation is the use of predictor points and a knowledge repository. These two sets
of points are used for three reasons: (1) to augment the cluster representation, (2) to
adapt the cluster representation to any changes detected in the data and (3) to maintain
a history of the information observed. The predictor points are used to augment the
exemplar points that are used in the summary definition of the cluster. Their purpose
is to allow the tracking of changes and prediction of future data. Initially, this set of
points are the next best k-points aside from the exemplar points to represent the cluster.
The selection of the predictor points is different from the exemplar selection. The re-
quirements for the predictor points are that (1) the points need to capture the temporal
aspect of the cluster representation and (2) the points should be located some distance
between the existing exemplar and predictor points to ensure a good spread of the data
representation. Each new data point observed is a potential predictor point candidate
and the algorithm has an in-built preference for selecting points which are positioned
near the border of the cluster. This was done specifically to allow the close tracking of
any changes found in the data. The drawback of this approach is that in cases where the
data is noisy the predictors are frequently changed before a reliable subset is found. In
general, however, the approach is effective as the clusters were accurately updated to
mirror the changes in the data. The predictor selection is done as follows. Each time the
algorithm reads a new data point, it calculates the distance between that point and the
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exemplar points and stores each of the calculations into the EX-DISTANCE-LIST. It also
performs a similar calculation with the predictor points and stores the calculation into
the PRED-DISTANCE-LIST. From both the EX-DISTANCE-LIST and PRED-DISTANCE-
LIST, the program retrieves the minimum value, which indicates the minimum distance
between the new point to the exemplar points and the predictor points. If the minimum
distance is less than the average distance of the cluster, the new data point should be
considered as a predictor point. Using this approach conforms to the two requirements
above. First, because the candidate point is chosen from the new data point, it is able to
capture the temporal information of the cluster. Second, performing the distance check-
ing between the predictor and the exemplar points guarantees the wide spread of the
new point. The knowledge repository has the purpose of storing old data knowledge
in the form of “old predictor and old exemplar points”. These points can be used to
effectively deal with a recurrent trend in the data. It also reduces the complexity of
the processing because we do not need to rediscover clusters and cluster information
which existed in the past. Lastly, by keeping the old cluster representation, we are able
to produce a continuous interpretation of the cluster definition from time to time.

3.2 Incremental Processing

Most of the processing takes place at the second level of the structure and the processing
is of an incremental nature (point by point). The assumptions made were as follows: (1)
an initial training set is available at the start of processing and (2) the data observed after
the training stage takes the form of a sequential stream of points. The approach we use
is unsupervised and all the data processed is assumed to be unlabeled. In the training
stage the system generates the set of initial clusters using the CHAMELEON approach.
The clusters are processed and the exemplar and predictor points are extracted for each
cluster. After the training stage is completed, the algorithm uses incremental learning to
handle the rest of the data observed. The program reads the new data points and tries to
assign the points to existing clusters if they satisfy all the necessary requirements. The
requirements are based on a comparison of the distance between the new data point to
the cluster’s representation points and the average distance between the representation
points. When locating the closest cluster, the general approach is to assign new data
points to a cluster according to the closest k nearest exemplar. An average distance be-
tween the k nearest exemplar and the new point is derived for each set of clusters and,
the cluster with the smallest average distance between the exemplar and the point is
the cluster the new point is most likely to be assigned to. If the distance between the
new point and the exemplar or the centroid is greater than the average distance between
points in a cluster, the algorithm assigns the new point as a new cluster. Next, it will up-
date the reinforcement of the exemplar point and the predictor point lists. The algorithm
attempts to match the new point to a predictor or an exemplar of an existing cluster. The
point can either reinforce an existing exemplar or predictor point or form the basis of a
new cluster. As the data is observed, we use the set of predictors and exemplar points
to update the cluster definition. Over time, the points in the predictor list may become
more significant than the exemplar points. The algorithm updates the representation
points by considering the predictor points as candidate points. First, it inserts the points
from the predictor list that meet reinforcement threshold into the exemplar point list.
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Next, it retires the exemplar points that are no longer important into the repository list.
The retirement of an exemplar point is based on both the reinforcement and the age
attributes of the exemplar.

The predictor point update is similar to the exemplar point processing. A predictor
point’s reinforcement value is updated when that point is located closer to the new point
when compared with the closest exemplar. The algorithm searches for a point which has
the closest distance to the new point. If such a point exists, then the algorithm updates
its reinforcement value. Updating the reinforcement information of the predictor point
is essential because it indicates the importance of that point in a particular time frame.
If the level of reinforcement of a predictor point is low then the point is “retired” in
the knowledge repository. On the other hand if the level of reinforcement is high, a
predictor can be promoted to an exemplar point. The reinforcement of points is driven
by the underlying trend in the data. In some cases, if the trend in the data is recurrent,
old points from the knowledge repository may be reused in cluster definitions. The al-
gorithm always checks the repository whenever a new predictor point is added to the
predictor list. If the new candidate is similar to a past predictor/exemplar, then the old
point is reused instead of the new candidate. After the reinforcement update, the pro-
gram checks for special cases of the current cluster representation. Hence the algorithm
checks whether it should merge two clusters or split the current cluster. If the new data
point is not assigned to any clusters, then a new cluster is created.

4 Results

The algorithm was tested using several generated datasets. The datasets were created
using VidGen, a tool that allows the user to specify the shape, size and density of a
cluster as well as the number of clusters to be generated for the dataset. Furthermore, the
data had a time index which allowed the simulation of (1) different trends over time and
(2) different reinforcement patterns. In this section we present detailed results from 2
scenarios. Each scenario consisted of a training set (from which the initial set of clusters
is generated) and test set (where the data arrives in the form of a sequential stream)
ranging from 100,000 to 2,000,000 points. The test set was further divided into several
consecutive phases to allow for a more detailed analysis of the algorithm performance
(hence we present the results for each individual phase in the test set). The aim of
each scenario was to test the different requirements of the algorithm: accuracy, data
prediction, and computational efficiency. All the results presented have been obtained
after 10 runs and an average over the 10 runs is given as the final result. The PC used
for the experiments was a P4-1.8Mhz with 256Mb of RAM running Windows2000.

4.1 Scenario 1

The scenario was designed to test the speed and clustering accuracy of the program
when dealing with large datasets, specifically 2,000,000 points. The test was carried out
on 3,000 training data points and 2,000,000 incoming data points depicted in Figure 1.
The incoming data arrived in three phases. The accuracy of the clustering algorithm and
the time of processing will be shown in tables for each phase. The table explanation is as
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Table 1. Test With Large Data Set - First Phase

Training Set Combined Sets Phase One
Original New Approach Original Added Point New Point

Cluster 1 1135 1135 1135 - 1135
Cluster 2 1095 1095 1095 - 1095
Cluster 3 822 822 822 - 822
Cluster 4 - - - 691197 689062
Dropped - - - - -

Time - - - - 5 mins 13 secs

Table 2. Test With Large Data Set - Second
Phase

Combined Sets Phase Two
Original Added Point New Point

Cluster 1 1135 - 1135
Cluster 2 1095 681087 682182
Cluster 3 882 - 882
Cluster 4 691197 - 689062
Dropped - - -

Time - - 11 mins 28 secs

Table 3. Test With Large Data Set-Third Phase

Combined Sets Phase Three
Original Added Point New Point

Cluster 1 1135 - 1135
Cluster 2 682182 - 682182
Cluster 3 882 667647 668529
Cluster 4 691197 - 689062
Dropped - - -

Time - - 16 mins 26 secs

follows. The training set column contains the information about the training stage and
is divided into two sub-columns. The original sub-column indicates the actual number
of data points of each cluster while the new approach sub-column indicates the number
of data points that is clustered correctly to the cluster. The combined sets phase one
column contains the result produced in phase one and is itself divided into three sub-
columns. The original sub-column indicates the number of data points of each cluster
before the new data arrives. The added point sub-column indicates the number of data
points added to a particular cluster. Lastly, the new approach sub-column contains the
number of points of each cluster after the new data points are added. All other tables
follow the same format described above.

Phase One: In the first phase, the incoming data arrives in the area that contains no
existing clusters (see Figure 2). The algorithm creates a new cluster and classifies all
the incoming data into a single cluster. The processing time to classify the first phase is
five minutes and thirteen seconds.

Phase Two: In the second phase, the data arrives in an area near cluster two. Figure 3
illustrates the current exemplar points when all the new data points have been classified.
The total time required to process the first and second phase is eleven minutes and
twenty eight seconds.

Phase Three: In the final phase, the data arrives in an area near cluster three. Figure
4 illustrates the current exemplars of cluster three after the cluster representation is
updated. The overall time to classify the three phases is sixteen minutes and twenty six
seconds.
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Fig. 1. Combined Phases - Training & Test Data Fig. 2. Phase One - Training & Test Data

Fig. 3. Phase Two - Training & Test Data Fig. 4. Phase Three - Training & Test Data

5 Scenario 2 – Comparison with CURE

Scenario two was designed to compare our approach with an existing algorithm. We se-
lected CURE for two reasons. It is an algorithm that generally has good performance in
terms of handling data with clusters of different shapes and sizes, as well as in terms of
speed. We also intended to compare our approach with CHAMELEON but the memory
and computational requirements of CHAMELEON made testing with large datasets un-
feasible. CURE does the clustering process in one phase while our approach processes
data incrementally. As a result, the test cases are designed to fulfill the requirement
of the two algorithms. We did the testing using two sets of data, starting from 20,000
points to 100,000 points. Figure 5 illustrates the training data and the incremental data
used in testing. The shape of the clusters throughout the testing is the same. The input
data for CURE is the combination of the training data and the incremental data. For our
approach, we start by processing the training data and then incrementally process the
rest of the test data. Figure 6 illustrates the exemplar points extracted from the clusters.

Testing Using 20,000 Points. Figure 7 illustrates the result produced by CURE. When
compared with our approach, CURE fails to adjust the cluster definition to accurately
reflect the trend shown by the new data points and this reduces the CURE overall ac-
curacy (most of the new points are missclassified). This result is not surprising because
the size of the incremental data is larger than the training, and CURE prefers to select
clusters that have high density. On other hand, our algorithm classifies the data points
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Table 4. Scenario 2 Result - 20000 Test

Combined Sets 20000 Test
Original Cure Our Approach

Cluster 1 11019 2728 10895
Cluster 2 11026 5765 10934
Cluster 3 1071 0 1071

Time - 7 mins 23 secs 47 secs
Dropped - 14623 -

Table 5. Scenario 2 Result - 100000 Test

Combined Sets 100000 Test
Original Cure Our Approach

Cluster 1 50784 37913 49784
Cluster 2 51774 38366 50374
Cluster 3 1071 0 1071

Time - 2 hrs 10 mis 1 min 3 secs
Dropped - 25208 -

while we increase the size of the incremental data. The result is similar to the previous
test (see Figures 9 and 10) . However, there is one more major limitation that is not
addressed by CURE. In Table 5, we can see that it takes two hours and thirteen minutes
to process 100,000 data points, which makes CURE unsuitable to handle large data
sets. Our approach deals only with the exemplar and predictor points. As a result it is
computationally less intensive, because the processing is done incrementally rather than
simultaneously.

6 Conclusions

In this paper we have presented an algorithm to cluster large dynamic datasets. The
research has two novel aspects: the use of a new cluster representation which combines
both exemplar and predictor points and the integration of drift tracking techniques in the
incremental processing of the data. The algorithm has been tested with several synthetic
datasets and its performance was compared with the CURE algorithm. The results show
the algorithm has good accuracy and it is both faster and more acurate when compared
with CURE. Future work will be done on improving the overall speed of the algorithm
and on using more advanced tracking techniques to allow for a better adaptation of the
clusters to changes in the data.
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Abstract. Many systems attempt to forecast user navigation in the Internet 
through the use of past behavior, preferences and environmental factors. Most 
of these models overlook the possibility that users may have many diverse sets 
of preferences. For example, the same person may search for information in dif-
ferent ways at night (when they are pursuing their hobbies and interests) as op-
posed to during the day (when they are at work). Thus, most users may well 
have different sets of preferences at different times of the day and behave dif-
ferently in accordance with those preferences. In this paper, we present cluster-
ing methods for creating time dependent models to predict user navigation pat-
terns; these methods allow us to segment log files into appropriate groups of 
navigation behaviour. The benefits of these methods over more established 
methods are highlighted. An empirical analysis is carried out on a sample of us-
age logs for Wireless Application Protocol (WAP) browsing as empirical sup-
port for the technique. 

1   Introduction 

One of the key challenges in adaptive hypermedia and personalization is to properly 
capture user preferences based on their past behavior, explicit and implicit prefer-
ences and other environmental factors. When these and other factors are known it 
becomes more possible to predict what a user is looking for, and for a system to auto-
matically adapt to the user using such predictions. In this paper, we examine 
navigation in the context of the mobile-Internet with a view to predicting user prefer-
ences for certain sites based on environmental factors (i.e. time of the week and paths 
followed).  Cotter and Smyth [6] have proposed that users should not have just one set 
of preferences but rather groups of preferences, characterizing their browsing person-
ality in different contexts. The fundamental insight behind the present work is that a 
user navigating during office hours would have different preferences than that same 
user on the weekend. As such, the research challenge is to determine the boundaries 
between people’s distinct personas and to be able to use these categories to predict 
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preferences. In this paper, we outline methods for clustering together user sessions 
based on the paths followed in those sessions, where a path is a series of URLs se-
lected within a session. We advance these methods as a means for automatically de-
termining different sets of user preferences, thus providing an important component 
for any system that wishes to be truly adaptive. 

2   Task Context: Navigation on the Mobile-Internet  

WAP is the basis for the wireless Internet. It is an open global specification that pro-
vides Internet browsing functionality for small hand-held devices such as mobile 
phones to easily access and interact with information and services instantly. WAP 
users face additional problems that PC users do not, the screen real estate on a mobile 
phone is several orders of magnitude smaller than that of PCs. The mobile phones’ 
capabilities are much more diverse than the more standardized PCs (e.g., in display 
resolution, color capability, operating system features, browser functionality). Mobile 
phones also have very limited input capabilities, featuring numeric keypads with 
minimal text entry, unlike the mouse and keyboard options available to PC users. 
Finally, the content-base of WAP is considerably less diverse and when this content is 
accessed, users face slow download times and incremental billing costs [16]. While 
some of the problems, for example slow download times and phone capabilities have 
been addressed, there is still no definitive solution to aid user surfing via WAP. Here 
we provide one possible solution. 

Intuitively, users’ navigation on the weekend when they have leisure days should 
differ from their navigation on weekdays when they are at work. Following this intui-
tion, our hypothesis is that users surf differently during different time periods, and 
that these differences can be used to make predictions about user navigation. The 
main idea behind using clustering, to attempt to determine this split, is to group to-
gether sets of paths that users have followed that contain similar types of pages (for 
example user sessions involving sports sessions should be grouped together, in the 
hope that these types of pages will display some distinct patterns with relation to time 
for example and allow the segmentation of the log files to improve navigation predic-
tion). Halvey et al [9] have previously shown that predictive models that are time 
dependent can greatly improve accuracy in navigation prediction. However the seg-
mentation step in their time-based models were handcrafted rather than automated. 
Here we propose a more formal method of grouping together user sessions and seg-
menting log files. The purpose of this work is to aid users’ navigation on the Internet. 
By predicting user navigation with a high degree of accuracy, you can for example 
aggressively promote a URL so that the URL that a user would like to select is always 
at the top of a series of menu selections or the desired URL is highlighted in order to 
help a user find it. To test this hypothesis we analyzed a data set from a mobile Inter-
net portal. By exploiting the uneven distributions in WAP surfing pattern we endeav-
ored to determine whether distinct navigation patterns arose and, if found, whether 
these patterns could be accurately predicted using Markov models. 
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3   Background Research 

3.1   Clustering 

Clustering algorithms have been used in a broad range of applications. In particular 
we are interested in hierarchical agglomerative clustering algorithms as they are the 
type of clustering algorithm that we are using in this work. In the area of image seg-
mentation an agglomerative clustering algorithm was applied in Silverman and Coo-
per [17] to the problem of unsupervised learning of clusters of coefficient vectors for 
two image models that correspond to image segments. Jain and Dubes have applied 
the complete-link hierarchical clustering scheme to the problem of object and charac-
ter recognition [11]. They have also applied the complete link agglomerative cluster-
ing algorithm in the area of document retrieval to create a proximity dendogram for a 
collection of books [11]. Etzioni has applied hierarchical clustering methods in the 
area of data mining [7]. For a more complete review of clustering methods and their 
applications please refer to Jain et al [12].  

3.2   Time-Based Analysis 

In recent times, there has been an increasing interest in the use of time in conjunction 
with predictive models. Analyses of time-based patterns of work in office environ-
ments are an example. Begole et al [2] attempt to detect and model rhythms of work 
patterns in an office. Horvitz et al [10] use Bayesian networks built over log data to 
model time-based regularities in work patterns in order to predict meeting attendance 
and interruptability.   

Time-based analyses of web searching have also been carried out. With the aim of 
supporting users, Lau and Horvitz [13] have constructed probabilistic models center-
ing on temporal patterns of query refinement to predict how a user would continue 
their search.  Beitzel et al [3] have analyzed search engine queries with respect to time 
and found that some topical categories vary substantially more in popularity through-
out the day; they also found that query sets for different categories have differing 
similarity over time. 

Halvey et al [9] have also recently conducted an analysis of mobile Internet brows-
ing patterns with respect to time. They discovered that users browsing patterns had 
temporal variations and exploited these patterns to improve navigation prediction 
accuracy. However much of this work was done by hand and required many steps. 

3.3   Web Navigation 

Lieberman [14], Cooley et al [5] and Spilioulou [19] have all also presented solutions 
that take advantage of earlier user experiences to create adaptive Internet websites. Of 
particular interest to this current work is that other researchers have used Markov 
models to create predictive models of web navigation. Pirolli [15] has shown that k-
means Markov models can be used to forecast user navigation patterns. Zhu et al [21] 
have used Markov chains, based on past navigation patterns, to predict web page 
accesses. As was discussed in the previous section navigation prediction in the mobile 
Internet presents additional problems, Billsus et al [4], Anderson et al [1] and Smyth 
and Cotter [18] all offer solutions to the problem of navigation in the mobile Internet. 
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4   Clustering Sessions Based on Paths 

The aim of this work is to segment web logs in such a way that making predictions 
about user navigation becomes simpler and more accurate. The WAP portal that is 
used can be represented as a tree. It is hoped that the clustering will result in paths 
from similar sections of the tree being grouped together to reveal information about 
users who have an interest in that section of the portal. Also paths of similar length 
may be grouped together, and may also reveal that users who favour longer sessions 
may have distinct features from users who favour shorter sessions. 

4.1   Distance Metrics  

To begin with each URL that was selected by a user was represented by a symbol, and 
a path was then represented by a sequence of these symbols. The first task was to 
calculate a distance between these paths that were traversed. The first distance metric 
that we used was a simple Euclidean distance ( ( i=1

N (pi-qi)²)) where if pi = qi then a 
value zero is returned otherwise one is returned.  So for example for two strings 
where the first string is “Mark” and the second string is “Martin” the Euclidean dis-
tance is ( 0+0+0+1+1+1) = 1.732051. The second method that was used was Leven-
shtein Distance or Edit Distance, which is for two strings, s1 and s2, the minimum 
number of point mutations required to change s1 into s2, where a point mutation is 
one of either change a character, delete a character or insert a character. For example 
“Mark” and “Martin” have a Levenshtein Distance of 3, however “Martin” and 
“Barry” have a Levenshtein Distance of 4. The third and final method that we use is a 
derivation of Euclidean Distance that for the purposes of this work has been called 
Total Euclidean. As the WAP site in which the navigation took place is a tree we 
performed a depth first search on the tree and assigned each node incrementally an 
integer value. The Euclidean distance equation is then applied. As stated previously, if 
the two nodes are the same then the distance between them is zero. However if two 
nodes are different then the difference between them is the difference between the 
integer values assigned to their nodes. In this way paths in branches of the tree closer 
together will have a distance that is shorter than those in branches of the three that are 
further apart. 

4.2   Clustering Paths 

To cluster the paths we used hierarchical agglomerative clustering methods, single 
link, complete link and average link algorithms were implemented. A fixed number of 
clusters were not set for these methods; instead these algorithms were given a stop-
ping parameter. The parameter chosen was that when d1, the average distance between 
clusters, is less than half of d2, the average distance between elements in the clusters, 
then the algorithm should stop i.e. when d1 > (d2)/2 stop. Initially the parameter was 
when d1 > d2, however due to some outlying nodes the majority of the clustering meth-
ods did not halt until all of the elements were members of one large cluster. 

Birds of a Feather Surf Together
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4.3   Finding Time Related Segments 

As stated previously Halvey et al [9] have also recently conducted an analysis of 
mobile Internet browsing patterns and discovered that users browsing patterns had 
temporal variations. Accordingly each of the clusters formed was analysed to see if 
there is a distinct or dramatic rise or fall in the number of hits that the clusters have 
received with respect to time (either days or hours). If such an anomaly occurs ses-
sions for that time period are extracted from the log files and a distinct predictive 
model is created for that time period. 

5   Predicting User Navigation Using Log Data 

5.1   Predicting User Navigation 

To test whether these approaches could be used successfully to automatically segment 
web logs (and later be used to make predictions about user navigation and ultimately 
aid that navigation) we analyzed a data set from a mobile Internet portal. This data, 
gathered over four weeks in September 2002, involved 1,168 users and 147,700 indi-
vidual user sessions using WAP phones to access a major European mobile Internet 
portal. Using the distance metrics and clustering algorithms outlined earlier the paths 
followed by users in the WAP portal were clustered. However not all nine possible 
combinations of distance metrics and clustering methods formed clusters, the Euclid-
ean and Levenshtein distance methods formed clusters using both the average and 
complete link algorithms, the Total Euclidean distance method formed clusters using 
the complete link algorithm. The log files were then segmented according to the clus-
ters of paths followed. 

To evaluate the success of different clustering methods we constructed Markov 
models, similar to Zhu [21], for each of the segmented data sets, as well as models for 
all of the data. Each of these models was then used to predict the next URL clicked in 
a path given the current path for each of the segmented data subsets and for values of 
k between 1 and 5. Five was chosen as an upper limit as some of the segments con-
tained only a small number of sessions and also some of the segments contained ses-
sions where only short paths were followed. In each WAP menu the user has ap-
proximately seven selections (including going back to the previous page) from which 
they can choose, therefore the result of random recommendations should be approxi-
mately one in six a baseline 0.167%. However for these experiments a fully connected 
graph was assumed, to take into account instances where users used a bookmark or 
typed in a URL in the mid-session for example. As this theoretically gives users a one 
in 256 choice, there is a baseline of approximately 0.004% accuracy. The models 
created were then tested on a sample of random sessions from the log files to calculate 
the accuracy of the models, for these experiments we consider accuracy to be the 
proportion of URL’s that are correctly predicted by the Markov models. The results of 
these experiments are shown in figure 1. The accuracy for the models created using 
the data from the segmented log files is contrasted with the accuracy for the predictive 
model built using all of the log file data. Overall, one major conclusion can be drawn 
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from these models about our ability to predict navigation behavior and the success of 
our model for segmenting the log files. That is, if one tries to predict navigation dur-
ing a particular set of sessions using the full data set the predictive accuracy of the 
model is not as accurate as the model that corresponds to that set of sessions. 

Graph of accuracy versus order of Model 
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Fig. 1. Graph illustrating the predictive accuracy for each of the segmented data sets with re-
spect to k  
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Fig. 2. Graph illustrating the predictive accuracy for each of the segmented data sets with re-
spect to k 

As outlined in section 4.2 the clusters formed were then analyzed to see if there 
were any time dependencies in the clusters. Three of the five sets of clusters had the 
same time dependencies, the other two clusters found slight variations of the first time 
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relationship. Once again the log files were segmented, however on this occasion the 
segmentations were based on the time dependencies discovered. Also as was done 
previously Markov Models were formed, however for these segments the maximum 
value of k was 10 as there were no significantly small segments and all of the seg-
ments contained sessions with various path lengths. As before the models created 
were then tested on a sample of random sessions from the log files to calculate the 
accuracy of the models, and once again for these experiments we consider accuracy to 
be the proportion of URL’s that are correctly predicted by the Markov models. The 
results of these experiments are shown in figure 2. The same conclusions can be 
drawn from the results in figure 2 as were concluded in figure 1. However, it may be 
noted that after a certain order of model the accuracy begins to tail off. However, this 
is not really a concern as most WAP users favour shorter sessions over longer ses-
sions according to the Universal Law of Web Surfing [8]. 

5.2   Empirical Evaluation of Predictive Models  

We can also put the knowledge we have gained from our Markov modeling to work in 
assessing how it would impact personalization of a mobile portal. Smyth & Cotter 
[18] have developed the Click-Distance Model to estimate the likely navigation gains 
in a given mobile-portal when personalization is used for menu re-ordering. Figure 3 
illustrates the results of the click distance analysis for the cluster based models and 
Figure 4 illustrates the results of the click distance analysis for the time-based models.  
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Fig. 3. Results of click distance analysis for static portal, Markov models using all data and 
Markov models created using clustered data 

These results can be summarised in a few points. The use of any navigation data re-
duces mean click-distance significantly in comparison with when it is not used; there-
fore personalisation using navigation patterns helps. Also the effectiveness of these 
models improves with the order of the Markov models. Finally, in nearly all of the 
models, the models based on the clustered data results resulted in shorter click dis-
tances than the models based on the whole data set. 
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Fig. 4. Results of click distance analysis for static portal, Markov models using all data and 
Markov models created using data segmented based on time 

6   Conclusions and Future Work 

Users have different needs and goals at different times and as such user navigation 
patterns in the Internet are time dependent.  In this paper we have presented a method 
that takes advantage of this phenomenon by automatically segmenting log file data, 
based different time periods and different goals. This has been confirmed by an analy-
sis of a WAP usage log file. Clusters of usage patterns were created, and from these 
clusters Markov models were learnt. These predictive models were compared with 
Markov models built over all of the log data. The predictive accuracy for the Markov 
models for the explicit time periods and clusters was far greater than the accuracy of 
the other models constructed. These more accurate models can also be used reorgan-
ize the structure of the portal to reduce the click distance and thus reduce the amount 
of effort for users. These results support our hypothesis as well as highlighting the 
potential of such data segmentation for aiding user navigation creating truly adaptive 
systems. Consequently, there is a huge potential benefit to Internet users for usage of 
such techniques, in particular mobile Internet and WAP users who encounter addi-
tional problems that desktop users do not encounter [16], which we have highlighted 
previously.  

Additionally predicting user navigation could be used to improve download times. 
While a server is not busy, predicted pages could be pre-fetched for users to reduce 
download times, this would be particularly useful for mobile users for whom 
download times are a particular problem [16]. Also predicting and pre-fetching pages 
could also reduce the load on servers. As this is an initial attempt at segmenting log 
data according to time there are, of course, other extensions that can be made to this 
work. Firstly this segmentation of the data could quite easily be used in conjunction 
with some other predictive model, for example the ClixSmart navigator [18] to make 
more accurate predictions about user navigation and adapting portal structure to the 
needs of users. With the integration of some of these techniques we may be able  
to discover other temporal segmentations and make even more accurate  
recommendations. 
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In this paper we have outlined new methods to aid users of both the mobile-
Internet and Internet. This study is a new direction in Internet navigation prediction 
and will hopefully lead the way in finding the solution to what is a very difficult  
problem. 
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Abstract. Until recently, network administrators manually arranged
alarms produced by Intrusion Detection Systems (IDSs) to attain a high-
level description of threats. As the number of alarms is increasingly grow-
ing, automatic tools for alarm clustering have been proposed to provide
such a high level description of the attack scenario. In addition, it has
been shown that effective threat analysis require the fusion of different
sources of information, such as different IDSs, firewall logs, etc. In this
paper, we propose a new strategy to perform alarm clustering which pro-
duces unified descriptions of attacks from multiple alarms. Tests have
been performed on a live network where commercial and open-source
IDSs analyzed network traffic.

Keywords: Computer Security, Intrusion detection, Clustering.

1 Introduction

At present, a number of commercial, open-source, and research Intrusion De-
tection Systems (IDSs) tools are available. They differ in the way intrusions are
detected, and in the available options allowing further alarm processing. Among
them, network misuse detectors are widely used in many organizations for their
ability in detecting well-known patterns of intrusions.

Network misuse detectors analyse network traffic looking for packets whose
characteristics match the ”signature” of known attacks. As soon as a signature
is matched, an alarm is raised. As signature matching is performed on a packet
basis, alarms provide a powerful source of fine-grain information related to sus-
pect activities in the protected network. In order to gain an understanding of
the intrusions against the protected network, a network administrator needs to
arrange these alarms to produce a high-level description of the threat. As the
number of alarms is increasingly growing, it is not feasible for a network ad-
ministrator to manually arrange the huge volume of alarms. Recently a number
of alarm clustering products have been proposed to provide such a high level
description of the attack scenario [1]. The aim is to manage the large number
of so-called elementary alarms produced by IDSs, by their fusion in higher-level
alarm messages. The source of such a large number of alarms is motivated by
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the nature of some categories of attacks which send a large number of malicious
packets. As signature-based IDSs produce an alarm for each malicious packet,
alarm flooding may occur. Alarm clustering can also be used to fuse alarms from
different sensors. The use of multiple complementary Intrusion Detection tech-
nologies can provide the following benefits: i) for a given attack, different IDSs
may produce different outputs; ii) for a given attack, only a limited number of
IDSs might be able to detect it; iii) the fusion of alarms raised by different IDSs
may attain more comprehensive information about intrusion attempts than that
attained using a single IDS technique. Therefore, the proposed multiple-sensor
environment is made up of a number of IDSs (e.g., commercial and open-source
products), and the measurements to be fused are the elementary alarms raised
by each IDS. This paper proposes an on-line alarm clustering algorithm whose
output is a set of meta-alarms. During the operation of the IDSs, the alarms are
analysed and clustered. When no further alarm can be clustered to an existing
group, the related meta-alarm is output to the administrator.

Meta-alarms provide a network administrator with summary information
about the attack and the related alarm messages produced by IDSs. This infor-
mation can be further used by higher-level modules that perform multiple-step
attack scenario reconstruction and threat analysis.

At present, a few works on alarm clustering and correlation have been pre-
sented [2-5]. With respect to the related work, in the present paper a novel on-
line alarm-clustering algorithm is proposed. The objective is to achieve alarm
volume reduction by fusing alarms produced by different sensors in consequence
of a given attack. In particular, the main contribution is the introduction of a
learning phase, which aims at extracting the attack class(es) an attack descrip-
tion belongs to. This attack description classification process allows to cluster
alarms seemingly produced by different attacks but belonging to the same alarm
thread.

The paper is organized as follows. Section 2 presents the details of the pro-
posed alarm clustering algorithm. Some results attained on a test network with
commercial and open-source IDSs are reported in Section 3. In particular, the
structure of the meta-alarm is presented which can summarize a large number
of elementary alarms. Conclusions are drawn in Section 4.

2 The Proposed Alarm Clustering Algorithm

In this section, we present our alarm clustering algorithm designed to process
the sequence of alarms produced by IDSs, and then produce meta-alarms, i.e.
summary descriptions of events obtained by aggregating correlated alarms pro-
duced by various IDS sensors. Such a summary information can be provided
by the attack class the alarms refer to. The alarm class provides an effective
high-level information [6] that can be used by higher-level modules that perform
multiple-step attack scenario reconstruction. As an example, let us consider the
three attack classes used in our experiments, i.e., portscan, web-scan, and DoS
(Denial of Service). A portscan attack is performed by sending a very large
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Fig. 1. Alarm Clustering Module

number of TCP or UDP packets to different ports in order to spot whether a
service is bound to a certain port or not. In a similar way a webscan attack
is performed by sending a sequence of HTTP queries to a web server (the vic-
tim) looking for vulnerable web applications. DoS attacks, instead, are usually
performed by sending a large number of properly crafted packets to a victim
host trying to exploit vulnerabilities which can cause the victim host or appli-
cation to crash. Each meta-alarm is further described by a number of features
needed to uniquely identify the event, such as start and stop times, source and
destination IP, etc. In addition, the identifiers of the aggregated alarm logs are
reported for further inspection. The proposed system results particularly suit-
able in aggregating alarms produced by those kinds of attacks which cause the
IDSs to produce a high number of alarms. In the following, we will refer pri-
marily to signature-based Netowrk-IDS (NIDS) sensors, as it is the most widely
used type of IDS sensors. Nevertheless, the reported discussion can be extended
to other ID techniques. We will provide an overview of the architecture of the
proposed alarm-clustering module first, then going into the details of each of the
components. Figure 1 depicts a schema of our alarm clustering system.

The first block is the Alarm Management Interface (AMI) that performs data
alignment by translating each alarm message toward a standard alarm message
format. This is necessary because IDSs from different vendors usually produce
messages according to different formats. In our implementation, we used the
IDMEF format because it has been proposed as standard format by the IETF
[7]. The second block, i.e. the classification module, is designed to label an alarm
message as belonging to one or more attack classes. The classification module is
motivated by two kinds of ambiguities: i) for a given attack, different sensors may
produce a number of alarms reporting different attack descriptions; ii) an attack
description may be produced by the IDS in response to different attacks. In case
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of alarms labelled as belonging to more than one class, the clustering process
removes the ambiguity as soon as an alarm with a unique label is clustered with
the multiple-class alarm. In fact, each cluster must contain alarms belonging to
one attack class. We also used the ”no-class” label for those meta-alarms related
to attacks for which a class has not been defined during classifier design. Details
on the training procedure of the classification module will be given in Section
2.2. Classified alarms are sequentially sent to the clustering/fusion block, which
applies a nearest-neighbour clustering algorithm [8]. For each received alarm
the clustering algorithm determines whether the alarm can be clustered, and
thus fused, to one of the clusters or have to initialize a new meta-alarm (a new
group of alarms). The whole system is designed to be used in a near real-time
environment, i.e. IDS sensors send the alarms to the alarm reduction system as
soon as they are produced. In such an environment meta-alarms that have not
been involved in a clustering/fusion process for a time interval greater than a
predefined timeout threshold will be removed from the reduction system and
sent in IDMEF format to the administrator.

2.1 Meta-alarm Content

Before going into the details of the clustering algorithm, let us state which
information we aim to extract from each cluster, and include in the related
meta-alarm. A meta-alarm is characterised by the following features: a classifi-
cation name, that is the common generalized class-name assigned to the clustered
alarms by the classification module; the create-time, that is the timestamp of the
last meta-alarm update (the last fusion). Additional data include the start and
stop times of the attack, list of source IP addresses, list of target IP addresses,
source ports, target ports, etc. In addition, a reference to the log files of the IDSs
is reported so that further investigation of the aggregated alarms can be carried
out. It is worth noting that a meta-alarm M is removed from the clustering-
fusion module and reported to the administrator if no more alarms are fused
within a suitable time threshold.

2.2 Classification Module

An alarm class C is made up of the set of alarm messages provided by the sensors
in response to at tacks of type C. For example, the portscan alarm class is made
up of the set of alarm messages obtained by simulating portscan attacks with
different techniques. We have already noticed that a given alarm can be raised
by an IDS in response to different attacks. For example, a portscan may cause
an IDS to produce a number of alarms that refer to DoS attacks in addition
to the alarms related to the portscan activity. Such DoS alarms are confusing
because they should be produced only in case of real DoS attacks. The role
of the classification module is to assign each alarm to the attack class(es) that
might have produced it. To this end, the classifier is designed by simulating a
number of real attacks for each class of attacks. For example, if we consider
attacks belonging to portscan, webscan and DoS classes, the designing process
has to be performed in the following way:



188 G. Giacinto, R. Perdisci, and F. Roli

1. Simulate the most frequent portscan attacks with different techniques.
2. Extract the pairs {sensor-name, alarm-message} from each alarm produced

by step 1.
3. Store the pairs {sensor-name, alarm-message} into a set called portscan-

descriptions.
4. Repeat steps 1, 2 and 3 for webscan and DoS attacks, thus storing the

pairs {sensor-name, alarm-message} into webscan-descriptions set and dos-
descriptions set respectively.

When the classifier receives an alarm with description Desc-1 produced by
Sensor-A, the pair {Sensor-A, Desc-1} is compared to each pair contained into
the portscan-descriptions, webscan-descriptions and dos-descriptions sets. The
alarm is then labelled with the classes with matching pairs. For example, if the
pair {Sensor-A, Desc-1} is found both into the portscan-descriptions set, and
into the dos-description set, then the alarm will be labelled as belonging to both
portscan and DoS classes. On the other hand, if the pair {Sensor-A, Desc-1} is
not in any sets of descriptions, the alarm will be labelled as ”no-class”.

2.3 Clustering/Fusion Module

The clustering/fusion module is initialised by creating a number of empty sets,
each one devoted to contain clusters related to one of the attack classes taken
into account in the classifier design phase. In the case of the above example
the clustering/fusion block creates three sets: PortscanMetaAlarmSet, Webscan-
MetaAlarmSet, and DoSMetaAlarmSet. In addition, two other sets are created,
namely the MultiClassMetaAlarmSet, and the NoClassMetaAlarmSet. The first
set is devoted to temporarily contain meta-alarms obtained by clustering alarms
labelled as belonging to multiple classes, while the latter is devoted to contain
meta-alarms obtained by clustering alarms that have not received a label from
the classification module. It is worth recalling that alarm clustering is aimed at
reducing the number of alarms produced by a certain class of attacks. Thus, a
number of alarms are clearly not taken into account in the design phase. Be-
fore giving the details of the clustering algorithm, some definitions have to be
introduced:

– Definition 1. Distance between pairs of features
Let us denote the distance between the i-th feature of an alarm A and the
corresponding feature of a meta-alarm M as dist(A.feati,M.feati). Distance
measures for various types of features such as the timestamp, target IP, target
port, source IP, source port, etc., are defined in Section 2.4.

– Definition 2. Clustering function
An alarm A is assigned to the nearest cluster if the distance between A and
the meta-alarm M associated with that cluster is below a predefined thresh-
old. In particular, alarm A is assigned to the nearest cluster M if all the
distances between the corresponding features are smaller than a set of prede-
fined thresholds:



Alarm Clustering for IDSs in Computer Networks 189

dist(A.feati,M.feati) ≤ thresi ∀i = 1, .., v (1)

where v is the total number of features. The values of the thresholds
{thresi}i=1..v depend on the class M belongs to, as well as on the character-
istics of the protected network. In the following, we will refer to an alarm A
and a meta-alarm M satisfying Eq. 1, to be correlated.

– Definition 3. Distance between an alarm and a meta-alarm
If an alarm A and a meta-alarm M are correlated, then their distance is
computed as the time gap between the create-time of A and the create-time
of the more recent alarm fused to M. Otherwise, the distance between A and
M is set to +∞.

– Definition 4. Distance between an alarm and a meta-alarm set
The distance between an alarm A and a meta-alarm set S is defined in the
following way:
1. If S does not contain any meta-alarm M correlated to A, then the distance

is set to +∞.
2. If S contains k meta-alarms M1,M2, ...,Mk correlated to A, the distance

between A and S is computed as mini=1..k(dist(A, Mi)).

In order to explain how the proposed clustering algorithm works, let us resort
to an example. Let us suppose to be in a running state, and that each meta-
alarm set contains a number of clusters. When a new alarm A is processed by
the clustering module, three different cases may occur:

a) A has been labelled as belonging to a unique class.
If the alarm A has been labelled, for example, as a portscan the following
distances will be computed:

d1 = dist(A, PortscanMetaAlarmSet)
d2 = dist(A,MultiClassMetaAlarmSet)
d3 = dist(A, NoClassMetaAlarmSet)

If (d1 = d2 = d3 = +∞), then there is no meta-alarm correlated to A into
the Portscan, MultiClass, and NoClass meta-alarm sets. In this case, A will
be inserted into the PortscanMetaAlarmSet where it will initialize a new
meta-alarm. If d1 = min{d1, d2, d3}, A will be inserted into the Portscan-
MetaAlarmSet, and it will be fused with the nearest portscan meta-alarm
that is correlated to A. Similarly, if d2 or d3 exhibit the minimum distance,
A will be inserted respectively into the MultiClassMetaAlarmSet or the No-
ClassMetaAlarmSet, and it will be fused with the nearest correlated meta-
alarm. In the case of d2 = min{d1, d2, d3}, the resulting meta-alarm will
be moved from the MultiClassMetaAlarmSet to the PortscanMetaAlarmSet,
as the alarm A has a unique class label that can resolve the ambiguity of
the correlated meta-alarm. In the case of d3 = min{d1, d2, d3}, the class la-
bel given to A will not be further considered, and the resulting meta-alarm
will have no class label. The reason for computing the distances d2 and d3

instead of immediately insert A into PortscanMetaAlarmSet (A has been
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labeled as a portscan by the classification module) is justified by the follow-
ing considerations: 1) Let us assume that alarm A is the n-th alarm caused
by a portscan attack, and that the first n − 1 alarms have been classified
as belonging to multiple classes, portscan class included. By comparing A
with the meta-alarms contained in the MultiClassMetaAlarmSet, it will be
correctly fused with the correct sequence of alarms. 2) Given that a perfect
matching is required among the features of the alarm A and those of a no-
class meta-alarm M to be correlated (Eq. 1), if d3 = min{d1, d2, d3}, A and
M are quite certainly related to the same attack even though A has been
labelled as belonging to a certain class.

b) A has been labelled as belonging to multiple classes.
If alarm A has been labelled, e.g. as portscan and DoS, the following four
distances will be computed:

d1 = dist(A, PortscanMetaAlarmSet)
d2 = dist(A,DosMetaAlarmSet)
d3 = dist(A,MultiClassMetaAlarmSet)
d4 = dist(A, NoClassMetaAlarmSet)

if (d1 = d2 = d3 = d4 = +∞), A will be inserted into the MultiClass-
MetaAlarmSet, and it will initialize a new meta-alarm. If one or more dis-
tances are not equal to +∞, then A will be inserted into the nearest meta-
alarm set, and it will be fused with the nearest meta-alarm.

c) A has been labelled as belonging to none of the classes.
If A has been labelled as belonging to no-class, then it will be inserted
into the NoClassMetaAlarmSet, and it will be clustered with the nearest
no-class meta-alarm. If the NoClassMetaAlarmSet contains no meta-alarm
correlated to A, then A will initialize a new no-class meta-alarm that inherits
A’s features. It is worth recalling that an alarm A and a no-class meta-alarm
M are considered correlated only if all A’s and M ’s features (except the
attack description) perfectly match. In this case there is a high probability
that A and M are relative to the same attack, even if the attack descriptions
do not coincide.

2.4 Distances Among Features

In this section we present the definition of some of the distances among features
used by the clustering algorithm. Let A be an alarm and M a meta-alarm.
Distances among IP addresses and port lists hold the same definitions either
they refer to target or source information (i.e. dist(A.sourceIP, M.sourceIP )
and dist(A.targetIP, M.targetIP ) have the same definition, as well as distances
among source or target port lists).

– dist(A.IP,M.IP ): We consider only IPv4 addresses. The distance is defined
as a sub-network distance. We take the binary expression of A.IP and M.IP,
then we XOR the two binary strings. If we call n the number of zeros in the
resulting binary string counted starting from the right, the distance d will
be d = 32−n. The greater d, the greater the distance between IP addresses.
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– dist(A.portList, M.portList): The distance amongA.portList andM.portList
equals the number of port numbers present inA.portList but not inM.portList.

– time distance(A,M): The time distance t among an alarm A and a meta-
alarm M is computed as the distance, in terms of milliseconds, among
A.createTime and M.stopTime.

3 Experiments

The proposed alarm clustering strategy has been implemented and tested on a
live network containing dozens of hosts, some of them chosen as victims. It is
worth noting that at present no dataset is publicly available for designing and
testing alarm clustering algorithms. As a consequence, a direct comparison with
results in the literature is rather difficult. Thus, researchers usually evaluate
their algorithms by performing some experiments on a typical network scenario,
and assessing the effectiveness of the proposed techniques on such a scenario.
The traffic of the considered network was made up of the so-called background
traffic, i.e., the normal activity of the users of the network, and by a number
of simulated attacks. Three IDSs have been used to monitor network traffic:
Snort 2.1.0 [9], Prelude-NIDS 0.8.6 [10], and ISS Real Secure Network Sensor
7.0 [11]. We have subdivided the experiments into three stages: 1) Training of
the classification module; 2) Tuning of the thresholds involved in the clustering
algorithm; 3) Performance tests. The first two stages have been carried out by
executing attack simulations in an isolated network made up of three hosts, two
victims (a Linux host and a Win2k host), and an attacker host. The performed
experiments were related to three attack classes, i.e., portscan, webscan, and
DoS, as they usually produce a large number of alarms.

3.1 Training and Tuning

The classification module has been designed using a number of tools available
in the Internet. In particular, we have used nmap, wups, etc., as portscan tools;
nikto, babelweb, etc., as webscan tools; teardrop, jolt (aka ping of death), synflood,
etc., as DoS attacks. During this phase, for each attack, the pairs {sensor-name,
alarm-message} has been stored according to the procedure described in section
2.2. The values of the thresholds used by the clustering algorithm described in
Section 3.3 have been estimated in two phases. In the first phase, an initial value
for the thresholds has been chosen by heuristics based on attack characteris-
tics. Then, in the second phase, attack simulations have been performed in the

Table 1. Values of the thresholds used in the clustering algorithm

Meta-Alarm Class SourceIP TargetIP SourcePort TargetPort Time(s)

portscan 0 0 +∞ +∞ 480+δt
webscan 0 0 +∞ 0 120+δt

DoS +∞ 0 +∞ +∞ 120+δt
no-class 0 0 0 0 0+δt
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isolated network to suitably tune the thresholds in order to effectively cluster
all the correlated alarms produced by a given attack. The notion of effective-
ness may change according to the characteristic of the protected network, the
needs of the network administrator, etc. Thus different tunings may fit different
administrator’s needs. The thresholds used in our experiments are reported in
Tab.1. The δt constant in the Time threshold column accounts for possible drifts
among IDS sensors’ clock. In our experiments, δt was set equal to one second.

3.2 Performance Tests

A large number of attacks have been executed in the selected live network to
test the feasibility of the designed system to correctly cluster attacks. Results
showed that the proposed technique produced not only meta-alarms related to
the simulated attacks, but also meta-alarms related to the background traffic.
As the design phase has been carried out in an isolated network, this results
show the feasibility of the proposed approach. Table 2 reports the details of the
most significant results.

Portscan - When porstcans have been performed, the clustering algorithm suc-
cessfully produced a meta-alarm for every portscan activity. As an example,
consecutive SYN and Xmas portscans have been performed from one source to-
wards a victim, producing a total of 3074 alarms from the three considered IDSs
(see the first column in table 2). During these attacks, the sensors also produced
alarms related to malicious activities in the background traffic. The clustering
algorithm correctly produced one meta-alarm related to the portscan, and 15
meta-alarms related to other activities. The meta-alarm related to portscan ac-
tivities is correctly labelled as portscan, and contains the list of scanned ports,
the source and target hosts, the start and stop times of the attack, and references
to the alarms that originated the meta-alarm.

Webscans - Similar results have been also attained with webscans. In some
cases, long attacks originated more than one meta-alarm, because of time gaps
among groups of alarms. This kind of anomalies can be resolved by a post-

Table 2. Experimental results on live network

Attack Type portscan webscan1 webscan2 DoS

Alarms from Snort 1058 94 7143 71

Alarms from Prelude 1314 93 6601 8828

Alarms from ISS Real Secure 728 63 5586 186

Total Number of Alarms 3100 250 19330 9085

Attack-related Alarms 3074 244 19164 9028

Alarms produced by backgroud traffic 26 6 166 57

Meta-Alarms from simulated attacks 1 1 37 4

Meta-Alarms from backgroud traffic 15 3 85 33

Total number of Meta-Alarms 16 4 122 37
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processing situation refinment module that is aimed at finding relationships
among meta-alarms. As an example, Webscan2 (nikto) originated 19164 alarms
that were clustered into 37 clusters. The size of the first two clusters was equal to
7464 and 11631 alarms, respectively. It is worth noting that 69 alarms produced
by the ISS Real Secure sensor generated 35 meta-alarms. These alarms were
related to attack responses produced by the webserver that were not correctly
recognized by Real Secure.

DoS - Four DoS attacks have been performed against the same host. The pro-
posed alarm clustering was able to correctly produce 4 meta-alarms correspond-
ing to the different attacks carried out and 33 meta-alarms corresponding to
alarms related to suspicious background-traffic.

4 Conclusions

In this paper we proposed a novel on-line alarm-clustering algorithm whose main
objective is the reduction of the volume of alarms produced by today’s IDS
sensors. The clustering algorithm has been devised to work in near real time.
Experiments performed in different attack scenarios on a live network showed
that the proposed algorithm effectively groups alarms related to the same attack,
even though IDSs produced alarms whose descriptions were erroneously referred
to different types of attacks. The produced meta-alarms provide the system
administrator with a concise high-level description of the attack. In addition, it
is the starting point for the development of modules for situation refinement and
threat analysis.

References

1. J. Haines, D. K. Ryder, L. Tinnel, S. Taylor, Validation of Sensor Alert Correlators,
IEEE Security Privacy, January-February 2003, 1(1), pp. 46-56.

2. A. Valdes, K. Skinner, Probabilistic Alert Correlation, RAID 2001. LNCS 2212, pp.
54-68.

3. F. Cuppens, Managing Alerts in a Multi-Intrusion Detection Environment, Pro-
ceedings of ACSAC’01, IEEE Computer Society.

4. F. Cuppens, A. Mige, Alert Correlation in a Cooperative Intrusion Detection
Framework, Proceedings of the IEEE Symposium on Security and Privacy, 2002.

5. P. A. Porras, M. W. Fong, A. Valdes, A Mission-Impact-Based Approach to IN-
FOSEC Alarm Correlation, RAID 2002. Springer-Verlag, LNCS 2516, pp. 95-114.

6. J. Undercoffer, A. Joshi, J. Pinkston, Modeling Computer Attacks: An Ontology
for Intrusion Detection, RAID 2003. Springer-Verlag, LNCS 2820, pp. 113-135.

7. D. Curry, H. Debar, B. Feinstein, The Intrusion Detection Message Exchange For-
mat (http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-11.txt)

8. A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review, ACM Computing
Surveys 31(3) 1999, 264-323.

9. Snort, Lightweight Intrusion Detection for Networks. (http://www.snort.org)
10. Prelude Intrusion Detection System. (http://www.prelude-ids.org)
11. ISS, Inc.: RealSecure intrusion detection system. (http://www.iss.net)



 

P. Perner and A. Imiya  (Eds.): MLDM 2005, LNAI 3587, pp. 194 – 202, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Clustering Document Images Using  
Graph Summaries 

Eugen Barbu, Pierre Héroux, Sébastien Adam, and Eric Trupin 

Laboratoire Perception - Systèmes - Information, 
FRE CNRS 2645, Université de Rouen, 

UFR des Sciences & Techniques, 
Place Emile Blondel, 

76821 Mont-Saint-Aignan Cedex, France 
Eugen.Barbu@Univ-Rouen.Fr 

Abstract. Document image classification is an important step in document 
image analysis. Based on classification results we can tackle other tasks such as 
indexation, understanding or navigation in document collections. Using a 
document representation and an unsupervized classification method, we can 
group documents that from the user point of view constitute valid clusters. The 
semantic gap between a domain independent document representation and the 
user implicit representation can lead to unsatisfactory results. In this paper we 
describe document images based on frequent occurring symbols. This document 
description is created in an unsupervised manner and can be related to the 
domain knowledge. Using data mining techniques applied to a graph based 
document representation we found frequent and maximal subgraphs. For each 
document image, we construct a bag containing the frequent subgraphs found in 
it. This bag of “symbols” represents the description of a document. We present 
results obtained on a corpus of graphical document images. 

1   Introduction 

A document image analysis (DIA) system transforms a document image into a 
description of the set of objects that constitutes the information on the document and 
which are in a format that can be further processed and interpreted by a computer [1]. 
Documents can be classified in mostly graphical or mostly textual documents [2]. The 
mostly textual documents also known as structured documents respect a certain layout 
and powerful relations exist between components. Examples of such documents are 
technical papers, simple text, newspapers, program, listing, forms,…  

Mostly graphical documents do not have strong layout restrictions but usually 
relations exist between different document parts. Examples of this type of documents 
are maps, electronic schemas, architectural plans... 

For these two categories of documents, graph based representations can be used to 
describe the image content (e.g. region adjacency graph [3] for graphical and 
Voronoi-based neighborhood graph [4] for textual document images).   
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In this paper we present an approach similar to the “bag of words” method used in 
Information Retrieval (IR) field. We describe a document using a bag of symbols 
found automatically using graph mining [5] techniques. In other words, we consider 
the frequent subgraphs of a graph-based document representation as “symbols”  and 
we investigate whether the description of a document as a bag of “symbols” can be 
profitably used in a classification task.  

The approach has the ability to process document images without knowledge of, or 
models for, document content. In the literature one can find papers dealing with 
representations of textual documents using frequent items [6] and description of XML 
documents using frequent trees [7] but we do not know of any similar approaches in 
the DIA field.  

The motivation for our study is the fact that unsupervised classification can represent 
the starting point for semi-supervised classification or indexation and retrieval from 
document collections. Also, the existing clustering solutions for document images are 
usually domain dependent and can not be used in an “incoming document flux” (fax, 
business mail,…) setting, where supervised techniques are not at hand. 

The outline of this paper is as follows. In section 2 we present a graph representation 
and how we create this representation from a document image. Section 3 presents the 
graph-mining method used, in section 4 we describe how we create clusters based on 
dissimilarities between bags of symbols. Section 5 presents some experimental 
results. We conclude the paper and outline perspectives in section 6. 

2   Document Graph Based Representations 

Eight levels of representation in document images are proposed in [8]. These levels 
are ordered in accordance with their aggregation relations. Data array level, primitive, 
lexical, primitive region, functional region, page, document, and corpus level are the 
representation levels proposed. 

Without loosing generality, in the following paragraphs we focus our attention on a 
graph-based representation build from the primitive level. The primitive level 
contains objects such as connected components (sets of adjacent pixels with the same 
color) and the relations between them.  

Let I be an image and C(I) the connected components from I, if )(ICc∈  , c is 

described as  ),( Pidc=  , where id  is a unique identifier and P the set of pixels the 

component contains. Based on this set P, we can compute the center for the connected 
component bounding box and also we can associate a feature vector to it. Based on 

that, nRvvyxidc ∈= ),,,,( . Subsequently using a clustering procedure on the feature 

vectors we can label the connected component and reach the description 
),,,( lyxidc=  where l is a nominal label . The graph G(I) representing the image is 

))(),(( IEIVGG=  . Vertices V(I) correspond to connected components and are 

labeled with component labels. An edge  between vertex u and vertex w exists iff  

tywyuxwxu <−+− 2
1

22 ))..()..(( ,where t is a threshold that depends on the image I 

global characteristics  (size, number of connected components,…). 
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The exact methodology employed to construct the graph representation is 
subsequently presented. From a binary document image we extract connected 
components (black and white). The connected components will be the graph nodes. 
For each connected component we extract features. In the actual implementation the 
extracted characteristics are rotation and translation invariant features based on 
Zernike moments [9]. The invariants represent the magnitudes of a set of orthogonal 
complex moments of a normalized image. 

The following step is to associate each connected component a label. 

2.1   Labeling Connected Components 

The two main categories of clustering methods are partitional and hierarchical. 
Partitional methods can deal with large sets of objects (“small” in this context means 
less than 300) but needs the expected number of clusters in input. Hierarchical 
methods can overcome the problem of number of clusters by using a stopping 
criterion [10] but are not applicable on large sets due to their time and memory 
consumption. 

In our case the number of connected components that are to be labeled can be 
larger than the limit of applicability for hierarchical clustering methods. In the same 
time we cannot use a partitional method because we do not know the expected 
number of clusters. Based on the hypothesis that a “small” sample can be informative 
for the geometry of data, we obtain in a first step an estimation for the number of 
clusters in data. This estimation is made using an ascendant clustering algorithm with 
a stopping criterion. The number of clusters found in  the sample is used as input for a 
partitional algorithm applied on all data. 

We tested this “number of cluster estimation” approach using a hierarchical 
ascendant clustering algorithm [10] that uses Euclidean distance to compute the 
dissimilarity matrix, complete-linkage to compute between-clusters distances, and 

Calinsky-Harabasz index [11] as a stopping criterion. The datasets ( 321 ,, TTT  ) (see 

Table 1) are synthetically generated  and contain well separated (not necessarly 
convex) clusters. 

Table 1. Data sets description 

T |T| no. of clusters 
T1 24830 5 
T2 32882 15 

T3 37346 24 

Considering S the sample extracted at random from a test set, in Table 2  we 
present predicted cluster numbers obtained for different sample sizes. After repeating 
the sampling procedure for 10 times if the test set is for example |S|=50, we obtain a 
set of estimations for the number of clusters. We can see that by using a majority 
voting decision rule we can find the good number of clusters in most of the cases and 
even when the sample size is very small (50 or 100) compared to the data set size. 
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Table 2. Proposed number of clusters 

T \ |S| 50 100 300 500 600 700 
T1 [6, 8, 7, 6, 5, 

6, 6, 6, 5, 5] 
6 

[5, 7, 9, 7, 5, 
5, 7, 5, 5, 7] 
5 

[7, 5, 7, 8, 7, 
5, 5, 5, 7, 7] 
7 

[8, 7, 5, 5, 5, 
5, 5, 5, 5, 5] 
5 

[5, 5, 5, 5, 5, 
7, 7, 7, 7, 5] 
5 

[5, 5, 7, 5, 7, 
5, 5, 7, 5, 5] 
5 

T2 [9, 15, 15, 
14, 13, 15, 
13, 13, 14, 
15] 
15 

[15, 15, 13, 
15, 15, 15, 
15, 15, 15, 
15]  
15 

[15, 15, 15, 
15, 15, 15, 
15, 15, 15, 
14]  
15 

[15, 15, 15, 
15, 15, 15, 
15, 15, 15, 
15] 
15 

[15, 15, 15, 
15, 15, 15, 
15, 15, 15, 
15] 
15 

[15, 15, 15, 
15, 15, 15, 
15, 15, 14, 
15] 
15 

T3 [11, 7, 9, 18, 
7, 7, 6, 4, 
14, 8] 
 
7 

[6, 14, 23, 
21, 7, 17, 
23, 16, 12, 
11] 
23 

[22, 24, 23, 
19, 23, 24, 
24, 21, 
21,24,] 24] 
24 

[21, 25, 25, 
24, 22, 24, 
23, 24, 24, 
24] 
24 

[20, 25, 21, 
24, 19, 23, 
24, 25, 24, 
22] 
24 

[23, 20, 21, 
20, 25, 24, 
24, 21, 25, 
24] 
24 

We employed our sampling approach combined with the k-medoids clustering 
algorithm [12] on the connected components data set from images in our corpus (see 
section 5). The k-medoids clustering algorithm is a more robust version of the well 
known k-means algorithm. The images from our corpus contain 6730 connected 
components. The proposed number of clusters using ten samples of size 600 is 
[16,14,17,16,16,19,7,17,15,16] and by considering the majority we use 16 clusters as 
input to the partitional clustering algorithm. 

After labeling the connected components (nodes in the graph) subsequently we 
describe the way we add edges to the graph. The edges can be labeled or not (if 
unlabeled the significance is Boolean: we have or have not a relation between two 
connected components) and can be relations of spatial proximity, based on “forces” 
[13], orientation  or another criterion. In our actual implementation the distance 
between centers of connected components is used (see Fig. 1). If the distance between 
two connected components centers is smaller than a threshold, then an edge will link 
the two components (nodes). 

 

 

Fig. 1. Image and its associated graph 
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3   Graph Mining 

The main objective of graph mining is to provide new principles and efficient 
algorithms to mine topological substructures embedded in graph data” [5].  

Mining frequent patterns in a set of transaction graphs is the problem of finding in 
this set of graphs those subgraphs that occur more times in the transactions than a 
threshold (minimum support). Because the number of patterns can be exponential this 
problem complexity can also be exponential. An approach to solve this problem is to 
start with finding all frequent patterns with one element, then all patterns with two 
elements, etc in a level-by-level setting. In order to reduce the complexity different 
constraints are used: the minimum support, the subgraphs are connected, and not 
overlapped. An important concept is that of maximal subgraph. A graph is said to be 
maximal if it does not have a frequent super-graph. In our document image analysis 
context we are interested in finding maximal frequent subgraphs because we want to 
find symbols but to ignore their parts. 

A system that is used to find frequent patterns in graphs is FSG (Frequent 
Subgraph Discovery) that “finds patterns corresponding to connected undirected 
subgraphs in an undirected graph database”[14]. The input for the FSG program is a 
list of graphs and a minimum support threshold. Each graph represents a transaction. 
We present subsequently how we construct the transaction list starting from a set of 
document images. Using the procedure presented in section 2 we create for each 
document an undirected labeled graph. Every connected component of this graph 
represents a transaction. Using FSG we extract the frequent subgraphs and we 
construct a bag of frequent subgraphs occurring in each document. 

 

Fig. 2. Frequent subgraph and its occurences in an image 

In the following paragraphs we consider that the frequency condition is sufficient 
for a group of connected components to form a symbol and we will conventionally 
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make an equivalence between the frequent subgraphs found and symbols. As we can 
see in the example (Fig. 2) the proposed symbols are far from being perfect due to the 
image noise, connected components clustering procedure imperfections, … however 
we can notice the correlation between this artificial symbol and the domain symbols. 

4   Documents Description 

A document can be seen as a bag of symbols ),...,,,,,,( 322111 nsssssssA= . We can use 

this representation as it is but we can also apply a weightening schema on it in order 
to distinguish between symbols with different discriminative power.  

A collection of documents is represented by a symbol-by-document matrix A, 
where each entry represents the occurrences of a symbol in a document image, 

A= )( ika ,  where ika  is the weight of symbol i in document k. Let ikf  be the number 

of occurrences  of symbol i in document k, N the number of documents in the 

collection, and in the total number of times symbol i occurs in the whole collection. 
In this setting conform with [15] one of the most effective weighting scheme is 
entropy-weighting. The weight for symbol i in document k is given by : 
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represents a dissimilarity measure based on the cosine correlation. 

5   Experimental Results 

A comparison between results obtained using  the proposed document representation 
and three other representations is made in the following paragraphs. On a corpus of 
graphical document images we have extracted different sets of features. Each 
document image is described with one of  the following types of features : Zernike 
moments for the whole image (a vector with 16 components) abbreviated as ZM in 
Table 3, pixel densities (the feature vector considered is composed of the 85 
(1+4+16+64) gray levels of a 4-level-resolution pyramid [16] , see Fig 3.),(QT), 
weighted connected components label list , and symbol label list . 
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Fig. 3. Four level resolution pyramid 

Using a hierarchical ascendant clustering procedure on the dissimilarities between 
document representations (as Zernike moments, pixels densities, …) combined with 
Calinsky-Harabasz stopping criterion we obtain four partitions that were compared 
with the ground-truth partition of the corpus. 

In order to evaluate the partitions proposed by the clustering algorithm, we employ 
the overall F-measure index. Let D represent the set of documents and let C = {C1,..., 
Ck} be a clustering of D. Also let C’ = {C’1,..., C’l } the reference (ground truth) 

classification. Then the recall of cluster j with respect to class i is 
i

ij

C
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jirec
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the matching between the two partitions (ground truth and the one proposed by the 
clustering algorithm) is perfect. 

Our corpus contains 30 images from the class of a French telephony operator (FT) 
maps, 25 electronic schemas, and 5 architectural plans.  

   

Fig. 4. Corpus images 

This images are scanned images that contains real and artificial noise. 
We can see that the connected component list approach obtains good results 

compared with the simple approaches (Zernike moments and densities). In the same 
time the symbols list approach representation is more compact than the connected 
components list and obtains better results. 
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Table 3. Results on our corpus 

 ZM Densities Connected 
Components list 

Symbols 
list 

F-measure 
 

Confusion 
matrix 

0.58 
1 29 
0 25 
0 5  

0.69 
30 0 
25 0 
0 5  

0.89 
26 4 0 
2 1 22 
0 5 0  

0.90 
26 4 0 

0 3 22 
0 5 0  

Table 4. How to read the confusion matrix 

 
Cluster 1 

 
Cluster 2 

 

1 29 FT maps 

0 25 Electronic 
schemas 

0 5 Architectural 
drawings 

6   Conclusions 

The research undertaken represents a novel approach for clustering document images. 
The approach uses data mining tools for knowledge extraction. It automatically finds 
frequent symbols. These frequent patterns are part of the document model and can be 
put in relation with the domain knowledge. The exposed method can be applied to 
other graph representations of a document. In the near future, we will apply this 
approach to layout structures of textual document images. 

Another follow up activity is to quantify the way noise can affect the connected 
components labeling, and the manner in which the inexact number of clusters can 
affect the graph mining procedure. Based on this error propagation study we can 
ameliorate our method. 

Other possible improvements can be obtained if we would employ a graph-based 
technique that can deal with error tolerant graph matching. 
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Abstract. The feature selection allows to choose P features among M (P<M) 
and thus to reduce the representation space of data. This process is increasingly 
useful because of the databases size increase. Therefore we propose a method 
based on preferences aggregation. It is an hybrid method between filter and 
wrapper approaches. 

1   Introduction 

Due to increasing size of databases, the improvement of data representation quality 
becomes a main problem in data mining. One of the major difficulties related to data 
representation quality is data dimension. This problem is linked with the number of 
exogenous features characterizing each object. Users who want to cover all existing 
aspects of an endogenous feature and to obtain comprehensible knowledge define a 
great number of exogenous features. However, among these features, some will be 
irrelevant, useless and/or redundant. Indeed, it is often difficult or even impossible to 
distinguish the relevant features from the irrelevant ones.  

The problem of data dimension can be summarized by ”Less is more” from Liu 
and Motoda [21] which means that if we wish to extract useful and comprehensible 
information from our data, it is initially appropriate to delete irrelevant parts. Feature 
selection solves this problem. It chooses an optimal features subset according to a 
particular criterion and reduces the features space by removing those which are 
irrelevant. Feature selection eliminates useless and redundant features, the learning 
process is then accelerated and the accuracy of learning algorithms may be improved. 
It also permits to reduce noise generated by some features. There are a lot of feature 
selection methods which are gathered in two approaches: the wrapper approach, [10], 
which use the learning algorithm to test all existing features subsets, and the filter 
approach, [12], which corresponds to a data pre-processing step preceding the 
learning phase. The fundamental difference between these two families lies in the fact 
that the first is related to the learning algorithm whereas the second is completely 
independent of it. 
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1.1   Wrapper Methods 

These methods [5] take the influence of the selected features subset on the 
performances of the learning algorithm into account. The learning algorithm is used 
as an evaluation function to test different features subsets.  However, its 
computational cost is too important in most cases [17] : these methods generate all 
existing features subset. 

1.2   Filter Methods 

Filter approaches are grouped into 5 categories : complete, heuristic, random, fast 
sequential selection and step by step. 

Complete Methods test all possible subsets of P  features among M features with 
M the total number of features and P  the number of selected features. We can quote 
MDLM [32] or FOCUS [1], [2] or PRESET [26]. MDLM performs a comparison of 
all existing features subsets. PRESET is an algorithm based on the rough sets theory. 
It selects a features subset, named reduction which involves the same consistency on 
the learning set as the initial features set. All features not belonging to this reduction 
are eliminated. FOCUS makes a complete search among all features subsets and 
selects the minimal subset which allows to determine the class of each object. The 
complexity of FOCUS is about ( )MO N , with N  the number of objects and M the 
number of features. These 3 algorithms are impossible to apply in most of cases due 
to their very high computational cost. 

Heuristic Methods have many representatives. We present only the principal ones. 
Relief, [13], is an iterative features weight-based algorithm inspired by instance-based 
learning algorithms. Relief knew many alternatives. The most interesting one is 
ReliefF, [15], which deals with multi-classes problems. The complexity of Relief and 
its alternatives is ( )O IMN  where I  is the number of iterations fixed by the user. 
The Branch and Bound methods, [27], use a selection criterion characterized by the 
monotonicity property : all subsets, for which the selection criterion is not higher than 
a threshold, are eliminated. ABB, [20], uses the same principle with inconsistency 
rate. Its complexity is ( )2MO N . The Khi2 Algorithm, [18] carries out 
simultaneously the features discretization and the elimination of irrelevant features. It 
is based on the 2χ  statistics. These methods require several accesses to databases. 

Random Methods main representative is LVF, [19]. LVF selects the smallest 
features subset generated randomly and which satisfies an inconsistency criterion. Its 
complexity is ( )O IMN , with I the number of subset generation. Because of its 
probabilistic property, the number of selected features tends towards the half of the 
initial features number. Its complexity is about ( )O IMN . Like previous methods, 
these methods require several accesses to databases. 

Fast Sequential Selection Method are iterative feature selection methods with a 
single access to database. The selection process is thus a stepwise process : the first 
step selects the feature 1X  that is the more correlated with endogenous feature Y ; the 
second step selects the feature that is the more partially correlated with Y with fixed 
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values for 1X , and so on... In order to have a single database scan, fast correlation 
measures must be used (such as Kendall rank correlation coefficient, or Pearson 
correlation coefficient, or modified Rand coefficient,...). This kind of method is 
represented by MIFS [3], CFS [8], and the method proposed by Lallich and 
Rakotomalala [16]. These methods are fastest and quite efficient. They appear like the 
most interesting. 

Step-by-step Methods use short-sighted criteria to select features. These methods do 
not take into account the interaction between features and classify features according 
to their discriminating capacity. This type of methods is effective and very rapid in 
particular on problems comprising at the same time many features and objects. Their 
complexity  is ( )logO N N . 

To sum up, wrapper approach and complete methods are inapplicable because of 
their computational cost and time complexity. Heuristic methods have difficulties 
with redundant features and, random methods are skewed towards a subset having a 
number of features about the half of the initial features number. Moreover, most of 
these methods require several scans of database which imply a high I/O cost. It 
consequently appears that fast sequential selection methods and step-by-step methods 
are the more attractive ones since they propose good results as well as very suitable 
computing cost. 

We propose here a new feature selection algorithm. Our method does not belong to 
wrapper approach nor to filter approach. It is situated at the intersection of filter and 
wrapper approaches. It offers a reasonable processing time compared with pure 
wrapper methods. It uses preferences aggregation in the first stage to determine an 
ordered list of features subsets. The first stage is the filter part. The second and last 
stage is the wrapper part. The next section is devoted to the initial ideas. Third section 
deal with the feature selection method. Experimental evaluation is in section 4. 

2   Starting Point 

We start from the following observation : step by step methods using short-sighted 
criteria such as Shannon entropy are fast, inexpensive and have good results.  There 
are 4 categories of criteria which measure various features specifications : 

− Information measures: these measures determine the information gain from a 
feature. The feature which has the greatest information gain, will be preferred to 
the other features. We can mention Shannon entropy [31], gain ratio [30], 
normalized gain [11]. 

− Distance measures: they evaluate the separability of classes. They are also know 
as separability, divergence, or discrimination measures : Euclidian distance 
measure, Mantaras distance measure [7], Gini coefficient [6]. 

− Dependence measures are all correlation or association measures. They qualify 
the ability to predict the value of one feature from the value of another. They can 
be used to find the correlation between a feature and a class. If the correlation of 

feature 1X with a class is higher than the correlation of feature 2X  with the same 
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class, then feature 1X  is preferred to 2X . We can cite chi-squared, Tschuprow 

coefficient [9] and [25], and Cramer coefficient. 
− Consistency measures:  they use the Min-Features bias in selecting a features 

subset. The Min-Features bias prefers hypotheses definable over as few features as 
possible. Two objects are inconsistent if their modalities are identical and if they 
belong to two different classes. These measures detect redundant features. We can 
cite the τ of  Zhou [33]. 

However, the use of a short-sighted method generates two problems: 

− The choice of criterion is delicate:  Which criterion is the most effective? 
− The form of result (a list of sorted features) does not allow us to determine the 

optimal features subset. 

The method we propose solves these two problems in the following way: 

− There is no criterion better or more effective than others. Each criterion 
emphasizes some specific features qualities.  It seems to be interesting to obtain a 
result which takes the opinion of  different criteria into account.  So to obtain this 
type of results, we use a method of preferences aggregation and several short-
sighted criteria. 

− Obtaining a sorted list of features limits the interest of  the features selection 
method.  Indeed, the question is : how can we determine the optimal size of a 
features subset?  When we have a sorted list of features, one of the methods which 
seems to be effective to obtain an optimal subset is to use a wrapper approach 
which adds or removes iteratively elements of the sorted list.  At each iteration, the 
learning algorithm tests if the addition or the suppression of a feature involves an 
improvement of error rate.  However, this process is too expensive to be applied.  
For this reason, we parameterise the preferences aggregation method so that it 
doesn’t provide an ordering on the features but a preordering.  Also, we will not 
add  features one by one but features subset by features subset. 

3   Presentation of Our Method  

Our feature selection method is at the intersection of filter and wrapper approaches, 
[35]. It is a Forward Selection method which makes feature classification possible 
with the use of short-sighted criteria. The result is a sorted list of disjoint features 
subsets. This method has 3 steps: 

– Calculus and discretization of different criteria for each feature (filter approach), 
– Application of preferences aggregation method on results obtained at the previous 

stage (filter approach), 
– Research of the optimal features subset (wrapper approach). 

3.1   Calculus and Discretization of Criteria 

We let users choose the short-sighed criteria set. The only condition is : criteria must 
belong to each categories. For experiments, we select a set of 10 short-sighted criteria: 
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Shannon entropy, gain ratio, normalized gain, Mantaras distance measure, Gini 
coefficient, chi-squared, Tschuprow coefficient, Cramer coefficient, τ of Zhou. Each 
criterion for all features are calculated in parallel. The result obtained is a set 
constituted of 10 ordered lists in the order descending of feature relevance. 

A feature is as relevant as another one even if the two features do not bring the 
same information. Therefore, we introduce the concept of features equivalence. In 
order to define this concept, we consider a setoff objects { }1,..., ,...,j nO o o o=  
described by a features set { }1,..., ,...,i pX x x x=  named initial features set. Given 

{ }1 10,..., ,...,kCR cr cr cr=  the set of 10 short-sighted criteria with 

{ }1,..., ,...,k k ki kpcr cr cr cr= , the set of the criterion k  values for each feature of 
X . The kicr  values of each criterion are normalized with the following 

transformation:  for a feature ix X∈  and a criterion kcr CR∈ , the normalized 
value of criterion is:  

{ }( )
{ }( ) { }( ),
ki k

ki N

k k

cr Min cr
cr

Max cr Min cr

−
=

−
 

(1) 

After their normalization, these values are discretized in deciles.  The discretization 

assigns to each feature ix X∈  a rank for each criterion kcr CR∈  as follows : 

– For criteria which must be minimized :  

If [ [, 0;0.1ki Ncr ∈  then 1kiR = ; If [ [, 0.1;0.2ki Ncr ∈  then 2kiR = ; ... ; If 

[ ], 0.9;1ki Ncr ∈  then 10kiR =  

 
– For criteria which must be maximized :  

If [ ], 0;0.1ki Ncr ∈  then 10kiR =  ; If [ [, 0.1;0.2ki Ncr ∈  then 9kiR = ; ... ; If 

[ ], 0.9;1ki Ncr ∈  then 1kiR =  

 

kiR  is the rank assigned to feature ix X∈  for criterion kcr CR∈ . The most 

relevant feature has the smallest rank. Thus the equivalence concept is defined as 

follows : two features ix  and jx  are equivalents according to a criterion k  if and 

only if for this criterion, they have the same rank : 

( )i j ki kjx x R R⇔ ⇔ = . (2) 

3.2   Aggregation of Criteria Results  

For all preferences aggregation methods [23], it is appropriate to define a set of judges 
and a set of  objects.  In our case, the objects are initial features and the judges are 
criteria. We use the preferences aggregation method developed in [28] and [29] and 
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based on [22] and [24].  We don’t describe in detail this method but we present its 
subjacent principle. 

For each objects pair ( ),i jx x , each judge states its opinion ( ),kA i j . kA , the 

opinion of judge k  is an application of X X× in { }Pr , Pr ,ef N ef EQ .   

Thus, 

( ), PrkA i j ef= ⇔  judge k  prefers ix  to j ki kjx R R⇔ < , 

( ), PrkA i j N ef= ⇔  judge k  prefers ix  to j ki kjx R R⇔ > , 

( ),kA i j EQ= ⇔  judge k  considers ix  and jx  like equivalents ki kjR R⇔ = . 

The result we wish to obtain is an opinion OP  called opinion of broad preferences 
and which generates a preordering relation on X .  OP is an application of X X× in 

{ }Pr , Pr ,ef N ef EQ .   

Definition 1: The degree of agreement  ( ),ij kOP Aρ  between the advices 

( ),OP i j  and ( ),kA i j  is defined in table 1. 

Table 1. Degree of agreement ij  

OP  / kA  Pr ef  PrN ef  EQ  

Pr ef  1 0 1/2 

PrN ef  0 1 1/2 

EQ  1/2 1/2 1 

Definition 2: The degree of agreement ( ), kDA OP A  between the opinions OP  

and kA  is ( )
( )

( )
,

, ,
i j

k ij k
x x X

DA OP A OP A
∈

= ρ . 

Definition 3: The degree of agreement between the opinion OP  and the opinion of 

all judges is ( ) ( )
10

1

, k
k

DA OP DA OP A
=

= . 

Our problem consists in building an opinion OP  which generates a preordering 

on X  and which maximizes ( )DA OP . The corresponding optimization problem is 

NP-hard, hence the use of a meta-heuristic. Simulated annealing method [14] is used 

for maximization. We choose simulated annealing because it's a rapid and easy to use 

method. The parameters are : the decay rate equal 98.0 , the halting condition is a 
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number of iterations which equal X*10 . The neighbourhood of the current 

solution is defined as follow : a preordering { }',...,',...,'' 1 Hh lllL =  is neighbour of a 

preordering L , ( )LVL ⊂' , if and only if 'L  derive from L  by the movement of 

only one object. After the application of this aggregation method, we obtain an 

ordered list of disjoint features subsets { }1,..., ,...,h HL l l l= . 

3.3   Optimal Features Subset 

Until now, our method has a filter approach. At this stage, our method has a wrapper 
approach. The advantage of using a wrapper approach is the use of the influence of 
the features subset on learning algorithm performances. Detection of the optimal 

subset is carried out as follows :  within the thh  iteration, the features subset  hl L∈  

is added to the optimal features subset.  The optimal features subset is the one having 
the smallest error rate on the learning set. 

4   Experimentations 

In our experiments we used 14 databases from the UCI collection [4]. The 
quantitative features are discretized with Fusinter method, [14]. The features selection 
is carried out on 30% of the initial set of objects while keeping the initial distribution  
 

Table 2. Tests with ID3 

Without selection With selection 
Bases 

Error rate Sd Error rate Sd 

Austra 16.60 4.57 15.29 3.48 

Breast 5.95 1.95 4.27 2.8 
Cleve 18.53 8.68 21.9 8.67 
CRX 14.73 5.68 15.7 3.1 
German 31.86 7.53 26.14 4.87 

Heart 27.05 10.29 26.32 11.04 

Iono 21.37 8.39 11.73 5.59 

Iris 3.73 4.57 4.73 4.74 

Monks-1 25.22 8.3 25.18 7.56 

Monks-2 34.91 6.79 34.89 6.71 

Monks-3 1.28 1.28 3.88 2.69 

Pima 26.11 5.43 24.5 5.15 

Tic Tac Toe 33.43 5 25.16 6.31 

Vehicle 34.24 4.96 28.75 5.44 
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Table 3. Tests with BN 

Without selection With selectionBases 
Error rate Sd Error rate Sd 

Austra 14.26 4.58 15.27 3.61 
Breast 2.65 1.31 2.65 2.05 
Cleve 21 6.63 17.77 6.14 
CRX 14.67 3.14 15.69 3.99 
German 23.71 6.58 23.43 4.62 
Heart 17.37 7.46 17.89 7.14 
Iono 6.83 5.06 7.25 5.88 
Iris 6.45 7.14 2.82 4.31 
Monks-1 25.22 6 25.19 4.68 
Monks-2 38.94 4.14 34.92 5.11 
Monks-3 3.88 2.9 3.85 3.67 
Pima 21.14 5.42 22.83 5.73 
Tic Tac Toe 29.61 5.15 27.83 3.92 
Vehicle 34.27 5.52 33.95 4.18 

Table 4. Tests with Sipina  

Without selection With selection 
Bases 

Error rate Sd Error rate Sd 

Austra 16.73 3.95 15.28 6.02 

Breast 7.13 2.29 6.73 4.84 

Cleve 21.47 8.57 31.67 10.87 

CRX 16.3 6.22 17.13 6.05 

German 28.14 5.5 31.71 4.51 

Heart 23.16 10.04 27.89 7.82 

Iono 7.73 6.95 6.88 2.58 

Iris 4.64 6.17 4.64 6.17 

Monks-1 20.11 4.89 25.18 3.72 

Monks-2 38.24 7 34.89 8.79 

Monks-3 1.79 2.58 3.87 3.09 

Pima 24.3 4.46 25.05 4.36 

Tic Tac Toe 20.67 3.77 26.06 7.5 

Vehicle 47.26 6.24 50.58 5.63 
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Table 5. Number of selected features with ID3 

Bases Without selection Our method ReliefF MIFS 

Austra 14 1 2 13 

Breast 9 3 6 9 

Cleve 13 7 6 8 

CRX 15 3 2 7 

German 20 5 14 3 

Heart 13 2 2 13 

Iono 34 2 25 8 

Iris 4 3 4 3 

Monks-1 6 1 2 1 

Monks-2 6 1 2 2 

Monks-3 6 2 2 3 

Pima 8 2 7 4 

Tic Tac Toe 9 7 5 3 

Vehicle 18 14 18 6 

Table 6. Number of selected features with Naïve Bayesian 

Bases Without selection Our method ReliefF MIFS 

Austra 14 2 2 13 

Breast 9 7 6 9 

Cleve 13 5 6 8 

CRX 15 5 2 7 

German 20 9 14 3 

Heart 13 8 2 13 

Iono 34 26 25 8 

Iris 4 2 4 3 

Monks-1 6 1 2 1 

Monks-2 6 1 2 2 

Monks-3 6 2 2 3 

Pima 8 5 7 4 

Tic Tac Toe 9 7 5 3 

Vehicle 18 12 18 6 
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Table 7. Number of selected features with Sipina 

Bases Without selection Our method ReliefF MIFS 

Austra 14 1 2 13 

Breast 9 4 6 9 

Cleve 13 1 6 8 

CRX 15 3 2 7 

German 20 1 14 3 

Heart 13 2 2 13 

Iono 34 26 25 8 

Iris 4 2 4 3 

Monks-1 6 1 2 1 

Monks-2 6 1 2 2 

Monks-3 6 2 2 3 

Pima 8 1 7 4 

Tic Tac Toe 9 3 5 3 

Vehicle 18 10 18 6 

Table 8. Tests with ReliefF and MIFS (ID3) 

Our method MIFS ReliefF Bases 

Error rate Sd Error rate Sd Error rate Sd 

Austra 15.29 3.48 17.17 4.12 15.31 5.23 

Breast 4.27 2.8 5.9 2.64 5.29 3.16 

Cleve 21.9 8.67 24.68 10.27 40.54 7.77 

CRX 15.7 3.1 16.12 6.7 17.54 5.88 

German 26.14 4.87 27.43 5.06 30.14 6.01 

Heart 26.32 11.04 28.42 9.76 27.38 9.06 

Iono 11.73 5.59 15.75 8.71 11.78 3.94 

Iris 4.73 4.74 4.82 6.58 3.73 4.57 

Monks-1 25.18 7.56 25.20 7.71 55.52 3.34 

Monks-2 34.89 6.71 34.91 6.7 34.9 8.63 

Monks-3 3.88 2.69 3.86 2.86 3.88 3.34 

Pima 24.5 5.15 24.87 4.83 25.05 7.69 

Tic Tac Toe 25.16 6.31 30.81 7.11 30.51 5.9 

Vehicle 28.75 5.44 40.62 7.39 42.25 6.52 
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Table 9. Tests with ReliefF and MIFS (Naïve Bayesian) 

Our method MIFS ReliefF Bases 
Error rate Sd Error rate Sd Error rate Sd 

Austra 15.27 3.61 14.28 3.08 15.28 5.15 
Breast 2.65 2.05 2.86 1.87 3.45 2.56 
Cleve 17.77 6.14 20.52 11.34 40.67 4.33 
CRX 15.69 3.99 14.66 5.7 16.53 2.8 
German 23.43 4.62 26.29 3.63 30.71 4.96 
Heart 17.89 7.14 17.89 10.04 21.05 10.53 
Iono 7.25 5.88 5.22 4.4 9.32 6.22 
Iris 2.82 4.31 4.64 6.17 6.45 7.14 
Monks-1 25.19 4.68 25.20 7.18 51.9 8.2 
Monks-2 34.92 5.11 34.92 6.24 34.92 6.65 
Monks-3 3.85 3.67 3.86 2.87 3.85 3.85 
Pima 22.83 5.73 21.33 4.3 25.04 3.41 
Tic Tac Toe 27.83 3.92 28.87 5.42 27.97 4.19 
Vehicle 33.95 4.18 39.85 8.01 45.82 8.78 

Table 10. Tests with ReliefF and MIFS (Sipina) 

Our method MIFS ReliefF Bases 
Error rate Sd Error rate Sd Error rate Sd 

Austra 15.28 6.02 16.35 6.65 15.28 5.25 
Breast 6.73 4.84 7.13 2.29 5.9 3.8 

Cleve 31.67 10.87 30.41 10.7 40.56 10.4 
CRX 17.13 6.05 17.95 5.23 16.12 4.72 
German 31.71 4.51 26.29 4.53 31 4.61 
Heart 27.89 7.82 23.16 6.74 22.11 6.57 
Iono 6.88 2.58 7.70 6.22 19.4 6.85 
Iris 4.64 6.17 4.55 9.32 4.64 6.17 
Monks-1 25.18 3.72 25.19 6.35 17.48 8.4 

Monks-2 34.89 8.79 34.91 4.86 34.93 8.83 
Monks-3 3.87 3.09 4.63 2.99 3.86 4.02 
Pima 25.05 4.36 22.07 4.84 25.07 6.43 
Tic Tac Toe 26.06 7.5 27.40 6.06 28.27 5.16 
Vehicle 50.58 5.63 63.17 6.75 49.07 5.07 
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Table 11. Number of learning algorithm call with our method 

Bases Number of iterations Number of iterations with Number of iterations 
Austra 2 3 2 
Breast 3 5 5 
Cleve 5 4 2 
CRX 2 3 2 

German 5 7 2 
Heart 2 4 2 
Iono 3 6 6 
Iris 3 3 3 

Monks-1 2 2 2 
Monks-2 2 2 2 
Monks-3 2 2 2 

Pima 3 4 2 
Tic Tac Toe 4 4 3 

Vehicle 9 7 6 

of classes. Experimentations with MIFS and ReliefF are also carried out on these 
same 30%.  The 70% remainder are used for the learning stage.  For that, we choose a 
10-fold-cross-validation and learning algorithms are ID3, Sipina and Naïve Bayesian 
(NB). Tests before selection are also carried out on these same 70%. Tables 2, 3 and 4 
show error rate and the associated Standard deviation (Sd) obtained before and after 
features selection respectively with ID3, Naïve Bayesian and Sipina by using our 
method. The results obtained with ID3 and BN are interesting.  Except for some 
bases, we can see an error rate reduction and/or a stabilization of the results (Sd 
reduction). For Sipina, the results before and after selection are practically identical 
and sometimes there is an error rate degradation. For Cleve, Heart and German with 
Sipina, we can observe an important increase of the error rate. Tables 5, 6 and 7 
indicate the number of selected features respectively with ID3, Sipina and Naive 
Bayesian. Our results are between those of ReliefF and those of MIFS. Tables 8, 9 
and 10 allow us compare our method with ReliefF and MIFS. Results are sometimes 
equivalent. Our method obtain better results in most of case. Table 11 shows the 
number of iterations carried out by our method. The maximum number of iterations is 
about 9 (for Vehicle). The number of learning algorithm call in our method is then 
smaller than in pure wrapper methods. 

5   Conclusion 

In this article, we present a feature selection method based on preferences 
aggregation.  It is a hybrid method between filter and wrapper approaches having the 
advantages of each approach and reducing theirs disadvantages : 
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– The influence of the selected features on the learning algorithm is taken into 
account. Thus, the selected features are different according to the used algorithm. 

– The computational cost is largely lower than the computational cost of pure 
wrapper methods due to the use of a preordering. 

Because of users can choose the short-sighted criteria set and the learning algorithm 
for wrapper stage, our method can be qualified “meta-method”. 

Concerning the number of selected features, ours results are comparable and even 
better with those obtained by ReliefF and MIFS.  Concerning the accuracy, we can 
observe an error rate reduction after selection. 

We plan to improve our method according to two aspects. The discretization 
method used for the criteria values must be more suitable. We would like, also, that 
the result of the method of preferences aggregation is not a list of features subsets, but 
the optimal features subset. 
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Based on the CPL Criterion Functions∗
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PAS, Warsaw, Poland 

Abstract. Ranked transformations should preserve a priori given ranked rela-
tions (order) between some feature vectors. Designing ranked models  includes 
feature selection tasks. Components of feature vectors which are not important 
for preserving the vectors order should be neglected. This way unimportant di-
mensions are greatly reduced in the feature space.  It is particularly important 
in the case of “long” feature vectors, when a relatively small number of objects 
is represented in a high dimensional feature space. In the paper, we describe de-
signing ranked models with the feature selection which is based on the minimi-
sation of convex and piecewise linear (CPL) functions.  

Keywords: Ranked linear models, feature selection, convex and piecewise  
linear (CPL) criterion functions, linear separability of data sets. 

1   Introduction 

Special tools for data exploration are based on a variety of methods including: muliti-
variate data analysis [1], data mining [2], pattern recognition [3], fuzzy sets [5], rough 
sets [6], or machine learning [7].  

Data exploration goals may include trends for extraction on the basis of a known 
order between selected objects represented as feature vectors in a data set. For exam-
ple, we could know that some objects are older (more developed, more efficient, more 
expensive, ...) than any object from the first set and they are younger (less developed, 
less efficient, less expensive, ...) than any object from the second set. This kind of a 
priori information about the order relation between selected pairs of objects can be the 
basis for ranked model designing. We assume here the ranked model is such a linear 
transformation, which preserves in an satisfactory manner the a priori knowledge on a 
line in the form of the order relations between selected pairs of feature vectors. The 
process of ranked model designing can be seen as trend induction from data sets 
which is based on a priori information about the data ordering.  

                                                           
∗ This work was partially supported by the W/II/1/2005from the Białystok University of Tech-

nology and by the 16/St/2005 grant from the Institute of Biocybernetics and Biomedical  
Engineering PAS. 
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The procedure of the ranked models design which is based on the minimisation of 
the convex and piecewise linear (CPL) criterion functions is described in the paper. 
These criterion functions are the sums of the positive and the negative CPL penalty 
functions which are defined through differences between the feature vectors constitut-
ing referencing dipoles [8]. This way, the task of the ranked model design can be 
linked to the problem of the linear separability of two sets in a given feature space. 
The enlargement of the criterion function by the feature cost functions allows one to 
include the feature selection into the procedure of designing ranked models [9]. 

2   Feature Vectors and Ranked Relations 

We are taking into consideration the data set C built from m feature vectors xj with the 
fixed indexing j 

C = {xj}  ( j  =  1,.......,m) (1) 

The components (features) xji of the vector xj = [xj1,......,xjn]T are numerical results 
of the j-th  object Oj examinations (i =1,...,n). The feature vectors xj are often of a 

mixed type, because they represent different types of measurements (e.g.  xi∈{0,1}) 

or (xi∈R)). 

Let the symbol “ ” mean the ranked relation “follows” which may be fulfilled be-
tween selected feature vectors xj and xk:  

xj  xk ⇔ xk  follows xj (2) 

The relation “ ” between the feature vectors xj and xk means that the pair {xj,xk} 
is ranked. The ranked relations between particular feature vectors xj and xk could re-
sult from additional information about the objects Oj and Ok.  

Our aim is to design such a transformation of feature vectors xj on the ranked line 

y = wTx, which preserves the relation “ ” (2) as precisely as possible  

yj = yj(w) = wTxj (3) 

where w = [w1,......,wn]T is the vector of parameters.   
The relation “ ” (2) is preserved on the line (3) if and only if the following impli-

cation holds: 

(∀(j,k))   xj  xk  yj(w)  <  yk(w) (4) 

The procedure of the ranked line design can be based on the concept of  positively 
and negatively oriented dipoles {xj,xj′}[8]. 
 
Definition 1: The ranked pair {xj,xj′} (j<j′) of the feature vectors xj and xj′ constitutes 

the positively oriented dipole {xj,xj′} (∀(j, j′) ∈I+) if and only if xj  xj′ 

(∀ (j,j’) ∈ I+)    xj  xj′ (5) 
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Definition 2: The ranked pair {xj,xj′} (j<j′) of the feature vectors xj and xj′ constitutes 

the negatively oriented dipole {xj,xj′} (∀(j, j′) ∈I-), if and only if xj′  xj. 

(∀ (j,j’) ∈ I-)    xj′  xj (6) 

Definition 3: The line y(w) = wTx (3) is fully consistent (ranked) with the dipoles 
{xj,xj′} orientations if and only if      

(∀ (j,j’) ∈ I+)   yj(w) <  yj′(w)           and 

                               (∀ (j,j’) ∈ I-)   yj(w)  > yj′(w)  

(7) 

where I+ and I- are the sets of the positively and negatively oriented dipoles {xj,xj′} 
(j<j′).   

 

                                                                                                                                       y 
       x8  x1                                                                                                     •  y5(w)   

       x1  x6              yj(w) = wTxj                                                     •   y4(w)         
       x6  x5                                                                            •   y6(w)         
       x4  x5                                                                 •   y1(w)         
                                                                        •  y8(w)         
 

Fig. 1. An example of the order relations (2) and the ranked line (7), where I+ = {(1,6), ((4,5)} 
and I- = {(1,8), (5,6)} 

Let us introduce two sets C+ and C- of the differential vectors rjj′ = (xj′ - xj) which 
are given by  

C+ = {rjj′ = (xj′ - xj): (j,j’) ∈ I+}  
C- = {rjj′ = (xj′ - xj):  (j,j’) ∈ I-} 

(8) 

We will examine the possibility of the sets separation C+ and C- by the hyperplane 
H(w), which passes through the origin 0 of the feature space:  

H(w) =  {x: wTx   = 0} (9) 

where w = [w1,......,wn]T is the vector of parameters.   

 
Definition 4: The sets C+ and C- (8) are linearly separable with the threshold equal 
to zero if and only if there exists such a parameter vector w∗ that: 

(∀ (j,j’) ∈ I+)    (w∗)T rjj′ > 0 

(∀ (j,j’) ∈ I-)    (w∗)T rjj′ < 0   

(10) 
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The above inequalities can be represented in the following manner: 

(∃w∗) (∀ (j,j’) ∈ I+)    (w∗)T rjj′ ≥   1 

         (∀ (j,j’) ∈ I-)     (w∗)Trjj′  ≤ -1 

(11) 

Remark 1: If the parameter vector w∗ linearly separates (11) the sets C+ and C- (8), then 
the  line yj(w

∗) = (w∗)Txj is fully consistent (7) with the dipoles {xj,xj′} orientation. 

3   CPL Criterion Functions 

`Designing the separating hyperplane H(w) could be carried out through the minimi-
sation of the convex and piecewise linear (CPL) criterion function Φ(w) similar to the 
perceptron criterion function [2]. Let us introduce for this purpose the positive 

ϕjj′+(w) and negative ϕjj′-(w) penalty  functions (Fig.2 )   
 

(∀ (j,j’) ∈ I+) 
                                1 - wTrjj′              if  wTrjj′  < 1 

  ϕjj′+(w)  = 

                           0                           if  wTrjj′  ≥  1 

(12) 

and  (∀ (j,j’) ∈ I-) 

                            1  + wTrjj′           if   wTrjj′  > -1 

ϕjj′-(w)  =                                                                                                           

                            0                          if   wTrjj′  ≤ -1  

(13) 

 

ϕ jj′
+(w ) ϕ jj′

-(w ) 

-1  1 w Trjj′  

 

Fig. 2. The penalty functions ϕjj′+(w) (12) and ϕjj′-(w) (13) 

The criterion function Φ(w) is the weighted sum of the above penalty functions 

Φ(w)  =  Σ γjj’ 1jj′+(w)  +  Σ γjj’ 1jj′-(w)  

                                         (j,j′)∈I+               (j,j′)∈I-                

(14) 

where γjj’ (γjj’ ≥ 0) is a nonnegative parameter (price) related to the dipole {xj,xj′} (j<j′).   
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The criterion function Φ(w) (14) is the convex and piecewise linear (CPL) function 
as the sum of such type of the penalty functions φjj′+(w) (12) and φjj′-(w) (13). The ba-
sis exchange algorithms, similar to linear programming, allow one to find a minimum 
of such functions efficiently, even in the case of large, multidimensional data sets C+ 
and C- [10]:  

Φ* = Φ(w*)  = min Φ(w) ≥ 0 (15) 

The optimal parameter vector w* and the minimal value Φ* of the criterion function 
Φ(w) (11) can be applied to a variety of data ranking problems. In particular, the vec-
tor w* defining the best ranked line y = (w*)Tx  (3) can be found this way.  

Lemma 1: The minimal value Φ* (15) of the criterion function Φ(w) (14) is nonnega-
tive and equal to zero if and only if there exists such a vector w that the ranking of the 
points yj(w) on the line (3) are fully consistent (Def. 3) with the relations “ ” (4). 

Prove: The function Φ(w) (14) is nonnegative as the sum of the nonnegative compo-

nents ϕjj′
+(w) (12) and ϕjj′

-(w) (13). If there exists such a vector w∗ that the ranking 

of the points yj(w
∗) on the line (3) is fully consistent (Def. 3) with the relations “ ” 

(4), then the sets C+ and C- (8) can be separated (10) by the hyperplane H(w∗) (9). In 
this case, the minimal value of the perceptron criterion function Φ(w) (14) is equal to 
zero as it results from pattern recognition theory [2]. On the other hand, if the minimal 
value of the criterion function Φ(w) (14) is equal to zero in the point w∗, then the val-

ues φjj′+(w∗) and φjj′-(w∗) of all the penalty functions 1jj′
+(w) (12) and 1jj′

-(w) (13) 
have to be equal to zero. It means that the sets C+ and C- (8) can be separated (6) by 
the hyperplane H(w∗) (9). As the result, the ranking of the points yj(w

∗) on the line (3) 
is fully consistent (Def. 3) with the relations “ ” (4).  � 

Let us introduce the below hyperplanes h+
jj′ and h

-
jj′ defined in the parameter space 

by the difference vectors  rjj′ = (xj′ - xj) (j<j′) 
(∀ (j,j’) ∈ I+)    h+

jj′ = {w: (rjj′)T w =  1}                             

    (∀ (j,j’) ∈ I-)    h-
jj′ = {w: (rjj′)T w = -1} 

(16)

Definition 5: The parameter vector w is situated on the positive side of the hyperplane 
h+

jj′ if the inequality (w)Trjj′ ≥ 1 is fulfilled. Similarly, the parameter vector w is situ-

ated on the positive side of the hyperplane h
-
jj′ if the inequality (w)Trjj′ ≤ -1 holds. 

The penalty functions 1jj′
+(w) (12) and 1jj′

-(w) (13) are equal to zero if and only if 

the parameter vector w is situated on the positive side of the hyperplanes h+
jj′ and h

-
jj′ 

(16). The minimal value Φ* = Φ(w*) (15) of the criterion function Φ(w) (14) is equal 
to zero if the optimal parameter vector w* is situated on the positive side of all hyper-

planes h+
jj′ and h

-
jj′. Such a solution w* (Φ(w*) = 0) exists if the sets C+ and C- (8) are 

linearly separable (10). 

Remark 2: Linear independence of the vectors rjj′ constituting the sets C+ and C- (8) is 
the sufficient condition for the linear separability (10) of these sets [9]. 
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4   Modified Criterion Function with Feature Costs   

The criterion function Φ(w) (14) can be modified by introducing the cost function  
φi(w) (Fig. 3) for each feature xi  in order to search for the best feature subspace 

Fl
∗[m] [9].  

                                                        - (ei)Tw             if          (ei)T w < 0 

                                   φi(w)  =                               

                                                          (ei)Tw            if          (ei)T w   ≥ 0 

(17) 

where ei = [0,...,0,1,0,...,0]T are the unit vectors (i=1,.....,n). 

 

φi(w) 

wi  

Fig. 3. The cost function φi(w) (17) 

The modified criterion function Ψλ(w) can be given in the following form [9]: 

Ψλ(w) =  Φ(w)  + λ Σγi φi(w) 

                    i∈I      

(18) 

where Φ(w) is given  by (14), λ ≥ 0, γi  > 0, and I = {1,....,n}.   

The function Ψλ(w) is the sum of the perceptron criterion function Φ(w) (14) and 
the cost functions φi(w) (17) multiplied by the positive parameters γi. The  parameters 

γi. represent the costs of particular features xi. These costs γi can be chosen a priori, 
according to our  preferences.  

The criterion function Ψλ(w) (18) is the convex and piecewise linear (CPL) func-
tion as the sum of the CPL functions Φ(w) (14) and λ γi φi(w) (18). Like previously in 

(15), we are taking into account the point wλ
∗ constituting the minimal value of the 

criterion function Ψλ(w):   

Ψλ
* =  Ψλ(wλ

∗) = min Ψλ(w)   
                  w 

(19) 

The basis exchange algorithms allow one to solve efficiently also this minimisation 
problem [10].  
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The below hyperplanes hi in the feature space can be linked to the cost functions 
φi(w) (17) 

(∀i ∈ I = {1,....,n})    hi = {w: (ei)T w  =  0} (20) 

The cost function φi(w) (18) is equal to zero if the point w is situated on the hyper-
plane hi (20). 

The k-th basis Bk[n] of the n-dimensional feature space F[n] can be constituted by 

any set Sk[n]  of n linearly independent vectors rjj′ ((j,j’) ∈ I+∪I-) (16)) and ei (i∈ I = 
{1,....,n}). The basis Bk[n] is the nonsingular matrix with the n rows bl constituted by 
the vectors rjj′ or ei. 

BkT[n] = [b1,......, bn] (21) 

where  
bl = rjj′   if   the vector rjj′ constitutes the l- th row of the matrix Bk[n] 

       bl = ei     if   the vector ei constitutes   the l- th row of the matrix Bk[n] 
(22) 

The basis Bk[n] defines the point (the vertex) wk[n] in the feature space in ac-
cordance with the below equation   

wk[n] = Bk-1[n] ck[n] (23) 

where ck[n] = [c1,......,cn]T is the margin vector with the components cl defined by 
the following conditions  

cl =   1   if   rjj′ ((j,j’) ∈ I+) (8) constitutes the l-th row of the matrix Bk[n]     

cl =  -1   if   rjj′ ((j,j’) ∈ I-) (8) constitutes the l-th row of the matrix Bk[n]    

cl =   0   if   the unit vector ei constitutes the l-th row of the matrix Bk[n]    

(24) 

It could be seen that the vertex wk[n] is the point of intersection of n hyperplanes 

h+
jj′ and h

-
jj′ (16) or hi (20) in accordance with the conditions of (25). 

It can be proved by applying results of linear programming theory [2], that the 
global minimum (19) of the criterion function Ψλ(w) (18) can be found in one of the 
vertices wk[n]. 

(∃wk
∗[n])  (∀w)   Ψλ(w) ≥ Ψλ(wk

∗[n]) (25) 

The optimal vertex wk
∗[n] and the related basis, the basis Bk

∗[n], can be used in the 
feature selection problem.  

5   Feature Selection for the Ranked Models  

The optimal vertex wk
∗[n] = [w1

∗,…..,wn
∗]T (25) related to the basis Bk

∗[n] (23) de-
fines the ranked model (3) in the n-dimensional feature space F[n]. 
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yj = (wk
∗[n])Txj[n] (26) 

Remark 3: If the unit vector ei constitutes the l-th row (22) of the optimal basis Bk
∗[n], 

then the i-th feature xi can be omitted  from the feature vectors xj without the chang-
ing of the order of the points yj on the line (26). 

In order to justify the above statement let us remark, that the unit vector ei in the 

basis Bk
∗[n], means that the i-th component wi

∗ of the weight vector wk
∗[n] is equal to 

zero. The feature xi related to the weight wi
∗ equal to zero can be omitted without the 

changing of the inner products (26) value.    

Remark 4: If the number m of the linearly independent vectors rjj′[n] = (xj′[n] - xj[n]) 

((j, j’) ∈ I+ ∪ I-) (8) is less than the dimension n of the feature space F[n] (m < n),  
then at least n – m features xi can be omitted from the vectors xj[n] without changing 
the points yj order on the line (26). 

Neglecting the features xi related to the unit vectors ei in the basis B∗
k[n] of the op-

timal vertex wk
∗[n] (26) is linked to the reduction of the feature space F[n] dimension 

n. The reduced basis Bk
∗[n′] contains only differential vectors rjj′[n′] = (xj′[n′] - xj[n′]) 

from the feature subspace Fl[n′] of dimension n′. 
It could be seen, that the vectors rjj′[n′] constituting the basis Bk

∗[n′] are linearly 

separable (11). In result, if the all vectors rjj′[n′] from the sets C+ and C- (8) are used 

in the optimal basis Bk
∗[n′], then these sets are linearly separable (10). 

In the case of m linearly independent, “long” vectors rjj′[n] (n >> m) there can exist 

many feature subspaces Fk[m] of dimension m, which assure the linear separability 
(11) of the sets C+ and C- (8) formed by the vectors rjj′[n]. The minimisation (25) of 

the criterion function Ψλ(w) (18)  with a small, positive values of the parameter λ 
(∀λ∈(0,λ+)) allows one to find the optimal feature subspace Fl

∗[m]. It can be proved, 

that the minimal value Ψλ(wk
∗[m]) (26) of the criterion function Ψλ(w) (18) could be 

expressed in the below manner [11]:    

(∀λ∈ [0, λ+])    Ψλ(wk
∗[m]) =  λ Σ γi | wi

∗| 

                                           i∈I∗
l[m]              

(27) 

where wi* are the components of the optimal, m-dimensional vertex wk
∗[m]) (26) 

and Il
∗[m] is the set of the indices i of such features xi which are included in this vertex. 

All included features xi have the weights wi
∗ greater than zero ((∀i∈ Il

∗[m]) wi
∗ > 0). 

If the costs γi are equal to one, then the minimal value Ψλ(wk
∗[m]) (27) of the func-

tion Ψλ(w) (18) can be expressed as: 

Ψλ
* =  Ψλ(wk

∗[m]) =  λ Σ | wi
∗| = λ ||wk

∗[m]|| L1   

         i∈Il 

(28) 

where || wk
∗[m] || L1 is the L1 norm of the vector wk

∗[m]. 
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In the case of such sets C+ and C- (8) which are linearly separable (10), the minimi-
sation problem (19) with the function Ψλ(w) (18) could by solved by using the fol-
lowing formulation [9]    

 
min {||w|| L1:  w separates linearly (11) the sets C+ and C- (8)} 

                 w 
(29) 

The above formulation is similar to those used in the Support Vector Machines  
(SVM) method [12]. One of the important differences is such that the SVM method is 
based on the Euclidean norm || w || L2 , where  

|| w || L2 = (wT w) ½ (30) 

The similarity of the expression (29) to the SVM approach allows one to explain in 
a better manner properties of the optimal vector wk

∗[m] which constitutes solution 
of the problem (29).  

An efficient algorithm of the feature subspaces Fl[m] exchange has been developed 

in order to find the optimal subspace Fk
∗[m] or solve the problem (29) through com-

putations in the m-dimensional parameter spaces Fk[m] instead of the initial, high di-
mensional feature space F[n] [11].  

The optimal vertex wk
∗[m] (25) related to the basis Bk

∗[m] defines the ranked 

model y = (wk
∗[m])Tx[m] (26) in the m-dimensional feature subspace Fl

∗[m]. Such 

ranked model allows one to put new objects x[m] on the ranked (trend) line (3) and 
provides additional information concerning features xi (i∈Il

∗[m]) which are the most 
important for preserving the discovered trend.  

6   Concluding Remarks  

The concept of ranked linear transformations (2) of the feature space X on the line is 
examined in the paper. Such lines reflect (3), to a possible extent, the relations “ ” 
(4) between the feature vectors xj in the selected pairs {xj,xj′} ((j,j’) ∈ I+) or (j,j’) ∈ I). 
It has been shown that the ranked linear transformations (2) are linked to the concept 
of linear separability of some data sets.  

Designing ranked linear transformations (2) can be based on minimisation of the 
convex and piecewise linear (CPL) criterion function Ψλ(w) (18). The basis exchange 
algorithms, similar to linear programming, allow one to find the minimum of this 
function [10].  

Designing ranked linear transformations allows for sequencing the feature vectors 
xj in a variety of manners, depending on the choice of sets I+ and I- (8) of oriented di-
poles {xj, xj′}.Such approach allows for the experimental verification of different se-
quencing models. The models could be defined on the basis of the selected  dipoles  
sets I+ and I- (8). Next, such a model could be verified on the basis of the dipoles from 
the testing sets and used as a tool for sequencing new feature vectors xj. The feature 
selection approach could indicate which features xi are the most important in the 
ranked model.   
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The ranked linear transformations may have many applications. One of the most 
interesting applications could be the sequencing of genomic data or phylogenetic clas-
sification [13]. We are using a similar approach in designing tools for medical diag-
nosis support in the system Hepar [14]. 
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Abstract. In supervised machine learning, the partitioning of the values (also 
called grouping) of a categorical attribute aims at constructing a new synthetic 
attribute which keeps the information of the initial attribute and reduces the 
number of its values. In case of very large number of values, the risk of 
overfitting the data increases sharply and building good groupings becomes 
difficult. In this paper, we propose two new grouping methods founded on a 
Bayesian approach, leading to Bayes optimal groupings. The first method 
exploits a standard schema for grouping models and the second one extends this 
schema by managing a "garbage" group dedicated to the least frequent values. 
Extensive comparative experiments demonstrate that the new grouping methods 
build high quality groupings in terms of predictive quality, robustness and small 
number of groups. 

1   Introduction 

Supervized learning consists in predicting the value of a class attribute from a set of 
explanatory attributes. Many induction algorithms rely on discrete attributes and need 
to discretize continuous attributes or to group the values of categorical attributes when 
they are too numerous. While the discretization problem has been studied extensively 
in the past, the grouping problem has not been explored so deeply in the literature. 
However, in real data mining studies, there are many cases where the grouping of 
values of categorical attributes is a mandatory preprocessing step. For example, most 
decision trees exploit a grouping method to handle categorical attributes, in order to 
increase the number of instances in each node of the tree. Neural nets are based on 
continuous attributes and often use a 1-to-N binary encoding to preprocess categorical 
attributes. When the categories are too numerous, this encoding scheme might be 
replaced by a grouping method. This problem arises in many other classification 
algorithms, such as bayesian networks or logistic regression. Moreover, the grouping 
is a general-purpose method that is intrinsically useful in the data preparation step of 
the data mining process [12]. 

When the categorical values are both few and highly informative, grouping the 
values might be harmful: the optimum is to do nothing, i.e. to produce one group per 
value. In case of very large number of categorical values, producing good groupings 
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becomes harder since the risk of overfitting the data increases. In the limit situation 
where the number of values is the same as the number of instances, overfitting is 
obviously so important that efficient grouping methods should produce one single 
group, leading to the elimination of the attribute. Many data mining commercial 
packages propose to eliminate attributes having too numerous values (for example, 
above a threshold of 100 values). While this is reliable, potentially informative 
attributes might be discarded. An efficient grouping method has to compromise 
between information and reliability, and determine the correct number of groups. 

The grouping methods can be clustered according to the search strategy of the best 
partition and to the grouping criterion used to evaluate the partitions. The simplest 
algorithm tries to find the best bipartition with one category against all the others. A 
more interesting approach consists in searching a bipartition of all categories. The 
Sequential Forward Selection method derived from [6] and evaluated by [1] is a 
greedy algorithm that initializes a group with the best category (against the others), 
and iteratively adds new categories to this first group. When the class attribute has 
two values, [5] have proposed in CART an optimal method to group the categories 
into two groups for the Gini criterion. This algorithm first sorts the categories 
according to the probability of the first class value, and then searches for the best split 
in this sorted list. In the general case of more than two class values, there is no 
algorithm to find the optimal grouping with K groups, apart from exhaustive search. 
Decision tree algorithms often manage the grouping problem with a greedy heuristic 
based on a bottom-up classification of the categories. The algorithm starts with single 
category groups and then searches for the best merge between groups. The process is 
reiterated until no further merge improves the grouping criterion. The CHAID 
algorithm [7] uses this greedy approach with a criterion close to ChiMerge [8]. The 
best merges are searched by minimizing the chi-square criterion applied locally to two 
groups: they are merged if they are statistically similar. The ID3 algorithm [13] uses 
the information gain criterion to evaluate categorical attributes, without any grouping. 
This criterion tends to favor attributes with numerous categories and [14] proposed in 
C4.5 to exploit the gain ratio criterion, by dividing the information gain by the 
entropy of the categories. The chi-square criterion has also been applied globally on 
the whole set of categories, with a normalized version of the chi-square value [16] 
such as the Cramer's V or the Tschuprow's T, in order to compare two different-size 
partitions. 

In this paper, we present a new grouping method called MODL, which results from 
a similar approach as that of the MODL discretization method [3]. This method is 
founded on a Bayesian approach to find the most probable grouping model given the 
data. We first define a general family of grouping models, and second propose a prior 
distribution on this model space. This leads to an evaluation criterion of groupings, 
whose minimization conducts to the optimal grouping. We use a greedy bottom-up 
algorithm to optimize this criterion. Additional preprocessing and post-optimization 
steps are proposed in order to improve the solutions while keeping a super-linear 
optimization time. The MODL method comes into a standard version where the 
grouping model consists of a partition of the categorical values, and into an extended 
version where a "garbage" group is settled to incorporate the least frequent values in a 
preprocessing step. Extensive experiments show that the MODL method produces 
high quality groupings in terms of compactness, robustness and accuracy. 



230 M. Boullé 

 

The remainder of the paper is organized as follows. Section 2 describes the MODL 
method. Section 3 proceeds with an extensive experimental evaluation. 

2   The MODL Grouping Method 

In this section, we present the MODL approach which results in a Bayesian 
evaluation criterion of groupings and the greedy heuristic used to find a near Bayes 
optimal grouping. 

2.1   Evaluation of a Standard Grouping Model 

The objective of the grouping process is to induce a set of groups from the set of 
values of a categorical explanatory attribute. The data sample consists of a set of 
instances described by pairs of values: the explanatory value and the class value. The 
explanatory values are categorical: they can be distinguished from each other, but 
they cannot naturally be sorted. We propose the following formal definition of a 
grouping model. 

 
Definition 1: A standard grouping model is defined by the following properties: 

1. the grouping model allows to define a partition of the categorical values into 
groups, 

2. in each group, the distribution of the class values is defined by the frequencies 
of the class values in this group. 

Such a grouping model is called a SGM model. 

Notation: 
n: number of instances 
J: number of classes 
I: number of categorical values 
ni: number of instances for value i 
nij: number of instances for value i and class j 
K: number of groups 
k(i): index of the group containing value i 
nk: number of instances for group k 
nkj: number of instances for group k and class j 

The input data can be summarized knowing n, J, I and ni. A SGM grouping model 
is completely defined by the parameters { ( ){ } { }

JjKkkjIi nikK
≤≤≤≤≤≤ 1,11 ,, }. 

In the Bayesian approach, the best model is found by maximizing the probability 
( )DataModelP

 

of the model given the data. Using the Bayes rule and since the 
probability ( )DataP  is constant under varying the model, this is equivalent to 
maximizing ( ) ( )ModelDataPModelP . 

Once a prior distribution of the models is fixed, the Bayesian approach allows to 
find the optimal model of the data, provided that the calculation of the probabili- 
ties ( )ModelP  and ( )ModelDataP  is feasible. We present in Definiton 2 a prior 
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which is essentially a uniform prior at each stage of the hierarchy of the model 
parameters. We also introduce a strong hypothesis of independence of the distribution 
of the class values. This hypothesis is often assumed (at least implicitly) by many 
grouping methods that try to merge similar groups and separate groups with 
significantly different distributions of class values. This is the case for example with 
the CHAID grouping method [7], which merges two adjacent groups if their 
distributions of class values are statistically similar (using the chi-square test of 
independence). 

Definition 2: The following distribution prior on SGM models is called the three-
stage prior: 

1. the number of groups K is uniformly distributed between 1 and I, 
2. for a given number of groups K, every division of the I categorical values into K 

groups is equiprobable, 
3. for a given group, every distribution of class values in the group is equiprobable, 
4. the distributions of the class values in each group are independent from each other. 

Owing to the definition of the model space and its prior distribution, the Bayes 
formula is applicable to exactly calculate the prior probabilities of the model and the 
probability of the data given the model. Theorem 1, proven in [4], introduces a Bayes 
optimal evaluation criterion. 

Theorem 1: A SGM model distributed according to the three-stage prior is Bayes 
optimal for a given set of categorical values if the value of the following criterion is 
minimal on the set of all SGM models: 

( ) ( )( ) ( ) ( )
==

−
−+ +++

K

k
Jkkkk

K

k
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Jn nnnnCKIBI
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1
,2,1,

1

1
1 !!...!!loglog,loglog . (1) 

( )KIB ,  is the number of divisions of the I values into K groups (with eventually 
empty groups). When IK = , ( )KIB ,  is the Bell number. In the general case, 

( )KIB ,  can be written as a sum of Stirling numbers of the second kind: 

( ) ( )
=

=
K

k

kISKIB
1

,, . (2) 

The first term of the criterion in Equation 1 stands for the choice of the number of 
groups, the second term for the choice of the division of the values into groups and 
the third term for the choice of the class distribution in each group. The last term 
encodes the probability of the data given the model. 

2.2   Optimization of a Standard Grouping Model 

Once the optimality of an evaluation criterion is established, the problem is to design 
a search algorithm in order to find a grouping that minimizes the criterion. In this 
section, we present a standard greedy bottom-up heuristic. The method starts with 
initial single value groups and then searches for the best merge between groups. This 
merge is completed if it reduces the MODL evaluation criterion of the grouping and 
the process is reiterated until no further merge decreases the criterion. 
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With a straightforward implementation of the algorithm, the method runs in O(n3) 
time (more precisely O(n+I3)). However, the method can be optimized in O(n2.log(n)) 
time owing to an algorithm similar to that presented in [2]. The algorithm exploits the 
additivity of the evaluation criterion. Once a grouping is evaluated, the value of a new 
grouping resulting from the merge between two adjacent groups can be evaluated in a 
single step, without scanning all the other groups. Minimizing the value of the 
groupings after the merges is the same as maximizing the related variation of value 

value. These values can be kept in memory and sorted in a maintained sorted list 
(such as an AVL binary search tree for example). After a merge is completed, the 

values need to be updated only for the new group and its adjacent groups to prepare 
the next merge step. 

Optimized greedy bottom-up merge algorithm: 
- Initialization 

- Create an elementary group for each value: O(n) 
- Compute the value of this initial grouping: O(n) 
- Compute the values related to all the possible merges: O(n2) 
- Sort the possible merges: O(n2.log(n)) 

- Optimization of the grouping 
Repeat the following steps: at most n steps 
- Search for the best possible merge: O(1) 
- Merge and continue if the best merge decreases the grouping value 

- Compute the values of the remaining group merges adjacent to the 
best merge: O(n) 

- Update the sorted list of merges: O(n.log(n)) 

In the general case, the computational complexity is not compatible with large real 
databases, when the categorical values becomes too numerous. In order to keep a 
super-linear time complexity, we extend the greedy search algorithm with several 
preprocessing steps whose purpose is to reduce the initial number of categorical 
values. For example, "pure" values (related to one single class) can be merged with no 
degradation of the quality of the grouping. A more harmful heuristic consists in 
merging the least frequent values until the desired number of values is attained. 

We also add some post-optimization heuristics to improve the final grouping 
solution. For example, every move of a categorical value from one group to another is 
evaluated and the best moves are performed as long as they improve the evaluation 
criterion. These additional pre-processing and post-optimization heuristics are 
detailed in [4]. 

2.3   The Extended Grouping Model 

When the number of categorical values increases, the grouping cost ( )KIB ,  in 
Equation 1 quickly rises and the potential group number falls down to 1. However, 
when the distribution of the categorical values is skewed, the most frequent values 
may be informative. A common practice in data preprocessing is to collect the least 
frequent values in a garbage group. In the extended grouping model presented in 
Definition 3, we generalize the standard grouping model by incorporating such a 
garbage group. After the preprocessing step, the remaining values are grouped using 
the standard model. 
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Definition 3: An extended grouping model is defined by the following properties: 

1. the least frequent values are included into a special group called the garbage 
group, 

2. the grouping model allows to define a partition of the remaining categorical 
values into groups, 

3. in each group, the distribution of the class values is defined by the frequencies 
of the class values in this group. 

Such a grouping model is called an EGM model. 

Let F be the frequency threshold, such that the categorical values whose frequency 
is inferior to F are included in the garbage group. Let I(F) be the number of remaining 
values (including the garbage group) once the preprocessing is performed. Although 
the extension increases the descriptive power of the model, we wish to trigger the 
extension only if necessary and to favor models close to the standard model, i.e. 
models with a small garbage frequency threshold. We express these prior preferences 
in Definition 4, using the universal prior for integers [15] for the distribution of F. 
Compared to the uniform prior, the universal prior for integers gives a higher 
probability to small integers with the smallest possible rate of decay. This provides a 
prior that favors models with small values of F. 

The code length of the universal prior for integers is given by 
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Definition 4: The following distribution prior on EGM models is called the three-
stage prior with garbage group: 

1. using or not using a garbage group are two equiprobable choices, 
2. the garbage frequency threshold F is distributed according the universal prior 

for integers, 
3. the last parameters of the grouping model, with I(F) categorical values, are 

distributed according the three stage prior. 

Owing to this prior definition, we derive an evaluation criterion for the general 
grouping model in Theorem 2. 

Theorem 2: An EGM model distributed according to the three-stage prior with 
garbage group is Bayes optimal for a given set of categorical values if the value of the 
following criterion is minimal on the set of all EGM models: 
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The first term corresponds to the choice of using or not using a garbage group. The 
second term encodes the prior probability of the garbage frequency threshold, using 
the code length of the universal prior for integers. The last terms are those of the 
criterion presented in Theorem 1. 

We now have to extend the search algorithm in order to find the most probable 
EGM model. A first step is to sort the explanatory values by increasing frequencies. 
This allows to quickly compute all possible frequency thresholds F and their 
corresponding remaining number of values I(F). Once this step is completed, a basic 
algorithm consists in performing the standard search algorithm on SGM models for 

any frequency threshold F. In the worst case, this involves ( )nO  runs of the 

standard search algorithm, since the number of distinct frequencies F (taken from the 

actual frequencies of the attribute values) cannot exceed ( )nO  (their sum is bounded 

by n). The algorithm complexity of the extended search algorithm is thus 

( )( )nnnO log . 

In practice, the encoding cost of the garbage group is a minor part in the criterion 
presented in theorem 2. Introducing a garbage group becomes relevant only when a 
small increase of the frequency threshold brings a large decrease of the number of 
remaining categorical values. This property allows designing an efficient heuristic to 
find the garbage frequency threshold. This greedy heuristic first evaluates the simplest 
extended grouping (without garbage group) and then evaluates the extended 
groupings by increasing the garbage frequency threshold F as long as the criterion 
improves. Extensive experiments show that the practical complexity of the algorithms 

falls down to ( )( )nnO log , with no significant decay in the quality of the groupings. 

3   Experiments 

In our experimental study, we compare the MODL grouping method with other 
supervised grouping algorithms. In this section, we introduce the evaluation protocol, 
the alternative evaluated grouping methods and the evaluation results. 

3.1   The Evaluation Protocol 

In order to evaluate the intrinsic performance of the grouping methods and eliminate 
the bias of the choice of a specific induction algorithm, we use a protocol similar as 
[2], where each grouping method is considered as an elementary inductive method. 

We choose not to use the accuracy criterion because it focuses only on the majority 
class value and cannot differentiate correct predictions made with probability 1 from 
correct predictions made with probability slightly greater than 0.5. Furthermore, many 
applications, especially in the marketing field, rely on the scoring of the instances and 
need to evaluate the probability of each class value. To evaluate the predictive quality 
of the groupings, we use the Kullback-Leibler divergence [9] which compared the 
distribution of the class values estimated from the train dataset with the distribution of 
the class values observed on the test dataset. For a given categorical value, let pj be 
the probability of the jth class value estimated on the train dataset (on the basis of the 
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group containing the categorical value), and qj be the probability of the jth class value 
observed on the test dataset (using directly the categorical value). The Kullback-Leibler 
divergence between the estimated distribution and the observed distribution is: 
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j j
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pqpD
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The global evaluation of the predictive quality is computed as the mean of the 
Kullback-Leibler divergence on the test dataset. The qj probabilities are estimated 
with the Laplace's estimator in order to deal with zero values. 

The grouping problem is a bi-criteria problem that tries to compromise between the 
predictive quality and the number of groups. The optimal classifier is the Bayes 
classifier: in the case of an univariate classifier based on a single categorical attribute, 
the optimal grouping is to do nothing, i.e. to build one group per categorical value. In 
the context of data preparation, the objective is to keep most of the information 
contained in the attribute while decreasing the number of values. In the experiments, 
we collect both the predictive quality results using the Kullback-Leibler divergence 
and the number of groups. 

In a first experiment, we compare the grouping methods considered as univariate 
classifiers. In a second experiment, we evaluate the results of the Naïve Bayes 
classifier using the grouping methods to preprocess the categorical attributes. In this 
experiment, the results are evaluated using the test accuracy and the robustness, 
computed as the ratio of the test accuracy by the train accuracy. We finally perform 
the same experiments using a Selective Naïve Bayes classifier. 

We build a list of datasets having an increasing number of values per attribute on 
the basis of the Waveform dataset [5]. The Waveform dataset is composed of 5000 
instances, 21 continuous attributes and a target attribute equidistributed on 3 classes. 
In order to build categorical attributes candidate for grouping, we discretize each 
continuous attribute in a preprocessing step with an equal-width unsupervised 
discretization,. We obtain a collection of 10 datasets using 2, 4, 8, 16, 32, 64, 128, 
256, 512, 1024 bin numbers for the equal-width algorithm. We build a second 
collection of "2D" datasets containing all the Cartesian products of the attributes. 
Each of these 6 datasets (for bin numbers 2, 4, 8, 16, 32, 64) contains 210 categorical 
attributes. We finally produce a third collection of "3D" datasets on the basis of the 
Cartesian products of three attributes. Each of these 4 datasets (for bin numbers 2, 4, 
8, 16) contains 1330 categorical attributes. On the whole, we get 20 datasets having a 
large variety of categorical attributes, with average number of values per attribute 
ranging from 2 to more than 1000. 

3.2   The Evaluated Methods 

The grouping methods studied in the comparison are: 

- MODL: the extended MODL method described in this paper (using a garbage 
group), 

- MODLS: the standard MODL method (without garbage group), 
- CHAID [7], 
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- Tschuprow [16], 
- Khiops [2], 
- NoGrouping: one group per value. 

All these methods are based on a greedy bottom-up algorithm that iteratively 
merges the categories into groups, and automatically determines the number of groups 
in the final partition of the categories. The MODL methods are based on a Bayesian 
approach and incorporate preprocessing and post-optimization algorithms. The 
CHAID, Tschuprow and Khiops methods exploit the chi-square criterion in different 
manner. The CHAID method is the grouping method used in the CHAID decision tree 
classifier. It applies the chi-square criterion locally to two rows of the contingency 
table, and iteratively merges the values as long as they are statistically similar. The 
significance level is set to 0.95 in the experiments. The Tschuprow method is based 
on a global evaluation of the contingency table, and uses the Tschuprow's T 
normalization of the chi-square value to evaluate the partitions. The Khiops method 
also applies the chi-square criterion on the whole contingency table, but it evaluates 
the partition using the confidence level related to the chi-square criterion instead of 
the Tschuprow criterion. It unconditionally groups the least frequent values in a 
preprocessing step in order to improve the reliability of the confidence level 
associated with the chi-square criterion, by constraining every cell of the contingency 
table to have an expected value of at least 5. Furthermore, the Khiops method 
provides a guaranteed resistance to noise: any categorical attribute independent from 
the class attribute is grouped in a single terminal group with a user defined 
probability. This probability is set to 0.95 in the experiments. 

3.3   The Univariate Experiment 

The goal of the univariate experiment is to evaluate the intrinsic performance of the 
grouping methods, without the bias of the choice of a specific induction algorithm. 
The grouping are performed on each attribute of the 20 synthetic datasets derived 
from the Waveform dataset, using a stratified tenfold cross-validation. 
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Fig. 1. Mean of the group number per attribute on the 20 datasets 
 



A Grouping Method for Categorical Attributes 237 

 

1D datasets

1

1.2

1.4

1.6

1.8

2

1 10 100 1000
Dataset (mean value number)

K-L 
Divergen.

2D datasets

1

1.2

1.4

1.6

1.8

2

1 10 100 1000
Dataset (mean value number)

K-L 
Divergen.

3D datasets

1

1.2

1.4

1.6

1.8

2

1 10 100 1000
Dataset (mean value number)

K-L 
Divergen.

 
MODL MODLS CHAID Khiops Tschuprow NoGrouping 

 

Fig. 2. Mean of the normalized Kullback-Leibler divergence per attribute on the 20 datasets 

During the experiments, we collect the group number and the Kulback-Leibler 
divergence between the class distribution estimated on train datasets and the class 
distribution observed on test datasets. For each grouping method, this represents 210 
measures for every 1D dataset, 2100 measures for every 2D dataset and 13300 for 
every 3D dataset. These results are summarized across the attributes of each dataset 
owing to means, in order to provide a gross estimation of the relative performances of 
the methods. We report the mean of the group number and of the Kullback-Leibler 
divergence for each dataset in Figures 1 and 2. The dataset result points are ordered 
by increasing bin number (from 2 bins to 1024 bins for the 1D datasets, from 2 bins to 
64 bins the 2D datasets and from 2 bins to 16 bins for the 3D datasets). The result 
points are scaled on the x-coordinate according to the mean value number per 
attribute in each dataset, in order to visualize the relation between the number of 
values and the evaluated criterion. For the Kullback-Leibler divergence, we normalize 
each result by that of the NoGrouping method. 

As expected, the NoGrouping method obtains the best results in term of predictive 
quality, at the expense of the worst number of groups. The Tschuprow method is 
heavily biased in favor of number of groups equal to the number of class values: it 
always produces between 2 and 3 groups, and obtains a very poor estimation of the 
class distribution (evaluated by the Kullback-Leibler divergence) as shown in Figure 2. 
The Khiops method suffers from its minimum frequency constraint. It produces few 
groups and gets a reliable estimation of the class distribution across all the datasets, 
whatever their mean value number per attribute. However, it fails to obtain the best 
groupings on most of the datasets. The CHAID and MODL methods almost reach the 
predictive quality of the NoGrouping method with much smaller number of groups 
when the mean value number is less than 100. The CHAID method produces an 
increasing number of groups when the number of values rises. When the number of 
values if very large (between 100 and 1000), it overfits the data with too many groups, 
and its estimation of the class distribution worsen sharply as shown in Figure 2. The 
MODL methods always get the best estimation of the class distribution, very close to 
that of the NoGrouping method. They produce an increasing number of groups when 
the number of values is below a few tenths and then slowly decrease the number of 
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groups. There is only a slight difference between the standard and the extended 
versions of the MODL method. When the number of values becomes very large, the 
extended version produces some extra groups owing to its garbage group and better 
approximates the class distribution. 

To summarize, the MODL methods manage to get the lowest number of group 
without discarding the predictive quality. 

3.4   The Naïve Bayes Experiment 

The aim of the naïve Bayes experiment is to evaluate the impact of grouping methods 
on the Naïve Bayes classifier. The Naïve Bayes classifier [10] assigns the most 
probable class value given the explanatory attributes values, assuming independence 
between the attributes for each class value. The probabilities for categorical attributes 
are estimated using the Laplace's estimator directly on the categorical values. The 
results are presented in Figure 3 for the test accuracy and in Figure 4 for the 
robustness (evaluated as the ratio of the test accuracy by the train accuracy). 

Most methods do not perform better than the NoGrouping method. This probably 
explains why the Naïve Bayes classifiers do not make use of groupings in the 
literature. The Tschuprow method is hampered by its poor estimation of the class 
distribution and obtains test accuracy results that are always dominated by the 
NoGrouping method. The Khiops method obtains good accuracy and robustness 
results when the number of values is below 100. For higher numbers of values, it 
suffers from its minimum frequency constraint and its accuracy results dramatically 
fall down to the accuracy of the majority classifier (33% in the Waveform dataset). 
The CHAID method obtains results very close to the NoGrouping method, both on 
the accuracy and robustness criteria. The MODL methods clearly dominate all the 
other methods when the two criteria are considered. On the accuracy criterion, they 
obtain almost the same results than the CHAID and NoGrouping methods. On the 
robustness criterion, they strongly dominate these two methods. Once again, there is 
only a minor advantage for the extended version of the MODL method compared to 
its standard version. 
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Fig. 3. Mean of the Naïve Bayes test accuracy on the 20 datasets 
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Fig. 4. Mean of the Naïve Bayes robustness on the 20 datasets 

It is interesting to notice that the naïve Bayes classifier is very robust and manages 
to produce accurate predictions even in case of attributes having very large numbers 
of values. Another attractive aspect learnt from this experiment is the overall gain in 
test accuracy when the pairs (2D datasets) and triples (3D datasets) of attributes are 
considered. Using Cartesian products allows to investigate simple interactions 
between attributes and to go beyond the limiting independence assumption of the 
Naïve Bayes classifier. Although this degrades the robustness (because of a decrease 
in the frequency of the categorical values), this enhances the test accuracy. 

3.5   The Selective Naïve Bayes Experiment 

The selective naïve Bayes classifier [11] incorporates feature selection in the naïve 
Bayes algorithm, using a stepwise forward selection. It iteratively selects the 
attributes as long as there is no decay in the accuracy. We use a variant of the 
evaluation and stopping criterion: the area under the lift curve instead of the accuracy. 
The lift curve summarizes the cumulative percent of targets recovered in the top 
quantiles of the sample [17]. The lift curve based criterion allows a more subtle 
evaluation of the conditional class density than the accuracy criterion, which focuses 
only on the majority class. 

Compared to the naïve Bayes (NB) classifier, the selective naïve Bayes (SNB) 
classifier is able to remove independent or redundant attributes owing to its selection 
process. However, it is more likely to overfit the data and requires a better evaluation 
of the predictive influence of each attribute. The purpose of the SNB experiment is to 
evaluate the impact of grouping on a classifier using an attribute selection process. 
The results are presented in Figure 5 for the test accuracy. The robustness results, not 
presented here, are very similar to those of the naïve Bayes experiment. 

The Tschuprow and Khiops grouping methods suffer from their respective 
limitations (strong bias and minimum frequency constraint): they are constantly 
dominated by the other methods. The MODL, CHAID and NoGrouping achieve 
comparable accuracy results when the mean value number is below 100. Above this 
threshold, the accuracy results decrease as the mean value number still increases. The 
CHAID method exhibits the worst rate of decrease, followed by the NoGrouping and 
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Fig. 5. Mean of the Selective Naïve Bayes test accuracy on the 20 datasets 

finally the MODL methods. The extended MODL method always gets the best 
results. However, the benefit of the extended MODL method over the standard 
MODL method is still insignificant, except in the extreme case where the mean value 
number is close to 1000. For example, in the dataset (2D, 64 bins), the extended 
MODL method obtains a 77% test accuracy, about 6% above that of the standard 
MODL and NoGrouping methods and 8% above the CHAID method. 
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Fig. 6. Naïve Bayes versus Selective Naïve Bayes test accuracy on the 20 datasets 

Apart from the grouping analysis, it is interesting to compare the results of the 
naïve Bayes and selective Bayes classifiers. Figure 6 reports the NB test accuracy per 
dataset on the x-coordinate and the SNB test accuracy per dataset on the y-coordinate 
for the most accurate grouping methods. Whereas the NB classifier obtains better 
accuracy results when pairs or triples of attributes are considered, this not the case for 
the SNB classifier. The SNB classifier applies its selection process to a larger set of 
attributes. This increases the risk of overfitting the data, so that the SNB classifier is 
not able to benefit from the additional information brought by the Cartesian products 
of attributes. On the opposite, for a given set of attributes, the SNB classifier almost 
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always achieves better accuracy results than the NB classifier, especially with the 
extended MODL algorithm. Using this grouping method, the SNB classifier improves 
the NB classifier accuracy results on all the 20 datasets except one (2D, 64 bins). On a 
whole, the extended MODL method achieves the best results with the smallest 
variance across the datasets. 

4   Conclusion 

The MODL grouping methods exploits a precise definition of a family of grouping 
models with a general prior. This provides a new evaluation criterion which is 
minimal for the Bayes optimal grouping, i.e. the most probable grouping given the 
data sample. Compared to the standard version of MODL method, the extended 
version incorporates a garbage group dedicated to the least frequent values. 

Extensive evaluations have been performed on a collection of datasets composed 
of varying numbers of attributes and mean numbers of values per attribute. The most 
difficult dataset consists of about 5000 instances and 1000 categorical attributes, each 
one having 1000 values. The experiments demonstrate that the MODL methods are 
very efficient: they build groupings that are both robust and accurate. Compared to 
the CHAID method, they reduce the number of groups by up to one order of 
magnitude and improve the estimation of the conditional class density. They allow 
classifiers to take benefit of informative attributes even when their numbers of values 
are very large, especially with the extended version of the MODL method. 
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Abstract. We propose an unsupervised, probabilistic method for learning visual
feature hierarchies. Starting from local, low-level features computed at interest
point locations, the method combines these primitives into high-level abstrac-
tions. Our appearance-based learning method uses local statistical analysis be-
tween features and Expectation-Maximization to identify and code spatial corre-
lations. Spatial correlation is asserted when two features tend to occur at the same
relative position of each other. This learning scheme results in a graphical model
that constitutes a probabilistic representation of a flexible visual feature hierar-
chy. For feature detection, evidence is propagated using Belief Propagation. Each
message is represented by a Gaussian mixture where each component represents
a possible location of the feature. In experiments, the proposed approach demon-
strates efficient learning and robust detection of object models in the presence of
clutter and occlusion and under view point changes.

1 Introduction

The visual feature representation is one of the most important issues for learning and
recognition applications in computer vision. In the present work, we propose a new ap-
proach to representing and learning visual feature hierarchies in an unsupervised man-
ner. Our hierarchical representation is inspired by the compositional nature of objects.
Most objects encountered in the world, which can be either man-made or natural ob-
jects, are composed of a number of distinct constituent parts (e.g., a face contains a nose
and two eyes, a phone possesses a keypad). If we examine these parts, it becomes ob-
vious that they are in turn recursively composed of other subparts (e.g., an eye contains
an iris and eyelashes, a keypad is composed of buttons). This ubiquitous observation
constitutes our main motivation for arguing that a hierarchical representation must be
taken into account to model objects in more flexible and realistic way.

Our long-term goal is thus to learn visual feature hierarchies that correspond to ob-
ject/part hierarchies. The development of a hierarchical and probabilistic framework
that is tractable is terms of complexity is a central problem for many computer vision
applications such as visual tracking, object recognition and categorization, face recog-
nition, stereo matching and image retrieval.
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In this paper, we combine the approaches of local, appearance-based feature de-
tection and unsupervised model learning in a new visual feature recognition scheme.
The principal objective is to obtain a probabilistic framework that allows the organi-
zation of complex visual feature models. The main idea is to use a graphical model to
represent the hierarchical feature structure. In this representation, which is detailed in
Section 2, the nodes correspond to the visual features. The edges model both the spatial
arrangement and the statistical dependence between nodes. The formulation in terms of
graphical models is attractive because it provides a statistical model of the variability
of shape and appearance. The shape and appearance models are specified separately by
the edges and the leaf nodes of the graph, respectively.

An unsupervised feature learning method that allows the construction of a hierar-
chy of visual features is introduced in Section 4. The proposed framework accumulates
statistical evidence from feature observations in order to find conspicuous coincidences
of visual feature co-occurrences. The structure of the graph is iteratively built by com-
bining correlated features into higher-level abstractions. Our learning method is best
explained by first presenting the detection process, which is described in Section 3.
During detection, our scheme starts by computing local, low-level features at interest
point locations. These features serve to annotate the observable leaf nodes of the graph.
Then, at the second step, Belief Propagation [9], a message-passing algorithm, is used
to propagate the observations up the graph, thus inferring the belief associated with
higher-level features that are not directly observable. The functioning and the efficacy
of our method are illustrated in Section 5. Finally, Section 6 provides a discussion of
related work.

2 Representation

In this section, we introduce a new part-based and probabilistic representation of visual
features (Figure 1). In the proposed graphical model, nodes represent visual features
and are annotated with the detection information for a given scene. The edges represent
two types of information: the relative spatial arrangement between features, and their
hierarchical composition. We employ the term visual feature in two distinct contexts:

Primitive visual features are low-level features. They are represented by a local de-
scriptor. For this work, we used simple descriptors constructed from normalized
pixel values and located at Harris interest points [4], but our system does not rely
on any particular feature detector. Any other feature detector [7] can be used to
detect and extract more robust information.

Compound visual features consist of flexible geometrical combinations of other sub-
features (primitive or compound features).

Formally, our graph G is a mathematical object made up of two sets: a vertex set V ,
and a directed edge set

−→E . For any node s ∈ V , the set of parents and the set of
children are respectively defined as U(s) = {ui ∈ V|(ui, s) ∈ −→E } and C(s) = {ci ∈
V|(s, ci) ∈ −→E }. Information about feature types and their specific occurrences in an
image will be represented in the graph by annotations of vertices and edges, as described
next.
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Level 0

1

2

Fig. 1. Object part decomposition (left) and corresponding graphical model (right)

2.1 The Vertex Set

The vertices s ∈ V of the graph represent features. They contain the feature activations
for a given image. Our graphical model associates each node with a hidden random
variable x ∈ R2 representing the spatial probability distribution of the feature in the
image. This random variable is continuous and defined in a two-dimensional space,
where the dimensions X ,Y are the location in the image. For simplicity, we assume
that the distribution of x can be approximated by a Gaussian mixture. In order to retain
information about feature orientation, we associate a mean orientation θi ∈ [0, 2π[ to
each component of the Gaussian mixture. Primitive feature classes lie at the first level
of the graph. They are represented by a local descriptor and are associated with an
observable random variable y, defined in the same two-dimensional space as the hidden
variables x, and are likewise approximated by a Gaussian mixture.

2.2 The Edge Set

An edge e ∈ −→E of the graph models two aspects of the feature structure. First, when-
ever an edge links two features it signifies that the destination feature is a part of the
source feature. Since the observation of a part may have more or less impact on the per-
ceived presence of a compound feature, we use a parameter bxu

xc
to quantify the relative

contribution of the subfeature xc to the presence of the parent feature xu.
Second, an edge describes the spatial relation between the compound feature and its

subfeature in terms of the distance and the relative orientation of the subfeature with
respect to the compound feature. The shape uncertainty is represented by a Gaussian
probability density that models the relative position of one feature versus the other.
This Gaussian, which is described by a relative location and a covariance matrix Σ,
allows us to deal with deformable features and offers invariance properties.

The annotation associated with an edge, {xc, xu, d, θr, Σ, bxu
xc
}, describes both the

geometric relation (distance d, relative orientation θr) between two feature classes and
the combination coefficient bxu

xc
. It does not contain any specific information about a

given scene but represents a static view of the feature hierarchy and shape.

3 Feature Detection

In the preceding section, we defined the structure of our graphical model used to repre-
sent visual features. We now turn to the detection of a given visual feature in an image,
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given its graphical-model representation. The goal of the feature detection process is
to estimate the probability density function p̂(x|y) of features given the primitives de-
tected in the image. The detection process can be summarized by two steps. First, we
use the primitives of a scene to instantiate the observed variables y in the graph. Second,
we apply Belief Propagation to infer the probability densities of the hidden variables.

3.1 Primitive Detection

Primitive detection matches the detected local descriptors in an image with the most
similar existing feature descriptor at the leaf nodes of the available graphs. We use the
observed descriptor parameters (location, orientation, similarity) to annotate the vari-
able ys of the corresponding node s ∈ V . This observed variable ys represents the
degree of presence of the observed primitive feature, and is modeled by a Gaussian
mixture. Each component Gaussian represents a possible location of the feature and
is set to the detected descriptor location. The weight wi of a component is inversely
proportional to the Mahalanobis distance between the observed descriptor and the most
similar feature class. The orientation of the feature is determined from the correspond-
ing descriptor orientation, and is associated to each Gaussian. In summary, each com-
ponent of an observed random variable ys is defined by a location αi, a weight wi and
an orientation θi that are determined by the detected descriptor occurrences.

3.2 Compound Feature Detection

The detection process that computes the presence of high-level features is based on Be-
lief Propagation (BP) [9]. To initialize the graph, we annotate the observed variables
with the detected primitives (Section 3.1). Then the main idea of this inference algo-
rithm is to propagate information by successively transmitting upward (λ) and down-
ward (π) messages in the graph. The λ-messages represent the possible presence of
a parent feature, given the presence information of the current node. Similarly, each
π-message represents the location of a node with respect to its parent nodes.

In our representation, evidence is incorporated exclusively via the variables yi rep-
resenting primitives at the leaves of the graph. Higher-level features are not directly
observable. Thus, the standard BP algorithm can be simplified to a single upward prop-
agation step where it successively estimates the probability of each node, going from the
leaves to the root of the graph. This procedure is implemented by the following update
rule that links each variable x of our graphical model to its child nodes ci ∈ C(x):

x = bx
c1

ϑ(c1) + bx
c2

ϑ(c2) + · · · + bx
cn

ϑ(cn) (1)

where bx
ci

is the combination coefficient of node ci. The location and the orientation be-
tween a compound feature and a subfeature may be different. We therefore introduce a
linear function ϑ that performs a spatial transformation. It translates the probability den-
sity of each variable ci according to the direction and the distance of the corresponding
edge e(x, ci).

J. Pearl demonstrated that BP converges to the optimal solution on tree-structured
graphical models, while our graph may contain loops. However, BP has been shown
empirically to provide good approximate solutions on a variety of loopy graphs.
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As we explained in Section 2.1, our representation models nodes as continuous ran-
dom variables approximated by mixtures of Gaussians. Likewise, the estimation of the
conditional probability density of a node will take the form of a mixture of Gaussians
p̂(x|y) =

∑N
i=1 wx(i)G(x;μx(i), Σx(i)), where μx, Σx, wx are respectively vectors of

mean, covariance and weight. They are computed by combining the belief obtained at
the child nodes (Eq. 2). For simplicity of notation, the following formulas are given for
child nodes ci composed of a single Gaussian (the case of mixtures is analogous).

μx =
∑Nc

i=1 μϑ
ci

Σci∑Nc

i=1 Σci

Σx =

(
Nc∑
i=1

1
Σci

)−1

μϑ
ci

= bx
ci

ϑ(ci) (2)

Feature Orientation. In order to estimate the most likely orientation of a feature,
we use the orientations associated to each component of the current Gaussian mix-
ture. We compute the mean orientation θx(l) of mixture components weighted by their
corresponding weights wi: tan θx(l) = Sx(l)

Cx(l) where Cx(l) =
∑n

i=1 viwi cos θi and

Sx(l) =
∑n

i=1 viwi sin θi. In these equations, l is a location in the image, θi is the main
orientation of component xi, n is the number of components and vi = R(l, xi) is the
response of Gaussian component xi at point l.

4 Visual Feature Learning

In this section, we introduce our unsupervised feature learning method that allows the
construction of a hierarchy of visual features. The general idea of our algorithm is to ac-
cumulate statistical evidence from the relative positions of observed features in order to
find frequent visual feature co-occurrences. The structure of our graphical model is iter-
atively built by combining correlated features into new visual feature abstractions. First,
the learning process votes to accumulate information on the relative position of features
and it extracts the feature pairs that tend to be located in the same neighborhood. Sec-
ondly, it estimates the parameters of the geometrical relations using either Expectation-
Maximization (EM) or a voting scheme. It finally creates new feature nodes in the graph
by combining spatially correlated features. In the following sections, we describe the
three main steps of this unsupervised learning procedure.

4.1 Spatial Correlation

The objective of this first step of our learning process is to find spatially correlated
features. A spatial correlation exists between two features if they are often detected
in the same neighborhood. Co-occurrence statistics are collected from multiple feature
occurrences within one or across many different images. The procedure to find corre-
lated features is summarized in Algorithm 1. After its completion, we obtain a vote
array S concerning the relative locations of correlated features. Before the first iteration
we apply K-means clustering algorithm to the set of feature descriptors. This identifies
primitive classes from the training set and is used to create the first level of the graph.
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Algorithm 1 Detection of Spatial Correlations
Successively extract each image I from the training set
Detect all features fI = {fi0 . . . fin} ∈ G in image I
for each pair [fi, fj ] where fj is observed in the neighborhood of fi do

Compute the relative position pr ∈ R2 of fj given fi

Vote for the corresponding observation [fi, fj , pr] in table S
end for
Keep all class pairs [fi, fj ] where

∑
pr

S[fi, fj , pr] > tc

4.2 Spatial Relations

In our framework, spatial relations are defined in terms of distance and direction be-
tween features. We implemented two solutions to estimate these parameters. The first
method uses the Expectation-Maximization (EM) algorithm, and the second imple-
ments a fast discrete voting scheme to find location evidence. The estimated geomet-
rical relations are used during feature generation (Section 4.3) in order to create new
features. First, however, we give some details on both methods for the estimation of
spatial relations.

Expectation-Maximization. In principle, a sample of observed spatial relations xr

between two given features can be approximated by a Gaussian mixture, where each
component represents a cluster of relative positions μk of one of the two features fj with
respect to the other, the reference feature fi: p(xr;Θ) =

∑K
k=1 wkGk(xr;μk, θk). EM

is used to estimate the parameters of the spatial relation between each correlated feature
pair [fi, fj ] ∈ S. It maximizes the likelihood of the observed spatial relations over the
model parameters Θ = (w1...K ;μ1...K ; θ1...K). The Expectation (E) and Maximization
(M) steps of each iteration of the algorithm are defined as follows:

Step E. Compute the current expected values of the component indicators tk(xi), 1 ≤
i ≤ n, 1 ≤ k ≤ K, where n is the number of observations, K is the number of
components and q is the current iteration:

t
(q)
k (xi) =

ŵ
(q)
k G
(
xi; μ̂

(q)
k , θ̂

(q)
k

)
∑K

l=1 ŵ
(q)
l G
(
xi; μ̂

(q)
l , θ̂

(q)
l

) (3)

Step M. Determine the value of parameters Θq+1 containing the estimates ŵk, μ̂k, θ̂k

that maximize the likelihood of the data {x} given the tk(xi):

ŵ
(q+1)
k = 1

n

∑n
i=1 t

(q)
k μ̂

(q+1)
k =

∑n
i=1 t

(q)
k (xi)

/∑n
i=1 t

(q)
k

θ̂
(q+1)
k =

∑n
i=1 t

(q)
k

(
xi − μ̂

(q+1)
k

)(
xi − μ̂

(q+1)
k

)T /∑n
i=1 t

(q)
k

(4)

In our implementation, a mixture of only two Gaussian components (K = 2) is used
to model spatial relations. The first component represents the most probable relative
position, and the second is used to model the noise. When the location μ1 of the first
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component is estimated, it is projected into a cylindrical space defined by distance d
and orientation θ parameters. We store the corresponding information [fi, fj , d, θ, Σ]
in a table T .

Voting. A faster method to estimate spatial relations is to discretize distance and direc-
tion between features. The idea is to create a bi-dimensional histogram for every cor-
related feature pair [fi, fj ] ∈ S. The dimensions of these histograms are the distance d
and the relative direction θ from features fi to fj . Each observation [fi, fj , pr] stored in
table S is projected into a cylindrical space [d, θ] and votes for the corresponding entry
[d, θ] of histogram H[fi, fj ]. After the completion of this voting procedure, we look
for significant local maxima in the 2D histograms and store them in the table T . In our
implementation, the distances are expressed relative to the part size and are discretized
into 36 bins, while the directions are discretized into 72 bins (5-degree precision).

4.3 Feature Generation

When a reliable reciprocal spatial correlation is detected between two features [fi, fj ],
the generation of a new feature in our model is straightforward. We combine these fea-
tures to create a new higher-level feature by adding a new node fn to the graph. We
connect it to its subfeatures [fi, fj ] by two edges ei, ej that are added to

−→E . Their
parameters are computed using the spatial relation {μi,j , μj,i} obtained from the pre-
ceding step, and are stored in table T .

The generated feature is located at the midpoint between the subfeatures. Thus the
distance from the subfeatures to the new feature is set to the half distance between
the subfeatures [fi, fj ]; μ1 = μi,j/2, μ2 = μj,i/2 and is copied to the new edges;
ei(fi, fn) = {μ1, Σ1}, ej(fj , fn) = {μ2, Σ2}.

5 Experiments

In this section, we illustrate our visual feature learning scheme on an object recognition
task using several objects of the Columbia University Object Image Library (COIL-
100) [8]. This library is very commonly used in object recognition research and contains
color images of 100 different objects. Each image was captured by a fixed camera at
pose intervals of 5 degrees. For our experiments, we used 5 neighboring views of an
object to build the corresponding object model. When the learning process is completed,
the model is thus tuned for a given view of the object.

As we mentioned before, our system does not depend on any particular feature de-
tector. We used Harris interest points and rotation invariant descriptors comprising 256
pixel values. Any other feature detector can be used to detect and extract more robust
information. We deliberately used simple feature to demonstrate the functioning of our
method. To estimate the primitives of each object model, we used K-Means to cluster
the feature space. The number of classes was selected according to the BIC criterion
[13]. For the object presented in Figure 2, the learning process used 16 feature classes
(generated by K-Means) to extract correlated features of the same level in the graphical
model. For the first level of the graph, it found 7 spatial relations between features that
were then used to build the next level of the graph. In order to avoid excessive growth
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Fig. 2. Evidence map of an object model on a
series of images differing in viewing angle

Fig. 3. Graphical models learned on two objects

Fig. 4. Cluttered scene containing three
instances of the object (top) and corresponding
response of the detection process for the object
model(bottom).The three major peaks observed
in the density map correspond to the most prob-
able object model locations
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of the graph due to the feature combinatorics, we only kept the most salient spatial
relations between features. Figure 3 shows the graph learned on different objects.

Figure 5 illustrates the viewpoint invariance of the object model. To generate the
graph, we ran the detection process on a series of images differing in viewing angle by
increments of 5 degrees. We show the maximum response of our model for each image
(the detection for each image is presented in Figure 2). The model responded maximally
to one of the training views, with the response gradually falling off as the image was
transformed away from its preferred view. We can determine the invariance range of
the object model by comparing the maximum response of all views with the responses
of distractors (20 images were taken randomly from coil-100 database, some of these
are presented in Figure 4). The invariance range is then defined as the range over which
the model response is greater than to any of the distractor objects. For the test image
presented in Figure 5, the minimum response to establish the presence of the object
was approximately 0.45. We obtained an average viewpoint invariance over 50 degrees.
These results are remarkable considering the fact that we did not use affine-invariant
features at the leaf level.

We also tested, in Figure 4, the robustness of our model in a cluttered scene contain-
ing three instances of the object. As we explained in Section 3, the detection process
starts with low-level feature detection and then propagate evidence in graph. In this im-
age, many primitive features of the object class are detected in the image. This is due to
the fact that the local appearance of some interest points is similar to the primitives of
the model. However, the use of geometric relations to infer the presence of higher-level
feature allows an unambiguous detection. As we can see for the object on the right of
Figure 4, only a few features are needed to detect the object. The response of the model
increases with the number of spatially coherent features detected. On the left, a major
portion of the object is present in the image and leads to a strong response of the model.

6 Discussion

During the past years, great attention has been paid to unsupervised model learning
applied to object models [10]. In theses techniques, objects are represented by parts,
each modeled in terms of both shape and appearance by Gaussian probability density
functions. This concept, which originally operated in batch mode, has been improved
by introducing incremental learning [5]. Another improvement [3] used information
obtained from previously learned models. In parallel, Agarwal et al. [1] presented a
method for learning to detect objects that is based on a sparse, part-based representa-
tions. The main limitation of these schemes lies in the representation because it only
contains two levels, the features and the models.

In previous work, we used a Bayesian network classifier for constructing visual
features by hierarchical composition of primitive features[11]. However, the spatial ar-
rangement of primitives was rigid and limited the robustness of the system.

Arguing that existing techniques fail to exploit the structure of the graphical models
describing many vision problems, Sudderth et al.[14] presented Nonparametric Belief
Propagation (NBP) applicable to general distributions. Our framework can be extended
using NBP instead of classical BP in order to perform a more robust detection.
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A hierarchical model of recognition in the visual cortex has been proposed by
Riesenhuber et al. [12] where spatial combinations are constructed by alternately em-
ploying a maximum and sum pooling operation. Wersing et al. [15] used a sparse-
coding learning rule to derive local feature combinations in a visual hierarchy. However,
in such models there exists no explicit representation of object structure.

In neuroscience, recent evidence [2] reinforces the idea that the coding of geomet-
rical relations in high-level visual features is essential. Moreover, recent work suggests
that the visual cortex represents objects hierarchically by parts or subfeatures [6].

The framework presented in this paper offers several significant improvements over
current methods proposed in the literature. Taking advantage of graphical models, we
represent shape and appearance separately. This allows us to deal with shape deforma-
tion and appearance variability. The hierarchical model presented here opens a wide
door to other computer vision applications. Several directions can be pursued; the most
promising and challenging is certainly the unsupervised discovery of object categories.
Future work will focus on the use of Nonparametric Belief Propagation (NBP) and the
integration of the hierarchical model in a supervised learning environment.
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Abstract. In supervised learning, discretization of the continuous ex-
planatory attributes enhances the accuracy of decision tree induction
algorithms and naive Bayes classifier. Many discretization methods have
been developped, leading to precise and comprehensible evaluations of
the amount of information contained in one single attribute with respect
to the target one.

In this paper, we discuss the multivariate notion of neighborhood,
extending the univariate notion of interval. We propose an evaluation
criterion of bipartitions, which is based on the Minimum Description
Length (MDL) principle [1], and apply it recursively. The resulting dis-
cretization method is thus able to exploit correlations between contin-
uous attributes. Its accuracy and robustness are evaluated on real and
synthetic data sets.

1 Supervised Partitioning Problems

In supervised learning, many inductive algorithms are known to produce bet-
ter models by discretizing continuous attributes. For example, the naive Bayes
classifier requires the estimation of probabilities and the continuous explanatory
attributes are not so easy to handle, as they often take too many different values
for a direct estimation of frequencies. To circumvent this, a normal distribution
of the continuous values can be assumed, but this hypothesis is not always real-
istic [2]. The same phenomenon leads rules extraction techniques to build poorer
sets of rules. Decision tree algorithms carry out a selection process of nominal
attributes and cannot handle continuous ones directly. Discretization of a con-
tinuous attribute, which consists in building intervals by merging the values of
the attribute, appears to be a good solution to these problems.

Thus, as the results are easily interpretable and lead to more robust esti-
mations of the class conditional probabilities, supervised discretization is widely
use. In [2], a taxonomy of discretization methods is proposed, with three dimen-
sions : supervised vs. unsupervised (considering a class attribute or not), global
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vs. local (evaluating the partition as a whole or locally to two adjacent inter-
vals) and static vs. dynamic (performing the discretizations in a preprocessing
step or imbedding them in the inductive algorithm). This paper is placed in the
supervised context.

The aim of the discretization of a single continuous explanatory attribute
is to find a partition of its values which best discriminates the class distribu-
tions between groups. These groups are intervals and the evaluation of a par-
tition is based on a compromise: fewer intervals and stronger class discrimina-
tion are better. Discrimination can be performed in many different ways. For
example,

– Chimerge [3] applies chi square measure to test the independance of the
distributions between groups,

– C4.5 [4] uses Shannon’s entropy based information measures to find the most
informative partition,

– MDLPC [5] defines a description length measure, following the MDL princi-
ple,

– MODL [6] states a prior probability distribution, leading to a bayesian eval-
uation of the partitions.

The univariate case does not take into account any correlation between the
explanatory attributes and fails to discover conjointly defined patterns. This fact
is usually illustrated by the XOR problem (cf. Figure 1): the contributions of
the axes have to be considered conjointly. Many authors have thus introduced a
fourth category in the preceding taxonomy: multivariate vs. univariate (search-
ing for cut points simultaneously or not), and proposed multivariate methods
(see for examples [7] and [8]). These aim at improving rules extraction algo-
rithms and build conjonctions of intervals. It means that considered patterns
are parallelepipeds. This can be a limiting condition as underlying structures of
the data are not necessarily so squared (cf. Figure 2). We then distinguish these
strongly biased multivariate techniques from weakly biased multivariate ones,
that consider more generic patterns. This opposition is slightly discussed in [2],
where the authors talk about feature space and instance space discretizations
respectively.

Fig. 1. The XOR problem: projection on the axes leads to an information loss
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Fig. 2. A challenging synthetic dataset for strongly biased multivariate discretization
methods

We present in this paper a new discretization method, which is supervised,
local, static, multivariate and weakly biased. As for the MDLPC method, an
evaluation criterion of a bipartition is settled following the MDL principle and
applied recursively.

The remainder of the paper is organized as follow. We first set the nota-
tions (section 2). Then, we describe the MDLPC technique (section 3) and
our framework (section 4). We propose a new evaluation criterion for bipar-
titions (section 5) and test its validity on real and synthetic datasets (section 6).
Finally, we conclude and point out future works (section 7).

2 Notations

Let us set the notations we will use throughout this paper. Let O = {o1, . . . , oN}
be a finite set of objects. A target class ln lying in an alphabet of size J is
associated to every object on. For a subset A of O, N(A) stands for the size
of A, J(A) for the number of class labels represented in A and Nj(A) for the
number of elements in this groups with label j (1 ≤ j ≤ J). The Shannon entropy
of A, which measures the amount of information in bits needed to specify the
class labels in A, is then

Ent(A) = −
J∑

j=1

Nj(A)
N(A)

log2

Nj(A)
N(A)

.

The problem consists in setting an evaluation criterion of the hypothesis
H(A,A1, A2): split the subset A so that A = A1

⊔
A2. We distinguish the

null hypothesis H(A,A, ∅)(= H(A, ∅, A)) from the family of split hypotheses
(H(A,A1, A2))A1�A.
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Following the MDL principle, a description length l(A, A1, A2) must be as-
signed to each hypothesis and the best hypothesis is the one with the shortest
description. Two steps are considered for the description: description of the hy-
pothesis (leading to a description length lh(A,A1, A2)) and description of the
data given the hypothesis (leading to a description length ld/h(A, A1, A2)), so
that l(A,A1, A2) = lh(A,A1, A2) + ld/h(A,A1, A2).

3 MDLPC Discretization Method

In the univariate case, O is a set of ordered real values (i.e. on1 ≤ on2 if n1 ≤ n2)
and the considered groups are intervals. The MDLPC method [5] seeks for the
best split of an interval I into a couple of sub-intervals (I1, I2), applying the
MDL principle.

We begin by considering a split hypothesis. This is determined by the position
of the boundary point, and the numbers J(I1), J(I2) of class labels represented
in I1 and I2 respectively. Description lengths are no other than negative log of
probabilities, and assuming a uniform prior leads to write:

lh(I, I1, I2) = log2(N(I) − 1) + log2(3
J(I) − 2),

as there is N−1 possibilities for the choice of the boundary point and the number
of admissible values for the couple (J(I1), J(I2)) has been evaluated to 3J(I)−2.

The description of the data given the hypothesis consists in first specifying the
frequencies of the class labels in each interval and second the exact sequences of
class labels. The evaluation of the lengths is based on the entropy of the intervals
I1 and I2:

ld/h(I, I1, I2) = J(I1)Ent(I1) + N(I1)Ent(I1) + J(I2)Ent(I2) + N(I2)Ent(I2).

The evaluation of H(I, I1, I2) finally relies on the following formula:

l(I, I1, I2) = log2(N(I) − 1) + log2(3
J(I) − 2)

+J(I1)Ent(I1) + N(I1)Ent(I1) + J(I2)Ent(I2) + N(I2)Ent(I2).

For the null hypothesis, the class labels in I have to be described only (i.e
lh(I, I, ∅) = 0):

l(I, I, ∅) = J(I)Ent(I) + N(I)Ent(I).

The MDL principle states that the best hypothesis is the one with minimal
description length. As partitioning always decreases the value of the entropy
function, considering the description lengths of the hypotheses allows to balance
the entropy gain and eventually accept the null hypothesis. Performing recur-
sive bipartitions with this criterion leads to a discretization of the continuous
explanatory attribute at hand.
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4 Multivariate Framework

Extending the univariate case mainly requires the definition of a multivariate
notion of neighborhood corresponding to the notion of interval. The univariate
case does not actually consider the whole set of intervals but those whose bounds
are midpoints between two consecutive values. The resulting set of “patterns”
is thus discrete, data dependent and induced by a simple underlying structure:
the Hasse diagram, which links two consecutive elements of O.

We thus begin by supposing that a non-oriented graph structure G on O
conveying a well-suited notion of proximity is provided. Some cases of natural
underlying structure arise, like road networks, web graphs, etc . . . If the objects
in O are tuples of an euclidean space R

d and a natural structure does not exist,
proximity graphs [9] provide definitions of neighborhood.

For example, as we work with vectorial data in practice, the Gabriel discrete
structure can be chosen. Two multivariate instances o1 and o2 are adjacent in
the Gabriel sense (cf Figure 3) if and only if

L(o1, o2)2 ≤ min
o∈O

L(o1, o)2 + L(o2, o)2,

where L is any distance measure defined on O.
The related discrete metric will be called the Gabriel metric on O and will

be used throughout the experiments. Any prior knowledge of the user would
eventually lead him to select another discrete metric, and it’s noteworthy that the
use of the Gabriel one is a general choice, made without any further knowledge.

Once a discrete structure G is chosen, we define partitions on the basis of
elementary “patterns” related to G. We consider the balls induced by the discrete
metric δ related to G: δ(o1, o2) is the minimum number of edges needed to link
o1 and o2 (o1, o2 ∈ O). The resulting set of balls is denoted B (cf. Figure 4).

We can now express a multivariate analog of the univariate family of split
hypotheses, considering balls as basic patterns. In the multivariate case, a local
bipartitioning hypothesis consists in spliting a subset S of O into a ball B ∈ B,
included in S, and its complement. H(S, B) denotes such a hypothesis. As we
utilize a connected discrete structure (the Gabriel graph), eventually obtaining

Fig. 3. Example of a Gabriel graph. The ball of diameter [ab] contains no other point:
a and b are Gabriel-adjacent. The ball of diameter [bc] contains another point: b and c
are not Gabriel-adjacent
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Fig. 4. Multivariate analog of intervals: examples of discrete balls. For example, the
ball centered in a with radius 2 contains 8 objects of the dataset

partitions with non-connected groups can be somewhat counterintuitive. We do
not try to alleviate this conceptual fact in the present paper.

5 Evaluation of a Bipartition

The proposed framework leads to the study of the hypothesis H(S, B), where S
is a subset of O, B a ball included in S. We now introduce an evaluation criterion
l(S, B) for such a hypothesis. Following the MDL principle, we have to define a
description length lh(S, B) of the bipartition and a description length ld/h(S, B)
of the class labels given the bipartition.

We first consider a split hypothesis: B �= S. In the univariate case, the bipar-
tition results from the choice of a cut point. In the general case, the bipartition
is determined by the ball B and the description of B relies on two parameters:
its size N(B) and its index in the set of balls of size N(B) included in S.

Description lengths are negative log of probabilities and, if β(S, B) stands for
the number of balls of size N(B) included in S, we obtain

lh(S, B) = log2 N(S) + log2 β(S, B)

assuming a uniform prior.
Let us now specify the distribution of the class labels in a subset A of O (A

will be S, B or S \B). This is the same as putting the elements of A in J boxes.
We begin specifying the numbers of elements to put in the jth box, that is, the
frequencies (N1(A), . . . , NJ (A)). It then remains to give the index of the actual
partition in the set of partitions of A in J groups of sizes N1(A), . . . , NJ (A).

Each possible J-uple of frequencies satisfies the property that the sum of
its components equals N(A). The set of possible frequencies is then of size(
N(A)+J−1

J−1

)
. Counting the set of partitions of A in J groups of fixed sizes

N1(A), . . . , NJ (A) is a multinomial problem and the size of this set is the multi-
nomial coefficient N(A)!

N1(A)!...NJ (A)! .
Still assuming a uniform prior, the description length of the distribution of

the labels in A is then:
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ld(A) = log2

(
N(A) + J − 1

J − 1

)
+ log2

N(A)!
N1(A)! . . . NJ(A)!

.

For fixing ld/h(S, B), we suppose the distributions of the labels in B and its
complement independant. This results in setting:

ld/h(S, B) = ld(B) + ld(S \ B).

Finally, the description length of a split hypothesis is given by the formula:

l(S, B) = log2 N(S) + log2 β(S, B)

+ log2

(
N(B) + J − 1

J − 1

)
+ log2

N(B)!
N1(B)! . . . NJ (B)!

+ log2

(
N(S \ B) + J − 1

J − 1

)
+ log2

N(S \ B)!
N1(S \ B)! . . . NJ (S \ B)!

.

The null hypothesis relies on the description of the size of the considered
subset (S) and the distribution of the labels in S. Indicating that the size is that
of S amounts to pointing the null hypothesis. Thus, lh(S, S, ∅) = log2 N(S) and
ld/h(S, S, ∅) = ld(S), giving

l(S, S) = log2 N(S) + log2

(
N(S) + J − 1

J − 1

)
+ log2

N(S)!
N1(S)! . . . NJ (S)!

.

Still, the decision results from an optimal compromise between an entropy
gain and a structural cost of the considered split hypotheses, taking into account
the null hyptohesis as well. But the latter does not employ the Shannon entropy
(as MDLPC does), replacing it by a binomial evaluation of the frequencies of
the distributions. The former exploits a multinomial definition of the notion of
entropy, overcoming the asymptotic validity of the Shannon entropy.

6 Experiments

The multivariate discretization algorithm consists in applying recursively the
following decision rule:

1. S a subset of O (initialy, S = O)
2. select the ball B0 which minimizes l(S, B) over the balls B ∈ B contained in

S,
3. if l(S, B0) < l(S, S), performs step 1 on S = B and S = S \ B, else stop.

Constructing the Gabriel graph requires O(N3) operations. If D is the diam-
eter of the graph, the overall number of balls is in O(DN) and each decision thus
results from evaluating O(DN) hypotheses. Each evaluation can be performed
with O(J) operations, storing the O(DN) sizes of the balls. At most N splits
can be triggered, giving a time complexity in O(JDN2) and a space complex-
ity in O(DN) for the optimisation algorithm. In practice, the method performs
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few splits and the number of available balls quickly decreases, giving an O(N3)
algorithm.

We perform three experiments, one on real datasets and two on synthetic
datasets. The metric is chosen to be the euclidean one. We do not consider any
other metric or weighting scheme, as the experiments aim at comparing our
methods with others, in a single framework.

The main advantage of partitioning methods lies in their intrinsic capacity for
providing the user with an underlying structure of the analysed data. However,
this structural gain may be balanced by an information loss. The first experiment
aims at evaluating how our method is affected by such a flaw. We consider
the resulting partition as a basic predictive model: a new instance is classified
according to a majority vote in the nearest group. We thus compare the accuracy
of the discretization method to the accuracy of the Nearest Neighbor rule (NN),
which gives the class label of its nearest neighbor to an unseen instance [10].

The tests are performed on 11 datasets (cf Table 1) from the UCI machine
learning database repository [11]. As we focus on continuous attributes, we dis-
card the nominal attributes of the Heart, Crx and Australian database. The
evaluation consists in a stratified five-fold cross-validation. The predictive accu-
racy of the classifiers are reported in the Table 2, as well as the robustness (i.e
the ratio of the test accuracy by the train accuracy) of our classifier.

The overall predictive accuracy does not significantly suffers from the par-
titioning of the data (72% against 73%). But with some datasets (Iris, Wine,
Vehicle), the disadvantage of making local decision is evidenced. Indeed, as illus-
trated by the Figure 5, a succession of local decisions can lead to the constitution
of some border groups, which is especially harmful in the context of separable
distributions, producing a decrease of the accuracy. While our method takes on
a safe approach, handling the boundary data with cautions, the NN rule builds
more hazardous decision boundaries without being penalized in term of test
accuracy.

Table 1. Tested datasets

Continuous Class Majority
Dataset Size Attributes Values Class

Iris 150 4 3 0.33

Wine 178 13 3 0.40

Heart 270 10 2 0.56

Bupa 345 6 2 0.58

Ionosphere 351 34 2 0.64

Crx 690 6 2 0.56

Australian 690 6 2 0.56

Breast 699 9 2 0.66

Pima 768 8 2 0.65

Vehicle 846 18 4 0.26

German 1000 24 2 0.7
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Table 2. Predictive accuracy and robustness of our method and predictive accuracy
of the NN rule for the tested datasets

Test accuracy Robustness

Dataset Partition NN Partition NN

Iris 0.92 ± 0.05 0.96 ± 0.02 0.98 ± 0.06 0.96 ± 0.02

Wine 0.69 ± 0.09 0.76 ± 0.07 0.90 ± 0.14 0.76 ± 0.07

Heart 0.62 ± 0.04 0.55 ± 0.03 0.88 ± 0.04 0.55 ± 0.03

Bupa 0.61 ± 0.06 0.61 ± 0.05 0.85 ± 0.07 0.61 ± 0.05

Ionosphere 0.85 ± 0.04 0.87 ± 0.02 0.99 ± 0.04 0.87 ± 0.02

Crx 0.66 ± 0.03 0.64 ± 0.05 0.90 ± 0.06 0.64 ± 0.05

Australian 0.69 ± 0.02 0.68 ± 0.02 0.95 ± 0.05 0.68 ± 0.02

Breast 0.97 ± 0.01 0.96 ± 0.01 1.00 ± 0.01 0.96 ± 0.01

Pima 0.68 ± 0.01 0.68 ± 0.02 0.94 ± 0.04 0.68 ± 0.02

Vehicle 0.54 ± 0.04 0.65 ± 0.02 0.90 ± 0.07 0.65 ± 0.02

German 0.70 ± 0.01 0.67 ± 0.02 0.96 ± 0.01 0.67 ± 0.02

Mean 0.72 0.73 0.93 0.73

Fig. 5. Partitioning of a 2 separable classes problem: creation of a buffer zone, con-
taining a mixture of the two classes

Table 3. Predictive accuracy, robustness and number of groups of our method, C4.5
and the NN rule on the “challenging” dataset

Method Test accuracy Robustness Group number

Partition 0.83 ± 0.01 0.95 ± 0.01 29.5 ± 0.35

C4.5 0.71 ± 0.04 0.94 ± 0.01 17 ± 1.41

NN 0.90 ± 0.00 0.90 ± 0.00 -

The robustness of the NN rule is equal to its test accuracy, and we observe
that building a well-suited partition of the data sharply increases the robustness
of the prediction (0.93 against 0.73).

In a second experiment, we compare our method and the well-known deci-
sion tree algorithm C4.5 when faced with the challenging pattern presented in
Figure 2. The dataset contains 2000 instances and we carry out a stratified two-
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Fig. 6. Evolution of the predictive accuracy and the robustness with the mislabelled
data rate of the partitioning technique and the NN rule on the XOR pattern

fold cross-validation. We report the predictive accuracy, the robustness and the
number of groups in the Table 3.

From this experiment, we notice quite a strong difference between the pre-
dictive performances: our method perfoms a better detection than C4.5 (0.83
against 0.71). This is not surprising and illustrates the distinction between
weakly and strongly biased multivariate partitioning. C4.5, which is a strongly
biased method, is forced to detect parallelepipeds, limiting its detection abil-
ity as evidenced on this example. This experiment shows the robustness of the
partitioning methods once again.

On the negative side, we notice a loss of predictive accuracy of our method
compared with the NN rule. Examining the two produced partitions, we find
that after the detection of a few clean balls (i.e objects in a ball sharing the
same class label), a group containing about 600 instances marked Grey and 100
marked Black remains uncut. As the set of balls is updated by deleting balls
only, the descriptive capacity of our method becomes poorer after each triggered
cut. This results from the fact that we consider balls defined in the whole set O
and not a locally defined set of balls. As the method makes local optimizations,
performing better updates would enhance its predictive accuracy.

The third experiment consists in evaluating the tolerance of our method to
the presence of mislabelled data. The method is applied to 11 Datasets, each
containing 1000 instances uniformly generated in [−1, 1] × [−1, 1], representing
the XOR problem with increasing mislabelled data rate, from 0 (XOR problem)
to 0.5 (pure noise). The evolution of the predictive accuracy and the robust-
ness (evaluated by a stratified 5-fold cross-validation) is shown in Figure 6, and
compared with NN rule results again.

The expected optimal accuracy curve is the line passing through (0, 1) and
(0.5, 0.5). The partitioning algorithm is up to 10% more accurate than the NN



Multivariate Discretization by Recursive Supervised Bipartition of Graph 263

rule and far more robust. This is its main advantage: still building accurate and
robust partitions in presence of noise.

7 Conclusion and Further Works

In this paper, we have discussed the usefulness of supervised partitioning meth-
ods for data preparation in the univariate case. We have proposed an extension
to the multivariate case, relying on the multivariate definition of discrete neigh-
borhood by means of a non-oriented graph structure. A framework for supervised
bipartitioning has been proposed, which applied recursively leads to a new mul-
tivariate discretization algorithm. Finally, this algorithm has been tested on real
and synthetic datasets.

The proposed method builds an underlying structure of the data, producing
understandable results without fitting parameters and without loss of predic-
tive information (as shown by the experiments on real datasets). Defining basic
patterns (the balls) from the data allows the technique to better partition the
dataset, compared with classical strongly biased multivariate algorithm like C4.5.
Furthermore, its demonstrated robustness is a main advantage, particularly since
it’s very tolerant to the presence of noise.

Still, more experiments have to be carried out. In the reported experiments,
our method is evaluated as a classifier not as a data preparation technique. We
plan to evaluate the impact of our method when considered as a preprocessing
step of a naive bayes classifier, for example. Furthermore, the presented criterion
can be improved, by considering local sets of balls rather than updating the
global set.
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Abstract. The ability to discover the topic of a large set of text docu-
ments using relevant keyphrases is usually regarded as a very tedious task
if done by hand. Automatic keyphrase extraction from multi-document
data sets or text clusters provides a very compact summary of the con-
tents of the clusters, which often helps in locating information easily. We
introduce an algorithm for topic discovery using keyphrase extraction
from multi-document sets and clusters based on frequent and significant
shared phrases between documents. The keyphrases extracted by the al-
gorithm are highly accurate and fit the cluster topic. The algorithm is
independent of the domain of the documents. Subjective as well as quan-
titative evaluation show that the algorithm outperforms keyword-based
cluster-labeling algorithms, and is capable of accurately discovering the
topic, and often ranking it in the top one or two extracted keyphrases.

1 Introduction

The abundance of information in text form has been both a blessing and a plague.
There is always a need to summarize information into compact form that could
be easily absorbed. The challenge is to extract the essence of text documents and
present it in a compact form that identifies their topic(s). Keyphrase extraction,
which is a text mining task, extracts highly relevant phrases from documents.

Turney [1] lists over a dozen applications that utilizes keyphrase extrac-
tion. For example, providing mini-summaries of large documents, highlighting
keyphrases in text, text compression, constructing human-readable keyphrase-
based indexes, interactive query refinement by suggesting improvements to
queries, document clustering, and document classification.

Keyphrase extraction algorithms fall into two categories: keyphrase extrac-
tion from single documents, which is often posed as a supervised learning task;
and keyphrase extraction from a set of documents, which is an unsupervised
learning task that tries to discover the topics rather than learn from examples.

P. Perner and A. Imiya (Eds.): MLDM 2005, LNAI 3587, pp. 265–274, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Extraction vs. Construction. There are two ways to finding relevant key
phrases in text: either to extract them from existing phrases in the text,
or to automatically construct them [2]. Construction of keyphrases is re-
garded as a more intelligent way of summarizing text, but in practice is
more difficult.

Keyphrases vs. Keywords. A keyphrase is “a sequence of one or more words
that is considered highly relevant”, while a keyword is “a single word that is
highly relevant.” An arbitrary combination of keywords does not necessarily
constitute a keyphrase; neither do the constituents of a keyphrase necessarily
represent individual keywords.

In this paper we present a highly accurate method for extracting keyphrases
from multi-document sets or clusters, with no prior knowledge about the doc-
uments. The algorithm is called CorePhrase, and is based on finding a set of
core phrases from a document cluster.

CorePhrase works by extracting a list of candidate keyphrases by intersecting
documents using a graph-based model of the phrases in the documents. This is
facilitated through a powerful phrase-based document indexing model [3].

Features of the extracted candidate keyphrases are then calculated, and
phrases are ranked based on their features. The top phrases are output as
the descriptive topic of the document cluster. Results show that the extracted
keyphrases are highly relevant to the topic of the document set. Figure 1 illus-
trates the different components of the keyphrase extraction system.

The work presented here assumes that: (1) keyphrases exist in the text and are
not automatically generated; (2) the algorithm discovers keyphrases rather than
learns how to extract them; and (3) if used with text clustering, the algorithm is

Preprocessing Graph Representation
Documents
(Plain Text,
HTML, XML)

Document Clusters

Phrase MatchingFeature Calculation

Phrase Ranking

Similarity Calculation

Clustering

Pairwise document 
overlapping phrases

Similarity
matrix

Candidate keyphrases 
for each cluster

Weighted
keyphrases

Top keyphrases 
for each cluster

Cluster 
membership 
information

Fig. 1. CorePhrase Keyphrase Extraction System
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not concerned with how the clusters are generated; it extracts keyphrases from
already clustered documents.

The paper is organized as follows. Section 2 discusses related work in key-
phrase extraction. The CorePhrase algorithm is presented in section 3. Experi-
mental results are presented and discussed in section 4. Finally we discuss some
conclusions and outline future work in section 5.

2 Related Work

Two popular single-document keyphrase extraction algorithms are: Extractor
by Turney [1], and Kea by Frank et al [2]. Extractor uses machine learning to
extract keyphrases from individual documents, which employs a genetic algo-
rithm to tune its parameters. Evaluation is based on the number of extracted
keyphrases that match human generated keyphrases, which is claimed to achieve
human-like performance, but could be biased towards the trained data. Kea is
a single document summarizer, which employs a Bayesian supervised learning
approach to build a model out of training data, then applies the model to unseen
documents for keyphrase extraction.

Methods using keyword-based cluster labeling include that proposed by Neto
et al [4], which uses Autoclass-based clustering with top frequent keywords for
cluster labels. In addition to keyword-based cluster summarization, it is also
used to perform single document summarization, using a variation of the popular
tf×idf weighting scheme to score phrases.

An information theoretic based approach for phrase extraction from multi-
documents has been proposed by Bakus et al [5]. The method finds hierarchical
combinations of statistically significant phrases.

Mani and Bloedorn suggested a method for multi-document summarization
based on a graph representation based on concepts in the text [6]. Also another
system for topic identification is TopCat [7]. It uses a series of natural language
processing, frequent itemset analysis, and clustering steps to identify the topics
in a document collection.

3 The CorePhrase Algorithm

CorePhrase works by first constructing a list of candidate keyphrases, scoring
each candidate keyphrase according to some criteria, ranking the keyphrases by
score, and finally selecting a number of the top ranking keyphrases for output.

3.1 Extraction of Candidate Keyphrases

Candidate keyphrases naturally lie at the intersection of the document clus-
ter. The CorePhrase algorithm compares every pair of documents to extract
matching phrases. This process of matching every pair of documents is inher-
ently O(n2). However, by using a proven method of document phrase indexing
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graph structure, known as the Document Index Graph (DIG), the algorithm can
achieve this goal in near-linear time [3].

In essence, what the DIG model does is to keep a cumulative graph repre-
senting currently processed documents: Gi = Gi−1∪gi, where gi is the subgraph
representation of a new document. Upon introducing a new document, its sub-
graph is matched with the existing cumulative graph to extract the matching
phrases between the new document and all previous documents. That is, the
list of matching phrases between document di and previous documents is given
by Mi = gi ∩ Gi−1. The graph maintains complete phrase structure identifying
the containing document and phrase location, so cycles can be uniquely iden-
tified. This process produces complete phrase-matching output between every
pair of documents in near-linear time, with arbitrary length phrases. Figure 2
illustrates the process of phrase matching between two documents. In the fig-
ure, the two subgraphs of two documents are matched to get the list of phrases
shared between them.

Since this method outputs matching phrases for each new document, it is
essential to keep a master list, M , of unique matched phrases, which will be
used as the list of candidate keyphrases. The following simple procedure keeps
this list updated:

1: {calculate Mi for document di}
Mij = {pij : 1<j < i}: matching phrases between di and dj

Mi = {Mij}: matching phrases of di

2: for each phrase pij in Mi do
3: if phrase pij is in master list M then
4: add feature vector pi to pij in M
5: add feature vector pj to pij in M if not present
6: else
7: add pij to M
8: add feature vectors pi and pj to pij in M
9: end if

10: end for
11: for each unique phrase pk in M do
12: calculate averages of feature vectors associated with pk

13: end for

3.2 Phrase Features

Quantitative features are needed to judge the quality of the candidate keyphrases.
Each candidate keyphrase p is assigned the following features:

df : document frequency; the number of documents in which the phrase ap-
peared, normalized by the total number of documents.

df =
| documents containing p |

| all documents |
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Fig. 2. Phrase Matching Using Document Index Graph

w: average weight; the average weight of the phrase over all documents. The
weight of a phrase in a document is calculated using structural text cues.
Examples: title phrases have maximum weight, section headings are weighted
less, while body text is weighted lowest.

pf : average phrase frequency; the average number of times this phrase has
appeared in one document, normalized by the length of the document in
words.

pf = arg avg

[ | occurrences of p |
| words in document |

]

d: average phrase depth; the location of the first occurrence of the phrase in
the document.

d = arg avg

[
1 − | words before first occurrence |

| words in document |
]

Those features will be used to rank the candidate phrases. In particular, we
want phrases that appear in more documents (high df ; i.e. high support), have
higher weights (high w), higher frequencies (high pf), and shallow depth (low d).

3.3 Phrase Ranking

Phrase features are used to calculate a score for each phrase. Phrases are then
ranked by score, and a number of the top phrases are selected as the ones de-
scribing the topic of the cluster. There are two phrase scoring formulas used, as
well as two methods of assigning the score to the candidate phrases, for a total
of four variants of the CorePhrase algorithm.
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First Scoring Formula. The score of each phrase p is:

score(p) = (w · pf) ×− log(1 − df) (1)

The equation is derived from the tf×idf term weighting measure; however,
we are rewarding phrases that appear in more documents (high df) rather than
punishing those phrases. Notice also that the first scoring formula does not take
the depth feature into account. We will refer to the variant of the algorithm that
uses this formula as CorePhrase-1.

Second Scoring Formula. By examining the distribution of the values of each
feature in a typical corpus (see Table 1 for details), it was found that the weight
and frequency features usually have low values compared to the depth feature. To
take this fact into account, it was necessary to “expand” the weight and frequency
features by taking their square root, and to “compact” the depth by squaring
it. This helps even out the feature distributions and prevents one feature from
dominating the score equation. The formula is given in equation 2, and is used
by the variant which we will refer to as CorePhrase-2.

score(p) = (
√

w · pf · d2) ×− log(1 − df) (2)

Word weight-based score assignment. A modified score assignment scheme
based on word weights is also used:

– First, assign initial scores to each phrase based on phrase scoring formulas
given above.

– Construct a list of unique individual words out of the candidate phrases.
– For each word: add up all the scores of the phrases in which this word

appeared to create a word weight.
– For each phrase: assign the final phrase score by adding the individual word

weights of the constituent words and average them.

The variants of the algorithm that use this method will be referred to as
CorePhrase-1M and -2M, based on the equation used to assign the phrase scores.

4 Experimental Results

4.1 Experimental Setup

Two data sets were used for evaluation, which are listed in Table 11. The first one
is a collection of web documents representing six topics formed by submitting
six different queries to the google search engine, and is used as a realistic eval-
uation in scenarios involving the online keyphrase extraction. The second data
set is a collection of web documents from intranet web sites at the University of
Waterloo, and serves in evaluating scenarios involving data-mining an intranet
information system. Table 1 also lists the characteristics of each data set.

1 The data sets are available for download at: http://pami.uwaterloo.ca/˜
hammouda/webdata/
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Table 1. Data sets used for multi-document keyphrase extraction

class # docs.
average
words/doc.

candidate
phrases

feature averages

df w pf d

Data Set 1: Total 151 docs.

canada transportation 22 893 24403 0.0934 0.2608 0.0007 0.4907
winter weather canada 23 636 5676 0.0938 0.2530 0.0019 0.5903
snowboarding skiing 24 482 990 0.0960 0.3067 0.0033 0.5215
river fishing 23 443 485 0.1129 0.2965 0.0042 0.5763
river rafting 29 278 599 0.0931 0.3680 0.0057 0.5612
black bear attacks 30 620 1590 0.0859 0.3593 0.0023 0.6024

Data Set 2: Total 161 docs.

Co-operative Education 54 251 1379 0.0511 0.2672 0.0082 0.5693
Career Services 52 508 4245 0.0473 0.2565 0.0031 0.5000
Health Services 23 329 351 0.1454 0.2707 0.0057 0.5170
Campus Network 32 510 14200 0.0810 0.2569 0.0020 0.5198

A keyword-based extraction algorithm was used as a baseline for comparison.
The algorithm extracts the centroid vector of a cluster represented as a set of
keywords and selects the top frequent keywords in the cluster. This method is
considered representative of most cluster labeling methods.

4.2 Evaluation Measures

Two extrinsic evaluation measures are used to assess the performance of
CorePhrase. The first measure is called overlap, which measures the similarity
between each extracted keyphrase to the predefined topic phrase of the cluster.
The similarity is based on how many terms are shared between the two phrases.
The overlap between an extracted keyphrase pi and the topic phrase pt is defined
as:

overlap(pi, pt) =
| pi ∩ pt |
| pi ∪ pt | (3)

To evaluate the top k keyphrases as a set, we take the average overlap of the
whole set. This measure is essentially telling us how well the top keyphrases, as
a set, fit the reference topic.

The second evaluation measure is called precision2, which gives an indication
of how high the single keyphrase that best fits the topic is ranked. The best
keyphrase is defined as the first keyphrase, in the top k, that has maximum
overlap with the reference topic. Thus, the precision for the set of top k phrases
(pk) with respect to the reference topic pt is defined as:

precision(pk, pt) = overlap(pmax, pt) ·
[
1 − rank(pmax) − 1

k

]
(4)

where pmax ∈ pk is the first phrase with maximum overlap in the top k phrases;
and rank(pmax) is its rank in the top k. In other words, precision tells us how
high in the ranking the best phrase appears. The lower the best phrase comes
in the ranking, the lower the precision.

2 This is not the precision measure usually used in the information retrieval literature.
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4.3 Discussion

Table 2 shows the results of keyphrase extraction by the CorePhrase algorithm
variants for three of the classes (two classes from data set 1, and one class from
data set 2)3. The phrases in the results are shown in stemmed form, with stop
words removed.

A more concrete evaluation based on the quantitative measures, overlap and
precision, is given in Table 3, which is illustrated also in Figure 3 (in the figure,
only CorePhrase-2 and CorePhrase-2M are shown). For each of the four variants
of the CorePhrase algorithm, in addition to the baseline keyword centroid algo-
rithm, we report the overlap and precision. The average overlap is taken over the
top 10 keyphrases/keywords of each cluster, with the maximum overlap value
(best phrase) also shown.

Table 2. Keyphrase Extraction Results – Top 10 Keyphrases

CorePhrase-1 CorePhrase-2 CorePhrase-1M CorePhrase-2M

canada transporation
1 canada transport canada transport transport canada canada transport
2 panel recommend canada transport act canada transport transport canada
3 transport associ transport act road transport transport act
4 transport associ canada transport associ transport issu transport issu
5 associ canada panel recommend govern transport recommend transport
6 canada transport act unit state surfac transport transport polici canada transport
7 transport act transport associ canada tac public transport canadian transport
8 road transport associ canada tac transport public transport public
9 transport infrastructur canada tac transport infrastructur public transport
10 transport associ canada tac public privat sector transport passeng transport infrastructur

winter weather canada
1 winter storm sever weather new hampshir new environment assess environment
2 winter weather winter weather new jersei new program legisl
3 environ canada winter storm new mexico new program hunt
4 sever weather weather warn new hampshir new jersei new fund program
5 weather warn sever winter new jersei new mexico new environment link fund program
6 freez rain sever weather warn new hampshir new jersei new mexico environment assess environment link fund
7 new brunswick sever winter weather new hampshir environment link
8 heavi snowfal new brunswick hampshir new environment assess environment link
9 winter weather warn environ canada carolina new hampshir new assess environment
10 warn issu cold winter carolina new environment assess

campus network
1 campu network campu network network network network network
2 uw campu network uw campu network network uw network network level network
3 uw campu uw campu network level network network uw network
4 roger watt network connect uw network network subscrib network
5 roger watt ist level network network uw level network level network
6 watt ist high speed network subscrib network level network
7 ip address uw resnet network assign network network level
8 ip network connect uw network uw campu network network assign network
9 high speed area campu network network level extern network level network level network
10 request registr switch rout level network level network network level network rout

The keyphrases extracted by the variants of the CorePhrase4 algorithm were
very close to the reference topic, which is a subjective verification of the algo-
rithm correctness. We leave it to the reader to judge the quality of the keyphrases.

The first observation is that CorePhrase performs consistently better than
the keyword centroid method. This is attributed to the keyphrases being in

3 Due to paper size limitation. A full list that can be obtained from:
http://pami.uwaterloo.ca/˜hammouda/corephrase/results.html

4 Throughout this discussion the name CorePhrase will refer to both CorePhrase-
1 and CorePhrase-2, while CorePhrase-M will refer to both CorePhrase-1M and
CorePhrase-2M; unless otherwise specified.



CorePhrase: Keyphrase Extraction for Document Clustering 273

Table 3. Performance of the CorePhrase algorithm

CorePhrase-1 CorePhrase-2 CorePhrase-1M CorePhrase-2M Keyword Centroid

class
overlap
(avg,max)

precision
overlap
(avg,max)

precision
overlap
(avg,max)

precision
overlap
(avg,max)

precision
overlap
(avg,max)

precision

Dataset 1
canada transportation (0.45,1.00) 1.00 (0.32,1.00) 1.00 (0.47,1.00) 1.00 (0.57,1.00) 1.00 (0.22,0.50) 0.5
winter weather canada (0.22,0.67) 0.60 (0.28,0.67) 0.60 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.0
snowboarding skiing (0.37,1.00) 1.00 (0.47,1.00) 1.00 (0.58,1.00) 0.90 (0.58,1.00) 0.90 (0.24,0.50) 0.5
river fishing (0.41,1.00) 0.90 (0.41,1.00) 0.80 (0.43,1.00) 0.60 (0.39,1.00) 0.60 (0.14,0.50) 0.5
river rafting (0.38,1.00) 1.00 (0.42,1.00) 1.00 (0.68,0.67) 0.90 (0.65,0.67) 1.00 (0.32,0.50) 0.5
black bear attacks (0.45,1.00) 0.80 (0.48,1.00) 0.80 (0.47,1.00) 0.60 (0.51,1.00) 0.60 (0.25,0.33) 0.33

data set 1 average (0.38,0.95) 0.88 (0.39,0.95) 0.87 (0.44,0.78) 0.67 (0.45,0.78) 0.68 (0.20,0.39) 0.39

Dataset 2
co-operative education (0.38,1.00) 0.20 (0.47,1.00) 0.30 (0.55,1.00) 0.80 (0.83,1.00) 0.90 (0.41,0.50) 0.3
career services (0.37,1.00) 0.70 (0.42,1.00) 0.70 (0.58,1.00) 0.90 (0.43,1.00) 0.90 (0.26,0.50) 0.5
health services (0.28,1.00) 0.70 (0.38,1.00) 0.70 (0.32,1.00) 0.50 (0.21,0.33) 0.33 (0.10,0.50) 0.5
campus network (0.23,1.00) 1.00 (0.40,1.00) 1.00 (0.38,0.67) 0.20 (0.33,0.50) 0.50 (0.12,0.50) 0.5

data set 2 average (0.31,1.00) 0.65 (0.42,1.00) 0.68 (0.46,0.92) 0.60 (0.45,0.71) 0.66 (0.22,0.46) 0.45

overall average (0.35,0.97) 0.79 (0.40,0.97) 0.79 (0.45,0.83) 0.64 (0.45,0.75) 0.67 (0.21,0.42) 0.41
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Fig. 3. CorePhrase Accuracy Comparison

greater overlap with the reference topic than the naturally-shorter keywords. An
interesting observation also is that CorePhrase-M, which is based on weighted
words for phrase-scoring, and the keyword centroid follow the same trend. This
is due to the link between the phrase scores and their constituent word scores.

Variants of the algorithm that use the depth feature are consistently better in
terms of both overlap and precision. This is attributed to the fact that some com-
mon phrases usually appear at the end of each document (such as “last updated”,
“copyright”, etc.). If depth information is ignored, these phrases make their way
up the rank (e.g. the phrase “roger watt” in campus network cluster, which is
the name of the network maintainer that appears at the end of each document.)

CorePhrase is somewhat better than its word-weighted counterpart
(CorePhrase-M) in extracting the best phrase and ranking it among the top 10,
where it achieves 97% overlap on average for the best phrase. The word-weighted
variant achieves 83% maximum overlap on average for the best phrase.

When the top 10 keyphrases are considered as a set, the word-weighted variant
achieves better average overlap performance in (45% for CorePhrase-M against
40% for CorePhrase). This is attributed to CorPhrase-M extracting heavily
weighted words that often overlap with the topic, but not necessarily are the best
descriptive phrases. (An example is the winter weather canada cluster.)
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A final observation is that CorePhrase consistently achieves better precision
than CorePhrase-M (79% for CorePhrase against 67% for CorePhrase-M.) This
means that CorePhrase does not only find the best keyphrase, but ranks it higher
than CorePhrase-M.

To summarize these findings: (a) CorePhrase is more accurate than keyword-
based algorithms; (b) using phrase depth information achieves better perfor-
mance; (c) using word-weights usually produces a better set of phrases; however,
ignoring the word-weights usually produces better descriptive phrases; and (d)
CorePhrase is able to identify the reference topic in the top few keyphrases.

5 Conclusions and Future Work

We presented the CorePhrase algorithm for accurately extracting descriptive
keyphrases from text clusters. It is domain independent, and achieves high accu-
racy in identifying the topic of a document cluster compared with keyword-based
cluster labeling algorithms.

The algorithm can be used to label clusters accurately, and to summarize
clusters for other purposes such as calculating cluster-to-cluster or document-
to-cluster similarity.

Future directions include using more features for the candidate phrases, based
on heuristics of what constitutes a good phrase. Other ranking schemes are being
investigated. Also the set of top keyphrases could be enhanced by removing
spurious permutations and sub-phrases that appear in other phrases.
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Abstract. In this paper, a new feature transformation method is introduced to 
decrease misclassification rate. Linear classifiers in general are not able to clas-
sify feature vectors which lie in a high dimensional feature space. When the 
feature vectors from difference classes have underlying distributions which are 
severely overlapped, it is even more difficult to classify those feature vectors 
with desirable performance. In this case, data reduction or feature transforma-
tion typically finds a feature subspace in which feature vectors can be well 
separated. However, it is still not possible to overcome misclassifications which 
results from the overlapping area. The proposed feature transformation in-
creases the dimension of a feature vector by combining other feature vectors in 
the same class and then follows typical data reduction process. Significantly 
improved separability in terms of linear classifiers is achieved through such a 
sequential process and is identified in the experimental results. 

1   Introduction 

The purpose of pattern classification is to decide the class of the data which is as-
sumed to consist of (C, x) pairs where C is the class to which x, which is an  
r-dimensional feature vector, belongs. There are many traditional and modern ap-
proaches to estimate the underlying distributions. Some of them [1], [8] attempt to 
estimate the class conditional probability distribution of a feature vector x by assum-
ing specific distributional form of underlying distributions. On the contrary, other 
approaches [2], [4], [5], which are typically called nonparametric methods, try to 
estimate the probability distributions without assuming any distributional form. 

Once the distributions are estimated in either method, feature space is separated by a 
selected classifier. In fact, the selection of classifier is strongly related with the estima-
tion method since the classifier is built upon the estimated underlying distributions. 

In a high dimensional feature space, classification process may suffer from so 
called curse of dimensionality. Most of the approaches for feature classification in-
volve a data reduction or feature transformation step. This step basically reduces the 
dimension of feature space so that feature vectors can be well separated in the new 
lower dimensional feature space. 
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Various methods have been proposed in literature for feature transformation/data 
reduction; Fisher’s approach [3], [6], [12], [13], removal classification structures [15], 
adaptive linear dimensionality reduction [16], linear constrained distance-based clas-
sifier analysis [17] and others [7], [8], [9], [10], [11]. These approaches consistently 
try to transform feature vectors into a feature space of lower dimension. 

In this paper, a new feature transformation is proposed and its effect is investigated 
in terms of linear classifiers. The paper is organized as follows: In Section 2, basic 
idea of the proposed feature transformation is introduced. In Section 3, a new feature 
transformation is explained in detail with mathematical derivation and its effect on the 
underlying distributions is analyzed. Unsupervised image classification process incor-
porating a new feature transformation is described in Section 4 as an application. The 
experimental results are presented in Section 5, which is followed by the conclusions 
in Section 6. 

2   Basic Idea 

For solving multidimensional classification problems, Fisher [3] suggested a method, 
which projected the data from d dimensions onto a line with specific direction for 
which the projected data were well separated. The projected value was obtained by 
linear combination of the components of x, thus every multidimensional data was 
converted to a scalar by this linear combination. 

Such a linear combination turned out to be the product of the difference of the 
means of classes and the common inverse covariance matrix. This process is equiva-
lent to maximizing the ratio of between-class variation to within-class variation. 

Fisher’s main idea would rather be interpreted as how to linearly reduce the dimen-
sion of the feature space so that linear classifiers can give the best classification result. 
In this paper, the proposed method takes an opposite direction. Instead of reducing the 
dimension of the data, we first increase the dimension of the data by combining sev-
eral feature vectors in the same class and make a new feature space and then reduce 
the dimension of the new feature space. By inserting the process of increasing data 
dimension, a very interesting fact is found with respect to feature classification. 

Comparing the distributions between the original feature space and a new feature 
space, a new feature space gives much better separability for classification. That  
is, the distance between the means of existing probability distributions in the feature 
space gets longer compared to the change of their standard deviations. This in turn 
reduces the overlapping area between the probability distributions. Such an augmenta-
tion of the dimension of the feature space will be called a feature transformation  
hereafter. 

Feature transformation requires a couple of assumptions. One of them is that the 
probability distributions of classes in the feature space should be normally distributed 
and the other is that those distributions have a common covariance. 

In the following section, the proposed feature transformation will be derived 
mathematically and shows how the feature transformation changes the class condi-
tional probability distributions so as to be suitable for linear classifiers. 
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3   Multivariate Feature Transformation 

Suppose there are two classes and the ith class is represented as 

( )N , ,  1,2i i iπ =μ . It is assumed that all the classes have a common covariance 

matrix . We would like to assign a sample data x, which is an r-dimensional random 
vector, to the most probable class among the two classes. 

Let us define a new random vector x* which consists of a certain number of ran-
dom vectors in the same class. In other words, a new random vector is a composite 
random vector whose elements are random vectors from the same class. For example, 
take (s + 1) random vectors around a neighborhood of the centered random vector x0, 

{ }( ) : 0, ,i
j j s=x  in the ith class and make a new random vector x0

(i)* which has r(s + 1) 

dimension in proportion to the number of component vectors. The random vector x0
(i)* 

is regarded as an extended random vector of x0
(i) and is represented as follows: 

T( )* T T T
0 1

i
s=x x x x  (1) 

Note that the subscript of x(i)* is omitted for brevity. Unless otherwise specified, the 
subscript of the extended random vector is the same as that of the first component 
vector. The mean vector of x(i)* whose component random vectors are from the ith 
class becomes 

*
i i= ⊗μ 1 μ  (2) 

where the operator ⊗  denotes a direct product in matrix operation. In addition, a 
covariance between two random vectors (xj

(i), xk
(i)) can be defined as 

( )( ) ( )Cov ,i i
j k jkρ=x x  (3) 

which generate the covariance matrix of x(i)* in (4). For simplicity, the superscript for 
labeling the class from which the random vectors come is omitted, therefore, xj is 
substituted for xj

(i) and x* is substituted for x(i)* as needed. 
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(4) 

As a result, a new multivariate normal random vector x* whose mean vector is μ* 
and covariance matrix * is obtained. 

( )* * *N ,x μ  (5) 

Now, discriminant function Di
* [18] for the random vector x(i)* is written compared to 

Di for x(i). 
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After some mathematical expansions, Li
* can be described in terms of Li in (7). The  

in (7) is a vector whose elements are the sum of elements of each row vector of the 
inverse of correlation coefficient matrix C* in (4). 

( ) [ ]

*T T T

T TT * 1
0 1, , ,

i i

sδ δ δ−

= ⊗

= =

L L

1 C
 

(7) 

The discriminant function Di
* is finally represented in (8) and is described in terms of 

the random vector x. In other words, the discriminant function of composite random 
vector x* is characterized by the terms in the discriminant function of the random 
vector x. 

* T ( )

0 0

1
D

2

s s
i

i i n n i n

n n

δ δ
= =

= −L x μ  
(8) 

Now, we define a new random vector G in (9) as a linear combination of (s + 1) 
number of random vector x’s. 

0

s

n n

n

δ
=

=G x  (9) 

Eq. (9) corresponds to the proposed feature transformation. The coefficients of the 
linear combination are derived from the correlation coefficient matrix of random 
vector x. Once the expectation μG and the covariance matrix G are obtained, the 
discriminant function of G is described in (10). Comparing (10) with (8), it is recog-
nized that the results are equivalent, which means that the discriminant function Di

* 
can be considered as the discriminant function Di(G). 
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Since a linear combination of the normal random vectors also follows a normal distri-
bution, the distribution of the random vector G will be 

( )N ,

, ,i n

n

k k k δ= ⋅ = ⋅ =

G G

G G

G μ

μ μ
 

(11) 

In summary, a multivariate random vector x is transformed into a multivariate ran-
dom vector G by means of creating a composite random vector x*. The mean vector 
of G simply becomes k times larger than the mean vector of x and the covariance 
matrix becomes also k times larger than that of x. This is a very important observation 
to indicate how feature transformation changes the class conditional probability dis-
tributions and achieves better separability. Since the distance between the means  
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becomes k times larger while the spread of the distributions becomes k times larger, 
the distributions get farther away after feature transformation and it gives better  
separability. 

4   Unsupervised Image Classification 

In the previous section, we have seen that the linear combination of an extended ran-
dom vector whose component random vectors came from the same class produced a 
new random vector and the separability of new random vectors between different 
classes was significantly improved in terms of linear classifiers. 

One of the applications for the proposed method would be image classification. In 
general, objective of image classification is the separation of the regions or objects in 
the image which have different characteristics. Due to the characteristics of image, 
most of the homogeneous objects or regions occupy a certain area in an image and 
feature vectors from the same object are located in the neighborhood. Thus, determi-
nation of classification of a feature vector can be made associated with the determina-
tions of the neighboring feature vectors. 

In our experiments, an iterative unsupervised classification is chosen. This classifi-
cation process does not need a training process. Given that the number of regions (or 
classes) into which an image is supposed to be separated, a simple clustering algo-
rithm is applied to classify the feature vectors and thus a provisional result of classifi-
cation is obtained. 

The purpose of the provisional result of classification by given clustering algorithm 
is to extract intermediate information about each class and to calculate the coefficient 
vectors  for each class for feature transformation, which compose an initial iteration. 
From the second iteration a selected linear classifier classifies the feature space re-
sulted from the previous feature transformation. 

 

Fig. 1. Unsupervised classification procedure 
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As the proposed feature transformation has been mathematically proved in Section 3, 
the distributions of feature vectors of the classes becomes farther away each other, 
which results in a smaller misclassification rate from the smaller overlapping area 
between two probability distributions. 

Until the conditions for terminating process are satisfied, the iterative procedure is 
continued. One of the conditions for termination is the size of the value k in (13). If k 
is not larger than one, such a transformation does not give a better separability in the 
feature space. 

Fig. 1 shows the iterative procedure for image classification explained in the 
above. Note that since the main contribution of this paper is the method of feature 
transformation, any other clustering method can be used depending on particular 
need, although, in our experiments, K-means clustering method is used. 

5   Experimental Results 

We simulate the proposed method with a synthetic data set. The data set is generated 
from multivariate number generator with a mean vector and a covariance matrix. Each 
feature vector is located by given coordinate in an image as Fig. 2(e) according to its 
class. The size of the image is 26x26 so that the total number of feature vectors from 
two classes is 676. Synthetic feature vectors are generated with parameter sets whose 
mean vectors are [-1.0 1.0] and [1.0 -1.0] each, and the common covariance matrix 
whose diagonal elements are 10.0. 

Fig. 2(a) shows the initial distributions of feature vectors from two classes. Since 
the distance from two mean vectors is much smaller than the size of variances in the 
covariance matrix, the feature vectors are heavily overlapped between classes. None 
of the linear classifiers seem to be adequate to classify feature vectors with desirable 
performance. Assuming that feature vectors are independently extracted, the first 
feature transformation is executed with the  vector having all ones. After first trans-
formation, K-means clustering method is used to make a temporary classification 
map. Fig. 2(b) shows this classification map and the two classes in Fig. 2(b) look 
more separated than in Fig. 2(a). Fig. 2(b) simply represent temporary determined 
classes so that each class may contain feature vectors that are actually misclassified. 

After four iterations, the distributions of feature vectors become more suitable for 
linear classification as in Fig. 2(c). Now, any linear classifiers can be selected to sepa-
rate the transformed feature vectors. Fig. 2(d) shows the error rate at each iteration by 
linear discriminant function and the locations of misclassified feature vectors are 
illustrated in Fig. 2(f) compared to the true classification map in Fig. 2(e). In the light 
of the above simulations, the proposed method indicates a new possibility for image 
classification. 

Now, the proposed method is applied to a practical classification data. Original 
data set is from the UCI Machine Learning Repository [14]. Feature vectors in the 
original data set are extracted from an image which contains seven different regions, 
which are grass, path, cement, sky, brickface, foliage and window. A feature vector 
from each region is characterized by 19 feature components. In our experiments, for 
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the sake of visualization, two regions (cement and foliage) are selected and two most 
significant feature components (intensity-mean and value-mean) are chosen in the 
experiments. 

 
        (a)                                                                     (b) 

 
(c) 

     
                                 (d)                                                  (e)                              (f) 

Fig. 2. Result from simulation. (a) Distributions of feature vectors of two classes. (b) Tempo-
rary classification by K-means algorithm. (c) Distributions of feature vectors of two classes 
after the last feature transformation. (d) Error rates on every iteration. (e) True classification 
map. (f) Classification map from the proposed method 



282 E. Bak 

 

The data seems to be relatively linearly separable. However, as can be in Fig. 3(a) 
and Fig. 3(b), data distributions are not completely separable so that it would not be 
possible to separate the data without misclassification by any linear classifiers. 

 
         (a)                                                                      (b) 

 

 
(c) 

   
                                   (d)                                               (e)                            (f) 

Fig. 3. Results from a real data set. (a) Distributions of feature vectors of two classes. (b) Tem-
porary classification by K-means algorithm. (c) Distributions of feature vectors of two classes 
after the last feature transformation. (d) Error rates on every iteration. (e) True classification 
map. (f) Classification map from the proposed method 
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Surprisingly, Fig. 3(c)-(f) show the results of classification using feature 
transformation. Taking into account the features in the neighborhood, the proposed 
method changes the data distributions as much as it can be linearly separated. Fig. 
3(c) shows the last data distributions on which linear discriminant function is to be 
applied. Feature vectors are separated without misclassifications and are illustrated in 
Fig. 3(f). As a result, two regions (cement-foliage) which have different natural char-
acteristics are completely separated without misclassification through the proposed 
method. 

6   Conclusions 

A new feature transformation method is introduced. It increases the dimension of a 
feature vector by combining other feature vectors in the same class and then follows a 
typical data reduction process. The proposed method eventually gives significantly 
improved separability in feature space in terms of linear classifiers and the promising 
experimental results are presented. 
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Abstract. The purpose of the present work is to compare three classi-
fiers: Fisher’s Linear Discriminant Analysis, Multilayer Perceptron and
Support Vector Machine to diagnosis of lung nodule. These algorithms
are tested on a database with 36 nodules, being 29 benigns and 7 malig-
nants. Results show that the three algorithms had similar performance
on this particular task.

Keywords: Fisher’s Linear Discriminant Analysis, Multilayer Percep-
tron, Support Vector Machine, Diagnosis of Lung Nodule.

1 Introduction

Lung cancer is known as one of the cancers with shortest survival after diag-
nosis [1]. Therefore, the sooner it is detected the larger the patient’s chance of
cure. On the other hand, the more information physicians have available, the
more precise the diagnosis will be.

Solitary lung nodules are an approximately round lesion less than 3 cm in
diameter and completely surrounded by pulmonary parenchyma. Larger lesions
should be referred to as pulmonary masses and should be managed as likely ma-
lignant. In this situation, prompt diagnosis and staging are necessary to choose
the proper treatment [1].

On the other hand, manage a pulmonary nodule is always a challenge, be-
cause in spite of benign possibility becoming more important as the nodule’s
dimension decreases, malignity has always to be excluded. If malignity has more
than 5% of chance to be present a biopsy method must be indicated and for
more than 60% the pacient is sent directly to ressection. Less than 5% allows
a close following to prove stability. A recent problem, which has been becom-
ing more frequent nowadays, is that Computerized Tomography (CT) is finding
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nodules not visibles in a conventional chest X-ray in high risk groups (ie. heavy
smokers) and frequently their little dimensions make difficult or impossible a
biopsy procedure. On the other side, systematic ressection would increase un-
necessary surgery at unacceptables levels. In this circumstance, a quantitative
image method of volumetric determination are becoming recognized as an im-
portant parameter to stablish following criteria.

Macroscopicaly, lung nodules have a very variable tissue’s structure. There
can be nodules with tissue alterations almost imperceptible to the human eye
and others presenting very noticeable alterations. The diagnosis gold standard
is the histological examination, but image methods and in special Computed
X-ray Tomography can aid diagnostic process in analyzing nodule’s atributes
like shape, presence and pattern of calcifications, walls of cavitations, aerobron-
chogram and, more recentely, mean attenuation coefficient before and after in-
travenous contrast standardized injection.

However, besides numerous reports of qualitative morphologic CT data in
medical literature, there are relatively few reports of quantitative CT data and
it seems that, in general, they are underutilized. We hipothetized that quantita-
tive CT data derived from geometric and texture parameters may contribute to
differential diagnosis between benign and malignant solitary pulmonary nodule,
even without contrast utilization. The top row in Figure 1 shows the texture
for two benign (a and b) and two malignant (c and d) nodules. The bottom
row in Figure 1 shows the shape for two benign (a and b) and two malignant
(c and d).

The purpose of the present work is to compare three classifiers: Fisher’s Linear
Discriminant Analysis, Multilayer Perceptron and Support Vector Machine to
diagnosis of lung nodule. Features extracted of nodules are based on CT images
and analysis is supplied regarding the 3D geometry of the nodule. The validation
of the classifiers is done by means of leave-one-out technique. The analysis and
evaluation of tests was done using the area under the ROC (Receiver Operation
Characteristic) [2] curve.

Fig. 1. Examples of benign lung nodules and malignant lung nodules
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2 Methods

2.1 Image Acquisition

The images were acquired with a Helical GE Pro Speed tomography under the
following conditions: tube voltage 120 kVp, tube current 100 mA, image size
512×512 pixels, voxel size 0.67 × 0.67 × 1.0 mm. The images were quantized in
12 bits and stored in the DICOM format [3].

2.2 3D Extraction and Reconstruction of Lung Nodules

In most cases, lung nodules are easy to be visually detected by physicians, since
their shape and location are different from other lung structures. However, the
nodule’s voxel density is similar to that of other structures, such as blood ves-
sels, which makes automatic computer detection difficult. This happens espe-
cially when a nodule is adjacent to the pleura. For these reasons, we have used
the 3D region-growing algorithm with voxel aggregation [4]to make the nodule
detection, which provides physician greater interactivity and control over the
segmentation and determination of required parameters (thresholds, initial and
final slice, and seed).

Two other resources provide greater control in the segmentation procedure:
the barrier and the eraser. The barrier is a cylinder placed around the nodule
by the user with the purpose of restricting the region of interest and stopping
the segmentation by voxel aggregation from invading other lung structures. The
eraser is a resource of the system that allows physicians to erase undesired struc-
tures, either before or after segmentation, in order to avoid and correct segmen-
tation errors [5]. The bottom row in Figure 1 shows the 3D reconstruction of the
nodules in the top row and exemplifies the nodule segmentation.

2.3 Lung Nodule Features

Skeletonization is a convenient tool to obtain a simplified representation of
shapes that preserves most topological information [6]. A skeleton captures the
local symmetry axes and is therefore centered in the object. In image analysis,
features extracted from skeletons are commonly used in pattern-recognition al-
gorithms [7]. Skeletons contain information about shape features which are very
important in this work context.

We have used Zhou and Toga’s algorithm [8] in the skeletonization process.
They have proposed a voxel-coding approach to efficiently skeletonize volumetric
objects. Each object point has two codes. One is the Boundary Seeded code (BS),
which coincides with the traditional distance transform to indicate the minimum
distance to the object’s boundary. The second code is the so-called Single Seeded
code (SS), which indicates the distance to a specific reference point. SS code is used
to extract the shortest path between a point in the object and the reference point.
These paths are representedby sequential sets of voxels thatwill compose the initial
skeleton. The key idea of voxel coding is to use the SS codes to generate a connected
raw skeleton and the BS codes to assure the centeredness of the final skeleton.
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Fig. 2. Application of the skeleton algorithm based on the nodules in Figure 1(a), (b),
(c) and (d)

Figure 2 shows the application the skeleton algorithm based on the nodules
in Figure 1(a), (b), (c) and (d), respectively. It is easy observe that malignant
nodules have more segments than benign nodules.

We have extracted ten measures based on skeletons to analyze lung nodules,
six of them have been used to describe the nodule’s geometry. They are :

a) Number of Segments (NS)
b) Number of Branches (NB)
c) Fraction of Volume (FV): FV is defined by

FV =
v

V

where v is the skeleton volume and V is the lung nodule’s volume.
d) Length of Segments (LS):Defined by

LS =
L
3
√

V

where L is the length of all segments and V is the lung nodule’s volume.
e) Volume of the Skeleton Convex Hull (VCH)
f) Rate between the number of segments and the volume of the convex hull

(NSVCH) [7]
Trying to charcaterize the nodule based on the skeleton texture we com-

pute the density histogram of the N larger skeleton segments, where N is the
smaller number of segments in the nodule’s database. From this histogram
e compute:

g) Variation Coefficient (VC): The VC is a measure of relative dispersion and
is given by

V C =
σ

μ

where σ is the standard deviation and μ is the mean.
h) Histogram Moments (variance (M2), skewness (M3), kurtosis (M4)) defined

as:

Mn =
∑

(xi − μ)n
fi

N
(1)

where n = 2, 3, 4 , μ is the mean, N denotes the number of voxels in the
segment, and fi is the histogram.

More detailed information on moment theory can be found in [9].
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2.4 Classification Algorithms

A wide variety of approaches has been taken towards the classification task.
Three main historical strands of research can be identified [10]: statistical, neu-
ral network and machine learning. This section give an overview of Fisher’s Lin-
ear Discriminant Analysis, Multilayer Perceptron and Support Vector Machine
based on paradigms cited above.

Fisher’s Linear Discriminant Analysis - FLDA: Linear discrimination,
as the name suggests, looks for linear combinations of the input variables that
can provide an adequate separation for the given classes. Rather than look for a
particular parametric form of distribution, LDA uses an empirical approach to
define linear decision planes in the attribute space i.e. it models a surface. The
discriminant functions used by LDA are built up as a linear combination of the
variables that seek to somehow maximize the differences between the classes [11]:

y = β1x1 + β2x2 + · · · + βnxn = β
′
x (2)

The problem then reduces to find a suitable vector β. There are several
popular variations of this idea, one of the most successful being the Fisher Linear
Discriminant Rule. Fisher’s Rule is considered a “sensible” classification, in the
sense that it is intuitively appealing. It makes use of the fact that distributions
that have a greater variance between their classes than within each class should
be easier to separate. Therefore, it searches for a linear function in the attribute
space that maximizes the ratio of the between-group sum-of-squares (B) to the
within-group sum-of-squares (W ). This can be achieved by maximizing the ratio

β′Bβ

β′Wβ
(3)

and it turns out that the vector that maximizes this ratio, β, is the eigenvector
corresponding to the largest eigenvalue of W−1B i.e. the linear discriminant
function y is equivalent to the first canonical variate. Hence the discriminant
rule can be written as:

x ∈ i if
∣∣βT x − βT ui

∣∣ < ∣∣βT x − βT uj

∣∣ , for all j �= i (4)

where W =
∑

niSi and B =
∑

ni(xi − x)(xi − x)
′
, and ni is class i sample size,

Si is class i covariance matrix, xi is the class i mean sample value and x is the
population mean.

Stepwise discriminant analysis [11] was used to select the best variables to
differentiate between groups. These measures were used in the FLDA, MLP and
SVM classifiers.

Multilayer Perceptron: The Multilayer Perceptron - MLP, a feed-forward
back-propagation network, is the most popular neural network technique in pat-
tern recognition [12], [13]. Briefly, MLPs are supervised learning classifiers that
consist of an input layer, an output layer, and one or more hidden layers that
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extract useful information during learning and assign modifiable weighting coef-
ficients to components of the input layers. In the first (forward) pass, weights are
assigned to the input units and to the nodes in the hidden layers and between
the nodes in the hidden layer and the output, determine the output. The output
is compared with the target output. An error signal is back propagated and the
connection weights are adjusted correspondingly. During training, MLPs con-
struct a multidimensional space, defined by the activation of the hidden nodes,
so that the two classes (benign and malignant nodules) are as separable as pos-
sible. The separating surface adapts to the data.

Support Vector Machine: The Support Vector Machine (SVM) introduced
by V. Vapnik in 1995 is a method to estimate the function classifying the data
into two classes [14], [15]. The basic idea of SVM is to construct a hyperplane as
the decision surface in such a way that the margin of separation between positive
and negative examples is maximized. The SVM term comes from the fact that
the points in the training set which are closest to the decision surface are called
support vectors. SVM achieves this by the structural risk minimization principle
that is based on the fact that the error rate of a learning machine on the test
data is bounded by the sum of the training-error rate and a term that depends
on the Vapnik-Chervonenkis (VC) dimension.

The process starts with a training set of points xi ∈ �n,i = 1, 2, · · · , l where
each point xi belongs to one of two classes identified by the label yi ∈ {−1, 1}.
The goal of maximum margin classification is to separate the two classes by
a hyperplane such that the distance to the support vectors is maximized. The
construction can be thought as follow: each point x in the input space is mapped
to a point z = Φ(x) of a higher dimensional space, called the feature space, where
the data are linearly separated by a hyperplane. The nature of data determines
how the method proceeds. There are data that are linearly separable, nonlinearly
separable and with impossible separation. This last case be still tracted by the
SVM. The key property in this construction is that we can write our decision
function using a kernel function K(x, y) which is given by the function Φ(x)
that maps the input space into the feature space. Such decision surface has the
equation:

f(x) =
l∑

i=1

αiyiK(x, xi) + b (5)

where K(x, xi) = Φ(x).Φ(xi), and the coefficients αi and the b are the solutions
of a convex quadratic programming problem [14], namely

min
w,b,ξ

1
2wT · w + C

l∑
i=1

ξi

subject to yi

[
wT · φ (xi) + b

] ≥ 1 − ξi

ξi ≥ 0.

(6)

where C > 0 is a parameter to be chosen by the user, which corresponds to
the strength of the penalty errors, and the ξi’s are slack variables that penalize
training errors.
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Classification of a new data point x is performed by computing the sign of
the right side of Equation 5. An important family of kernel functions is the Ra-
dial Basis Function, more commonly used for pattern recognition problems [14],
which has been used in this paper and is defined by:

K(x, y) = e−γ‖x−y‖2
(7)

where γ > 0 is a parameter that also is defined by the user.

2.5 Validation and Evaluation of the Classification Methods

In order to validate the classificatory power of the discriminant function, the
leave-one-out technique [16] was employed. Through this technique, the candi-
date nodules from 35 cases in our database were used to train the classifier; the
trained classifier was then applied to the candidate nodules in the remaining
case. This technique was repeated until all 36 cases in our database had been
the “remaining” case.

In order to evaluate the ability of the classifier to differentiate benign from
malignant nodules, the area (AUC) under the ROC (Receiver Operation Charac-
teristic) [2] curve was used. In other words, the ROC curve describes the ability of
the classifiers to correctly differentiate the set of lung nodule candidates into two
classes, based on the true-positive fraction (sensitivity) and false-positive fraction
(1-specificity). Sensitivity is defined by TP/(TP +FN), specificity is defined by
TN/(TN +FP ), and accuracy is defined by (TP +TN)/(TP +TN +FP +FN),
where TN is true-negative, FN is false-negative, FP is false-positive, and TP
is true-positive.

3 Results

The tests described in this paper were carried out using a sample of 36 nodules, 29
benign and 7 malignant. It is important to note that the nodules were diagnosed
by physicians and that the diagnosis was confirmed by means of surgery or
based on their evolution. Such process takes about two years, which explains the
reduced size of our sample.

There were no specific criteria to select the nodules. The sample included
nodules with varied sizes and shapes, with homogeneous and heterogeneous char-
acteristics, and in initial and advanced stages of development.

SPSS (Statistical Package for the Social Sciences) [17], LIBSVM [18] and
NeuralPower [19] were used to training and classification of lung nodules to
FLDA, MLP and SVM, respectively. ROCKIT [20] software was used to compute
and compare the area under the ROC curve.

Stepwise discriminant analysis [11] was used to select the best variables to
differentiate between groups, and the measures selected were NS, VCH and VC
(with N as 1). These measures were used to FLDA, MLP and SVM classifiers.

We use the following parameters in the MLP classifier: one hidden layer with
four units, hiperbolic tangent as the activation function, the value of 0.15 for the
learning ratio, the value of 0.75 for the momentum.
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Table 1. Analysis of FLDA, MLP and SVM classifiers

Classifiers Specificity Sensitivity Accuracy AUC ± SE
% % %

FLDA 89.7 71.4 86.1 0.946 ± 0.061
MLP 89.7 85.7 88.8 0.906 ± 0.079
SVM 89.7 57.1 83.3 0.892 ± 0.084

In the classification via SVM a proposed procedure by the authors of LIB-
SVM [18] was used to obtain the best constants C and γ with a process of 36-fold
cross-validation. In our case, C = 2.0 and γ = 2.0.

Table 1 shows the results of studied classifiers applied to nodule’s 3D geome-
try. Based on the area of the ROC curve, we have observed that: (i) All classifiers
have value AUC above 0.800, which means results with accuracy between good
and excellent [21]. (ii) SVM have the minor value of sensitivity. (iii) The differ-
ence between the ROC curve using the FLDA and the MLP classifiers did not
reach statistical significance (p = 0.641). The difference between the ROC curve
using the FLDA and the SVM classifiers did not reach statistical significance
(p = 0.523). The difference between the ROC curve using the MLP and the
SVM classifiers did not reach statistical significance (p = 0.799).

The number of nodules studied in our dataset is too small to allow us to
reach definitive conclusions, but preliminary results from this work are very
encouraging, demonstrating the potential for multiple variables used in a pattern
classification approach to discriminate benign from malignant lung nodules.

4 Conclusion

FLDA, MLP and SVM have been applied to many classifications problems, gen-
erally yielding good performance. In this paper, we have compared these three
classification algorithms on diagnosis of lung nodule. Results based on the anal-
ysis of the ROC curve have shown that the three algorithms had similar perfor-
mance on this particular task. But a more accurate analysis of the SVM shows
that it results in a not so good sensitivity, being less apropriated for a clinical
use. Based on these results, we have observed that such measures provide sig-
nificant support to a more detailed clinical investigation, and the results were
very encouraging when nodules were classified with these classifiers. Neverthe-
less, there is the need to perform tests with a larger database and more complex
cases in order to obtain a more precise behavior pattern.

Despite the good results obtained only by analyzing the geometry, further
information can be obtained by analyzing the texture. As a future work, we
propose a combination of texture and geometry measures for a more precise and
reliable diagnosis.
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Aristófanes Correâ Silva1, Valdeci Ribeiro da Silva Junior2,
Areolino de Almeida Neto1, and Anselmo Cardoso de Paiva2

1 Federal University of Maranhão - UFMA, Department of Electrical Engineering,
Av. dos Portugueses, SN, Campus do Bacanga, Bacanga,

65085-580, São Lúıs, MA, Brazil
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Abstract. This paper uses a set of 3D geometric measures with the
purpose of characterizing lung nodules as malignant or benign. Based
on a sample of 36 nodules, 29 benign and 7 malignant, these measures
are analyzed with a technique for classification and analysis called re-
forcement learning. We have concluded that this techinique allows good
discrimination from benign to malignant nodules.

1 Introduction

Lung cancer is known as one of the cancers with shortest survival after diag-
nosis [1]. Therefore, the sooner it is detected the larger the patient’s chance of
cure. On the other hand, the more information physicians have available, the
more precise the diagnosis will be.

In many cases, it is possible to characterize a nodule as malignant or benign
by analyzing its shape. If the nodule is rounded or has a well defined shape, it
is probably benign; if it is spiculated or has an irregular shape, it is probably
malignant. Figure 1 exemplifies such characteristics. However, in some cases it
is hard to distinguish malignant nodules from benign ones [2], [3].

To solve the nodule diagnosis problem we have in general a two phase ap-
proach. In the first phase we must extract nodules characteristics that must
help us to differentiate the benign from malignant ones. Next phase is devoted
to classify based on the extracted characteristics the nodules.

A common approach for the first phase are the model based techniques, that
use mathematical to describe the characteristics of lung nodule and thefore how
to find them is a set of images.

Statistical and learning based methods are commmonly applied to the second
phase, such as discriminant analysis, neural network and reinforcement learn-
ing [4], [5], [6]. Learning-based methods are a promissing techniques, they find
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Fig. 1. Examples of benign lung nodules (a and b) and malignant lung nodules (c and d)

out the characteristics from real images already classified as malignant ou benign
and “learn” what can define a particular type of nodule.

The purpose of the present work is to investigate the adequacy of the re-
inforcement learning technique to classify lung nodules based on a set of 3D
geometric measures extracted from the lung lesions Computerized Tomography
(CT) images.

This paper is organized as follows. Section 2 describes the image database
used in the paper, and discusses in detail the geometric measures used to dis-
criminate lung nodules. Tests, discussion and analysis of the application of rein-
forcement learning to the nodules classification are treated in Section 4. Finally,
Section 5 presents some concluding remarks.

2 Material and Methods

2.1 Image Acquisition

The images were acquired with a Helical GE Pro Speed tomography under the
following conditions: tube voltage 120 kVp, tube current 100 mA, image size
512×512 pixels, voxel size 0.67 × 0.67 × 1.0 mm. The images were quantized in
12 bits and stored in the DICOM format [7].

2.2 3D Extraction and Reconstruction of Lung Nodule

In most cases, lung nodules are easy to be visually detected by physicians, since
their shape and location are different from other lung structures. However, the
nodule voxel density is similar to that of other structures, such as blood vessels,
which makes automatic computer detection difficult. This happens especially
when a nodule is adjacent to the pleura. For these reasons, we have used the 3D
region growing algorithm with voxel aggregation [8], which provides physicians
greater interactivity and control over the segmentation and determination of
required parameters (thresholds, initial slice and seed).

The Marching Cubes algorithm [9] is used to build an explicit representation
of volume data. The measures described along the present paper will use this
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Fig. 2. (a)Application of Marching Cubes. (b) Application of Laplacian technique

representation. In order to remove irregularities of the reconstructed surface,
the Laplacian smoothing technique [10] is used. Figures 2 (a) and (b) show the
result of applying the Marching Cubes algorithm and the Laplacian technique,
respectively.

2.3 3D Geometric Measures

The measures to be presented in this section seek to capture information on the
nodule’s 3D geometry from the CT. The measures should ideally be invariant
to changes in the image’s parameters, such as voxel size, orientation, and slice
thickness.

Sphericity Index: The Sphericity Index (SI ) measures the nodule’s behavior
in relation to a spherical object. It is defined as

SI =
6
√

πV

A
3
2

(1)

where V is the surface volume and A corresponds to the surface area. Thus, if
the nodule’s shape is similar to a sphere, the value will be close to 1. In all cases,
SI ≤ 1.

Convexity Index: The Convexity Index (CI ) [11] measures the degree of
convexity, defined as the area of the surface of object B (A(B)) divided by the
area of the surface of its convex hull (A(HB)). That is,

CI =
A(B)

A(HB)
(2)

The more convex the object is, the closer the value of CI will be to 1. For all
objects, CI ≥ 1.

Curvature Index: The two measures presented below are based on the main
curvatures kmin and kmax, defined by

kmin,max = H ∓
√

H2 − K (3)

where K and H are the Gaussian and mean curvatures, respectively. The values
of H and K are estimated using the methods described in [12].
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a) Intrinsic curvature: The Intrinsic Curvature Index (ICI ) [11], [12] captures
information on the properties of the surface’s intrinsic curvatures, and is
defined as

ICI =
1
4π

∫ ∫
|kminkmax|dA (4)

Any undulation or salience on the surface with the shape of half a sphere
increments the Intrinsic Curvature Index by 0.5, regardless of its size - that
is, the ICI counts the number of regions with undulations or saliences on
the surface being analyzed.

b) Extrinsic curvature: The Extrinsic Curvature Index (ECI ) [11], [12] captures
information on the properties of the surface’s extrinsic curvatures, and is
defined as

ECI =
1
4π

∫ ∫
|kmax| (|kmax| − |kmin|) dA (5)

Any crack or gap with the shape of half a cylinder increments the ECI in
proportion to its length, starting at 0.5 if its length is equal to its diameter -
that is, the ECI counts the number and length (in relation to the diameter)
of semicylindrical cracks or gaps on the surface.

Types of Surfaces: With the values of extrinsic (H) and intrinsic (K) curva-
tures, it is possible to specify eight basic types of surfaces [13], [14]: peak (K > 0
and H < 0), pit (K > 0 and H > 0), ridge (K = 0 and H < 0), flat (K = 0 and
H = 0), valley (K = 0 and H > 0), saddle valley (K < 0 and H > 0), minimal
(K < 0 and H = 0), saddle ridge (K < 0 and H < 0).

The measures described below were presented in [15] for the classification of
lung nodules and the results were promising. However, they have computed cur-
vatures H and K directly from the voxel intensity values, while here we compute
them in relation to the extracted surface, which is composed by triangles.

In practice, it is difficult to determine values that are exactly equal to zero,
due to numerical precision. Therefore we have selected only types peak, pit, saddle
valley and saddle ridge for our analysis [15].

a) Amount of each Surface Type:
This measure indicates the relative frequency of each type of surface in the
nodule, where APK (Amount of peak surface), API (Amount of pit surface),
ASR (Amount of saddle ridge surface) and ASV (Amount of saddle valley
surface).

b) Area Index for each Surface Type:
For each surface type, the area occupied in the nodule divided by the total
nodule area is computed, where AIPK (Area Index for peak surface), AIPI
(Area Index for pit surface), AISR (Area Index for saddle ridge surface) and
AISV (Area Index for saddle valley surface).

c) Mean Curvedness for each Surface Type:
Curvedness is a positive number that measures the curvature amount or
intensity on the surface [13]:
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c =

√
k2
min + k2

max

2
(6)

The measures are based on the curvedness and the surface types. For each
surface type, the mean curvedness is determined using the curvedness of
each surface type, divided by the curvedness number in each surface type.
Where, CPK (mean curvedness for peak), CPI (mean curvedness for pit),
CSR (mean curvedness for saddle ridge) and CSV (mean curvedness for
saddle valley).

3 Classification Algorithm

The idea of classification is to encounter a path from the pattern presented
to a known target, in the present case to a malignant or to a benign pattern.
Furthermore the path found should be the shortest in some sense, in such way
that the presented pattern seems to be nearer from a known target and therefore
it can be considered of the type of the target. Considering the diverse techniques,
the Reinforcement Learning (RL) was chosen to find this path, because it can
learn without a mathematical model of a path and because it can learn a correct
path only using a reward when the target is encountered [16]. The RL technique
presents the following characteristics [17]: Intuitive data; Cumulative learning;
and Direct knowledge acquisition.

The first characteristic says that the data manipulated should come from
some physical measure or be easily understandable. The second one provides
the knowledge to grow up while more data are processed. The last one permits
an ease way to store the learning [17].

The RL technique works based on states and actions. The states are a set
of variables, each one storing a value of a specific measure. The objective of the
states is to configure some situation of an environment. For instance, a geometric
figure can be characterized by the number of sides, the size of each side and the
angle between each two sides, then for this case there are three different states.

Each set of states has a set of actions, whose objective is to provide a changing
in the environment, in order to achieve the desired goal. For example, for a mobile
robot in a room, the states can be the position and velocity of an obstacle in this
room. The actions are: turn right and turn left. Hence, for a given position and
velocity of an obstacle, the turn left action can be decided and for another set
of values from these states, to turn right is more adequate, all trying to achieve
the goal, in this example to avoid the obstacle [18].

As explained, for each set of state values, there are some actions. Each action
has a value, which is obtained during the training phase. This value is used to
find the best action, normally the action with the greatest value. As a action can
result in a bad or good experience, a (bad or good) reward is given to an action,
when it is chosen. Then one can say that a good action taken produces good value
for this action and a bad action, a bad value associated. So, a decision taken in
the future is based on values, which are obtained in the past, this means that an
action will be chosen based on past experiences, which are realized during the
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training phase. Therefore, in order to decide an action, the system identifies the
actions corresponding to the present set of state values and chooses the action
with the greatest value.

But how is obtained the values of each action? The values are obtained during
the training. In this phase, many trials are executed to find a path from an
initial point to the target. Each successful trial becomes a good reward. This
reward is given only to the action chosen, but it can be spread out for the others
action executed before. During the training, when an action is chosen, the value
associated to this action - Q(st, at) - is updated considering its present value,
the reward obtained with this choice r - and the value of the best action, which
will be chosen in the next step - maxa(Q(st+1, at+1)) -. So the action of the next
step can make an influence in the present action, of course in the next trial. The
following equation shows the Q-learning updating rule for an action [16].

Q(st, at) = Q(st, at) + α(r + γmaxa(Q(st+1, at+1)) − Q(st, at)) (7)

The two parameters α and γ are, respectively, the learning rate and the
discount rate. The last one is used to increase or not the influences of a previous
action in the future actions, in such way that γ = 0 means one action decided
now causes no influences in the next actions. Tha data structure Q is a matrix,
where each cell correponds to a particular set of states and actions. For example,
if the system has three states and two actions, then Q has five dimensions. To
be used in a matrix, states and actions must be discretized using any method.

4 Tests and Results

This section shows the results obtained from the application of the RL to a set
of lung nodules classification based on its 3D geometric characteristics, discrim-
inanting them between malignant from benign.

The tests described in this paper were carried out using a sample of 36 nod-
ules, 29 benign and 7 malignant. It is important to note that the nodules were
diagnosed by physicians and had the diagnosis confirmed by means of surgery
or based on their evolution. Such process takes about two years, which explains
the reduced size of our sample. The sample included nodules with varied sizes
and shapes, with homogeneous and heterogeneous characteristics, and in initial
and advanced stages of development.

The stepwise analysis [19] selected 5 out of the 13 measures (states), described
in Section 2.3, to be analyzed by the reinforcement learning classifier. The se-
lected states were ICE, QPK, QSR, QSV e CPI. Each state was discretized in
ten different values. Thus, an action increase, maintain or decrease the present
value of the corresponding state, generating five different actions, one for each
state. The discretization of each state is shown in Table 1.

With these states and actions, the matrix Q has the following size: 105x35,
because each state has ten different values and each action three possibilities.

The training was made selecting nineteen images of benign nodules and four
malignant, and we choose the more characteristic malignant and benign nodule
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Table 1. Discretization of each state

State ICE QPK QSR QSV CPI

1 45 - 492.61 9 - 145.88 5 - 167.55 23 - 369.83 0.24 - 0.27
2 492.61 - 1.39e+3 145.89 - 419.67 167.55 - 492.67 369.83 - 1.06e+3 0.27 - 0.32
3 1.39e+3 - 2.29e+3 419.67 - 693.44 492.67 - 817.78 1.06e+3 - 1.76e+3 0.32 - 0.37
4 2.28e+3 - 3.18e+3 693.44 - 967.22 817.77 - 1.14e+3 1.76e+3 - 2.45e+3 0.37 0.43
5 3.18e+3 - 4.07e+3 967.22 - 1,240 1.14e+3 - 1,467 2.45e+3 - 3.14e+3 0.43 - 0.48
6 4.07e+3 - 4.97e+3 1,241 - 1.51e+3 1,468 - 1.79e+3 3.14e+3 - 3.84e+3 0.48 - 0.53
7 4.97e+3 - 5.86e+3 1.51e+3 - 1.78e+3 1.79e+3 - 2.12e+3 3.84e+3 - 4.53e+3 0.53 0.58
8 5.86e+3 - 6.76e+3 1.79e+3 - 2.06e+3 2.12e+3 - 2.44e+3 4.53e+3 - 5.22e+3 0.58 0.64
9 6.76e+3 - 7.65e+3 2.06e+3 - 2.33e+3 2.44e+3 - 2.77e+3 5.22e+3 - 5.92e+3 0.64 - 0.69
10 7.65e+3 - 8,102 2.33e+3 - 2,473 2.77e+3 - 2,931 5.92e+3 - 6,266 0.69 - 0.719

as target. Each image was represented by the five states described above. During
the training, each set of states of an image was used as start point of a trip to the
target (malignant or benign). Each step of this trip consists of a set of actions,
one for each state. One set of actions can be: increase the value of state 1,
decrease the value of state 2, and so on. At the end of a trip, when the correct
target is found (malignant or benign), the training system provided a reward of
value one and zero for others points. After one trial, another trial was made using
data of another image. A session training containing all images is an episode.
In order to find out the best way, that means, the best action for each set of
states, sometimes actions must be chosen randomly. So, in this research, initially
the rate of random choice was 50%. The random choice of an action provides a
test of another path to the target and posterior comparation with the previous
paths.

After the training, the knowledge should have been acquired. This is verified
with a test of classification with images not used during the training phase. For
this purpose nine bening and two malignant images were selected.

Figure 3 shows the results obtained, where we used the remained nine benign
and two malignant nodules. In this figure we represent in the x-axis the nodules
case, being cases 1 to 9 benign and cases 10 and 11 malignant. On other hand,
the y-axis represent the number of steps from they start point to the target,
which means the number of actions taking to reach the case target. When a
case take a positive number of steps to reach the target we have a successful
classification. Otherwise a negative number represents an incorrect classification
and when the classification is not determined we set the number of steps as zero.

The obtained data was generated from four experiments, using 20000, 30000,
40000 and 50000 episodes in the training phase.

The number of right classification grows from 45% for 20000 episodes to 81%
for 50000 episodes; as show in Table 2, which indicate a good improvement in
the classification success as the number of episodes grows.

An interesting information observed in the results is for 40000 episodes,
when the number of successful classification decreased, which should be de-
rived from the random choices used in the training phase, that lead to a poor
learning. But, as already proved in RL theorem [16], a very high number of
episodes drives to a correct learning, generating a very high successful rate in the
classification.
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Fig. 3. Application of Reinforcement Learning technique

Table 2. Application of Reinforcement Learning technique

Success Error Non-Determined Number of Episodes
45.45% 36.36% 18.18% 20,000
72.72% 9.09% 18.18% 30,000
45.45% 45.45% 9.09% 40,000
81.81% 9.09% 9.09% 50,000

Due to the relatively small size of the existing CT lung nodule databases
and the various CT imaging acquisition protocols, it is difficult to compare the
diagnosis performance between the developed algorithms and others proposed
in the literature.

5 Conclusion

This paper presented the use of reinforcement learning to solve the problem of
lung nodules classification based on 3D geometrics characteristics.

The number of nodules studied in our dataset is too small and the dispropor-
tion in the samples does not allow us to make definitive conclusions, However,
the results obtained with our sample are very encouraging, demonstrating that
the reinforcement learning classifier using characteristics of the nodules’ geom-
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etry can effectively classify benign from malignant lung nodules based on CT
images. Nevertheless, there is the need to perform tests with a larger database
and more complex cases in order to obtain a more precise behavior pattern.

Despite the good results obtained we should research to find out a way to
shorter the training phase, while maintaining the learning quality. We also must
improve our nodules database to generate more definitive results and to make
possible the comparison with other classifiers.
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Abstract. In this paper, we constructed a Iris recognition algorithm based on 
point covering of high-dimensional space and Multi-weighted neuron of point 
covering of high-dimensional space, and proposed a new method for iris 
recognition based on point covering theory of high-dimensional space. In this 
method, irises are trained as “cognition” one class by one class, and it doesn’t 
influence the original recognition knowledge for samples of the new added 
class. The results of experiments show the rejection rate is 98.9%, the correct 
cognition rate and the error rate are 95.71% and 3.5% respectively. The 
experimental results demonstrate that the rejection rate of test samples excluded 
in the training samples class is very high. It proves the proposed method for iris 
recognition is effective.  

1   Introduction 

In recent years, with the development of information technology and the increasing 
need for security, intelligent personal identification has become a very important and 
urgent problem. The emerging biometric technology can solve the problem, which 
takes the unique, reliable and stable biometric features (such as fingerprints, iris, face, 
palm-prints, gait etc.) as identification body. This technology has very high security, 
reliability and effectivity. As one of the biometric technology, iris recognition has 
very high reliability. Comparing with other biometric identification technology, the 
fault acceptance rate and the fault rejection rate of iris recognition are very low. The 
technology of iris recognition has many advantages, i.e., stability, non-invasiveness, 
uniqueness. All there desirable properties make the technology of iris recognition has 
very high commercial value. Based on the above reasons, many researchers have 
applied themselves to this field. Daugman used multi-scale quadrature wavelets to 
extract texture-phase structure information of iris to generate a 2048-bit iriscode and 
compared the difference between a pair of iris representations by computing their 
Hamming distance via the XOR operator [1],[2]. Wildes et al. represented the iris 
texture with a Laplacian pyramid constructed with four different resolution levels and 
used the normalized correlation to determine whether the input image and the model 
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image are from the same class [3]. Boles et al. calculated zero-crossing representation 
of 1D wavelet transform at various resolution levels of a virtual circle on an iris image 
to characterize the texture of the iris. Iris mating was based on two dissimilarity 
functions [4][10[11]. In this paper, from the cognition science point of view, we 
constructed a neuron of point covering of high-dimensional space[5][6][7], and 
propose a new method for iris recognition based on point covering theory of high-
dimensional space and neural network[8][12]. The results of experiments show the 
rejection rate is 98.9%, the correct recognition rate and the error rate are 95.71% and 
3.5% respectively. The experimental results demonstrate that the rejection rate of test 
samples excluded in the training samples class is very high. It proves the proposed 
method for iris recognition is effective. 

   The remainder of this paper is organized as follows. Section 2 describes image 
preprocessing. Section 3 introduces iris recognition algorithm based on point covering 
theory of multi-dimensional space and neural network. Experiments results and 
experimental analysis are given in Section 4 and Section 5 respectively. 

2   Image Preprocessing 

Iris image preprocessing is mainly composed of iris localization, iris normalization 
and enhancement. 

2.1   Iris Localization 

Iris localization namely is the localization of the inner boundary and the outer 
boundary of a typical iris can approximately be taken as circles. It is the important 
part of the system of iris recognition, and exact localization is the premise of the iris 
identification and verification. 

2.1.1   Localization of the Inner Boundary 
The original iris image (see Fig.1(a)) has some character of the gray-scale 
distribution. The iris is darker than the sclera, and the pupil is greatly darker than the 
iris, as shown in Fig.1(a). From the histogram (see Fig.1(b)), we can clearly see that 
the low gray-scale mainly converges at the first peak value. Therefore, we adopt the 
binary transform to localize the inner boundary. From the image after binary 
transform (see Fig.2(a)), we find that the areas of zero gray-scale are almost the areas 
of the pupil and eyelash. Therefore, we reduce the influence of the eyelash by erode 
and dilation (see Fig.2(a)). 

                

              Fig. 1. (a) original image              (b) histogram of the iris 
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      Fig. 2. (a) binary image    (b) binary image after erode and dilation  (c) localized image 

From the Fig 2(b), we can find that the length and the midpoint of the longest 
chord can be taken as the approximate diameter and center of the pupil respectively. 
Namely, according the geometry knowledge, let the length of the longest chord 
is maxdia , and the coordinates of the first point of the chord are xbegin  

and ybegin , then  

2

maxdia
xbeginxpupil += , ybeginypupil = ,

2

maxdia
rpupil =  

(1) 

Where xpupil  and ypupil  denote the center coordinates of the pupil, and rpupil  

denotes the radius of the pupil. 
When the quality of the image is reliable, this algorithm can localize the pupil 

quickly and exactly. Otherwise, we can correct the method as follow: 

1. We can reduce the searching area by subtracting the pixels on the edge of the 
image. 

2. We can get k  chords, which are less than a certain threshold near the longest 

chord, and take the average value of center coordinates of k  chord as the center 
of the pupil. 

2.1.2   Localization of the Outer Boundary 
The exact parameters of the outer boundary are obtained by using edge detection 
(Canny operator in our experiments) and Hough transform.  The image after Edge 
detection includes some useless points. For eliminating the influence, we remove the 

useless points between the areas of [ ]oo 150,30  and [ ]oo 315,225  according to the 

center of the pupil. Then, Hough transform is adopted to localize the outer boundary. 
   By the above method, we can localize the inner boundary and the outer boundary 

of the iris exactly.  The localizations results of the iris are showed in Fig.2(c). 

2.2   Iris Normalization and Enhancement 

Irises from different people may be captured in different size, and even for irises from 
the same eye, the size may change because of illumination variations and other factors 
(the pupil is very sensitive to lighting changes). Such elastic deformation in iris 
texture will influence the results of iris recognition. For the purpose of achieving 
more accurate recognition results, it is necessary to compensate for such deformation. 
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In our experiment, every point of the iris image is mapped to the polar coordinates by 
the following formula.  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )+−=

+−=
θθθ
θθθ

sp

sp

ryyrry

rxxrrx

1,

1,
 

(2) 

In which, ( )θpx , ( )θpy and ( )θsx  ( )θpy denote the point of 

intersection with the inner boundary and the outer boundary respectively. 

In our experiment, the sector areas ( [ ]oo 230,130 and [ ]oo 410,310 ) are 

intercepted for normalization according the pupil center. In this way, one hand, it is 
simple; on the other hand, the segment texture information is enough to identify the 
different persons. Then, the iris ring is unwrapped to a rectangular texture block with 

a fixed size ( )25664 × , and the rows correspond to the radius and the columns 

correspond to the angles (see Fig.3(a)).  The normalized iris image still has low 
contrast and may have non-uniform brightness caused by the position of light sources. 
All these may affect the feature analysis. Therefore, we enhance the normalized image 
by means of histogram equalization. Such processing compensates for non-uniform 
illumination, as well as improving the contrast of the image. The enhanced image is 
shown in Fig.3(b).  

  

                      Fig. 3. (a) normalized image                             (b)enhanced image 

3   Iris Recognition Algorithm Based on Point Covering of  
Multi-dimensional Space and Neural Network 

Multi-weighted neuron can be represented as following formula: 

]),,,,([ 21 ThWWWXfY m −Φ= L
 

(3) 

In which, ),,,,( 21 mWWWX LΦ denotes the relation between the input point 

X and m  weight ( mWWW ,,, 21 L ). Let 3=m , it is 3-weighted neuron, named 

3pSi . And 3pSi  can be described as follow: 

]),,,([ 321 ThWWWXfY −Φ=  (4) 

),,,( 321 WWWXΦ = ( )321 ,, WWWX θ−     (5) 
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In which, ( )321 ,, WWWθ  denotes the finite area, which is enclosed by three points 

( 1W , 2W , 3W ), and it is a triangle area. Namely, ( )321 ,, WWWθ  can be represented as 

follow: 

( )321 ,, WWWθ = ( )[ ] ( ) ]}1,0[],1,0[,11|{ 2.132211.12 ∈∈−+−+= αααααα WWWYY  (6) 

Then, ),,,( 321 WWWXΦ - Th  actually is the Euclid distance from X  to the 

triangle area of the 3pSi  neuron. The model of activation function is: 

>−
≤

=
Thx

Thx
xf

�

�

1

1
)(  

(7) 

In multi-dimensional space, we use every three sample’s points of the same class to 
construct a finite 2D plane, namely, a triangle. Then several 2D spaces can be 
constructed, and we cover these planes by the 3pSi neuron to approximate the 

complicated “shape”, which is formed by many sample points of the iris in multi-
dimensional space. 

3.1   Construction of Point Covering Area of Multi-dimensional Space 

Step 1: Let the sample points of the training set are α ={ }NAAA ,,, 21 L . In which, 

N is the number of the total sample points. To figure out the distance of every two 

points, the two points having the least distance are defined as 11B and 12B . Let 13B  

denotes the nearest point away from 11B  and 12B , and 13B must doesn’t in the line 

formed by 11B and 12B . In this way, 11B , 12B and 13B  construct the first triangle 

plane represented as 1θ , which is covered by a 3pSi  neuron, the covering area is: 

{ }n
X RXThXP ∈≤= ,|

11 θρ
 

(8) 

1θ = ( )[ ] ( ) ]}1,0[],1,0[,11|{ 2.113212111.12 ∈∈−+−+= αααααα BBBYY  (9) 

Where 
1θρ X denotes the distance from X to 1θ . 

Step 2: Firstly, The rest points contained in 1P  should be removed. Then, according 

to the method of step1, define the nearest point away from 11B , 12B and 13B  as 21B . 

Among 11B , 12B and 13B , two nearest points away from 21B  are denoted as 22B  and 

23B .  And 21B 22B  and 23B  construct the second triangle defined as 2θ , which is 

covered by another 3pSi  neuron. And the covering area is described as follow:  
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{ }n
X RXThXP ∈≤= ,|

22 θρ  (10) 

( )[ ] ( ) ]}1,0[],1,0[,11|{ 2.123222121.122 ∈∈−+−+== ααααααθ BBBYY  (11) 

Where 
2θρ X denotes the distance from X  to 2θ . 

Step 3: Remove the rest points contained in the covering area of the front )1( −i  

3pSi  neurons. Let 1iB denotes the nearest point from the remained points to the 

three vertexes of the thi )1( −  triangle. Two nearest vertexes of the ( i -1) triangle 

away from 1iB  are represented as 2iB and 3iB . Then, 1iB 2iB  and 3iB  construct 

the ith  triangle, defined as 3θ . 

In the same way, 3θ  is covered by a 3pSi  neuron. The covering area is  

{ }n
Xi RXThXP ∈≤= ,|

2θρ  (12) 

3θ = ( )[ ] ( ) ]}1,0[],1,0[,11|{ 2.132211.12 ∈∈−+−+= αααααα iii BBBYY   (13) 

Step 4: Repeat the step 3 until all sample points are conducted successfully. Finally, 
there are m 3pSi neurons, and their mergence about covering area is the covering 

area of every iris’ class. 

i

m

i
PP

1=
= U  

(14) 

3.2   Iris Recognition Algorithm Based on Point Covering of High-dimensional 
Space 

Taking Th =0 under recognition, the 3pSi  neuron can be described as follow:  

=ρ ( )321 ,, WWWX θ−  (15) 

The output ρ  is the distance from X to the finite area ( )321 ,, WWWθ . 

The distance from X  to the covering area of the ith  class iris is:  

iρ = ij
1

min ρ
iM

j=
, i = 80,,1 L  

(16) 

In which, iM  denotes the number of the 3pSi  neuron of the ith  iris, ρ  is the 

distance from X to the covering area of the jth neuron of the ith  class’ iris. 
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The X  will be classified to the iris class corresponding to the least iρ . Namely, 

the classification method is: 

j = i
i

ρ
80

1
min

=
j ( )80,,1 L∈  

(17) 

4   Experimental Results 

Images of CASIA (Institute of Automation, Chinese Academy of Sciences) iris image 
database are used in this paper. The database includes 742 iris images from 106 
different eyes (hence 106 different classes) of 80 subjects. For each iris class, images 
are captured in two different sessions and the interval between two sessions is one 
month. The experiment processes and experiment results are presented as follow: 

(1) In our experiment, 3 random samples from each class in the frontal 80 classes 
(hence, 240 samples) are chosen for training, and a 3pSi  neuron of multi-weighted 

neural network is constructed for the 3 samples. Five samples from the training set are 
shown in Fig.4. Then, the entire iris database is taken as test sample set. In which, 182  
 

     

Fig. 4. Iris samples from the training set 

    

Fig. 5. Iris samples from the second test set 

     

Fig. 6. Iris samples from the first test set 
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( 726× ) samples, which don’t belong to the classes of training samples, are referred 

to the first sample set. The remainder of total 560 ( )780×  samples is referred to the 

second sample set. Fig.5 shows five samples from the second test set and Fig.6 shows 
five samples from the first test set. 

(2) The rejection rate=the number of samples which are rejected correctly in the 
first sample set/the total number of the first sample set. The correct cognition rate=the 
number of samples which are recognized corrected in the second sample set / the total 
number of the second sample set. The error recognition rate= (the number of samples 
which are recognized mistakenly in the first sample set +the number of samples which 
are recognized mistakenly in the second sample set) / the total number of the second 
sample set. 

(3) For total 742 test samples, 180 samples are rejected correctly and the other 2 
samples are recognized mistakenly in the first test sample; and 536 samples are 
recognized correctly and the rest 24 samples are recognized mistakenly in the second 
test sample. Therefore, the rejection rate is 98.9%(180/182), the correct cognition rate 
and the error recognition rate are 95.71%(536/560) and 3.5%((2+24)/742) 
respectively.   

5   Experimental Analysis 

We can conclude from the above experimental results that: 

(1) Irises are trained as “cognition” one class by one class in our method, and it 
doesn’t influence the original recognition knowledge for samples of the new added 
class. 

(2) Although the correct cognition rate is not very well, the result of rejection is 
wonderful. In our experiment, the rejection rate is 98.9%, namely, the iris classes that 
don’t belong to the training test can be rejected successfully. 

(3) The iris recognition algorithm based on neuron of multi-weighted neural 
network is applied in the experiment and the total samples of every class construct the 
shape of 1D distribution. Namely, it is the network connection of different neuron. 

(4) The distribution of the recognized thing should be researched firstly when we 
apply the algorithm for iris recognition based on point covering theory of high-
dimensional space. Then, the covering method of neural network is considered.  

(5) In above experiment, if the image preprocessing is more perfectly, the 
experimental results maybe better. 

To sum up, it proves the proposed iris recognition algorithm based on point 
covering of high-dimensional space and neural network is effective. 
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Abstract. A general automatic method for clinical image segmentation
is proposed. Tailored for the clinical environment, the proposed segmen-
tation method consists of two stages: a learning stage and a clinical seg-
mentation stage. During the learning stage, manually chosen representa-
tive images are segmented using a variational level set method driven by
a pathologically modelled energy functional. Then a window-based fea-
ture extraction is applied to the segmented images. Principal component
analysis (PCA) is applied to these extracted features and the results are
used to train a support vector machine (SVM) classifier. During the clin-
ical segmentation stage, the input clinical images are classified with the
trained SVM. By the proposed method, we take the strengths of both
machine learning and variational level set while limiting their weaknesses
to achieve automatic and fast clinical segmentation. Both chest (thoracic)
computed tomography (CT) scans (2D and 3D) and dental X-rays are
used to test the proposed method. Promising results are demonstrated
and analyzed. The proposed method can be used during preprocessing
for automatic computer aided diagnosis.

Keywords: Image segmentation, support vector machine, machine learn-
ing, principal component analysis, dental X-rays.

1 Introduction

Image segmentation is an important component of medical imagery which plays
a key role in computer assisted medical diagnosis. Segmentation of medical im-
ages is typically more challenging than the segmentation of images in other
fields. This is primarily due to a large variability in topologies, the complexity
of medical structures and poor image modalities such as noise, low contrast,
several kinds of artifacts and restrictive scanning methods. This is especially
true for volumetric medical images where a large amount of data is coupled
with complicated 3D anatomical structures. This paper reports innovative work
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using machine learning techniques such as the support vector machine (SVM)
and principal component analysis (PCA) learning with a pathologically mod-
elled variational level set method to address the most challenging problems in
the medical image analysis: clinical image segmentation and analysis. Although
the SVM has been used in image segmentation, it is usually used during an in-
termediate step [1, 2, 3]. This is the first such work which uses the SVM directly
for medical image segmentation, to the best of our knowledge.

One of latest techniques in medical image segmentation is based on a class of
deformable models, referred as “level set” or “geodesic active contours/surfaces.”
The application of the level set method in medical image segmentation is ex-
tremely popular due to its ability to capture the topology of shapes in medical
imagery. Codimension-two geodesic active contours were used in [4] for tubular
structures. The fast marching algorithm [5] and level set method were used in [6]
and [7], while Region competition, introduced in [8], was used in [9]. In [2, 3, 10],
Li et al. applied a variational level set segmentation approach, accelerated by an
SVM, for medical image segmentation, analysis and visualization.

Although efficient, level set methods are not suitable for general use clinical
image segmentation due to several reasons: (1) high computational cost; (2) com-
plicated parameter settings; (3) sensitivity to the placement of initial contours.
With regard to the latter, as will be shown in experimental results, the running
time of the level set method heavily relies on the position and size of initial
curves and geometric and topological complexity of objects. Moreover for some
cases, the coupled level set method does not converge for some initial curves.

To overcome the current challenges in clinical image segmentation, in this
paper, we combine the level set method approach with a machine learning tech-
nique. We employ the level set method only during the training stage of the
SVM which limits the effect of the weaknesses (i.e., the slowness and lack of
stability) of the level set method. Through the application of PCA, we then use
the SVM exclusively for segmentation which leads to faster and more robust
segmentation.

2 Proposed Method

The proposed method consists of two stages: a learning stage and a clinical seg-
mentation stage. During the segmentation stage, a variational level set method
driven by a pathologically modelled energy functional is used. This is followed
by window-based feature extraction using PCA analysis. The extracted features
are used to train an SVM. During the clinical segmentation, the clinical image
is directly segmented by the trained SVM.

2.1 Level Set Method

Proposed by Osher and J. Sethian [5], level set methods have attracted much
attention from researchers from different areas. In problems of curve evolution,
the level set method and in particular the motion by mean curvature of Osher and
Sethian [5] have been used extensively. This is because these methods allow for
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curve characteristics such as cusps, corners, and automatic topological changes.
Moreover, the discretization of the problem is made on the regular grid.

Let Ω be a bounded open subset of R2, with ∂Ω as its boundary. Let U0:Ω →
R be a given image, and C : [0, 1] → R2 be a parameterized curve. The curve C is
represented implicitly via a Lipschitz function φ, where C = {(x, y)|φ(x, y) = 0},
and the evolution of the curve is given by the zero-level curve at time t as the
function φ(t, x, y). Evolving the curve C in normal direction with speed F leads
to the differential equation {

∂φ
∂t = |∇φ|F
φ(0, x, y) = φ0(x, y)

(1)

where the set C = {(x, y)|φ0(x, y) = 0} defines the initial contour. A particular
case is the motion by mean curvature, when F = div( ∇φ

|∇φ| ) is the curvature.

2.2 Variational Level Set Method

Chan et al. [11, 12] proposed an Mumford-Shah functional for level set segmen-
tation. They add a minimal variance term EMV . The model is able to detect
contours both with or without a gradient. Objects with smooth boundaries or
even with discontinuous boundaries can be successfully detected. Moreover they
claim this model is robust to the position of initial the initial contour. The 2D
version of the model can be expressed as

inf(c1,c2,C)E = μ · Length(C) + v · Area(Inside(C)) + EMV .

with

EMV = λ1

∫
inside(C)

|u0(x, y) − c1|dxdy + λ2

∫
outside(C)

|u0(x, y) − c2|dxdy

where ci are the averages of u0 inside and outside C, and μ ≥ 0, v ≥ 0, λ1 > 0
and λ2 > 0 are fixed parameters.

The level set function they obtain is given by⎧⎪⎨
⎪⎩

∂φ
∂t = δε(φ)[μ · div( ∇φ

|∇φ| ) − v − λ1(u0 − c1)2 + λ2(u0 − c2)2] = 0
φ(0, x, y) = φ0(x, y) in Ω
δε(φ)∂φ
|∇φ|∂n = 0 on ∂Ω.

where n denotes the exterior to the boundary ∂Ω, ∂φ
∂n denotes the normal deriva-

tive of φ at the boundary and δε is the Dirac delta function.
The Chan and Vese functional is very good for segmenting an image into two

regions. To segment images with multiple regions we use Samson’s method. In
[13], Samson et al. presented a variational approach as shown in Eqs. 2 and 3.

inf E =
∑

1≤i≤j≤n

fijLength(Γij) +
∑

1≤i≤n

viArea(Inside(Ci))

+
∑

i

∫
Ωi

ei
(u0 − ci)

2

σ2
i

dxdy +
λ

2

∫
(

n∑
j=1

H(φj) − 1)2dxdy. (2)
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where Γij is the intersection of different regions and σi is the variance. The level
set function they obtain is given by{

∂φi

∂t = δε(φi)
(
γidiv( ∇φ

|∇φ| ) − ei
(u0−ci)

2

σ2
i

− λ
(∑n

j=1 H(φj) − 1
))

∂φi

∂n = 0 on ∂Ω.
(3)

where H(·) is the Heaviside function.

2.3 Pathologically Modelled Variational Level Set Method

In this work, we apply the variational level set method to segment the repre-
sentative images. First, with the assistance of a doctor or clinician, the energy
functional will be modelled according to the pathological meaning of different
regions in an image. In the following we are going to take chest CT (2D and 3D)
scans and dental X-ray images as examples as can be seen in Fig. 1.

Chest CT Scan. Fig. 1(a) demonstrates a pathological modelling for chest
(thoracic) computed tomography (CT) scans. The images can be divided into
four regions of interest: the Background Region (ΩBR), the Skeletal Structure
(bone) Region (ΩSR), the Fatty Tissue Region (ΩFR) and the Muscle and Vis-
ceral Tissue Region (ΩMR). Energy functional for the four coupled level set
functions are modelled as Eq. 4.

EMV (φi) =
∫

ΩBR

e1(u − cBR)2

σ2
NR

dxdy +
∫

ΩF R

e2(u − cFR)2

σ2
FR

dxdy +

∫
ΩSR

e3(u − cSR)2

σ2
SR

dxdy +
∫

ΩMR

e4(u − cMR)2

σ2
MR

dxdy (4)

where ci, i=1,. . . ,4, is the mean grey value of region Ωi.

Dental X-ray. With prior information, this pathological modelling can also be
used for computer aided diagnosis. As shown in the Figs. 1 (b) and (c), X-ray
images can be divided into four regions of interest: the Normal Region (ΩNR),
the Potentially Abnormal Region (ΩPAR), the Abnormal Region (ΩAR) and
the Background Region (ΩBR). Since ΩAR and ΩBR are not separable in terms
of intensity values, so in the segmentation, we take ΩAR and ΩBR to be one

Fig. 1. Pathological modelling for chest CT scans (a) and dental X-rays (b and c)
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region: the Abnormal and Background Region (ΩABR). Energy functional for
three coupled level set functions are modelled as Eq. 5.

EMV (φi) = e1

∫
ΩNR

(u − cNR)2

σ2
NR

dxdy + e2

∫
ΩP AR

(u − cPAR)2

σ2
PAR

dxdy

+e3

∫
ΩABR

(u − cABR)2

σ2
ABR

dxdy. (5)

The proposed pathological modelling explicitly incorporates regions of prob-
lems as part of the modelling, the identification of such areas would be an auto-
matic byproduct of the segmentation. Moreover those problem regions generally
indicate some possible areas of bone loss in teeth or the jaw or root decay, which
are the primary reasons that X-rays are taken in many countries. Early detection
of bone loss and root decay is very important since often they can be remedied by
dental procedures, such as a root canal, for example. Without early treatment,
bone loss may lead to tooth loss or erosion of the jaw bone.

2.4 Learning

As shown in Fig. 2, the learning phase consists of several steps. First, manually
chosen images are segmented by the variational level set described in section 2.3.
To avoid distraction, the high uncertainty areas are removed. Next, window-
based feature extraction is applied. The results will be used to train the SVM
after applying PCA learning to extract features.

Fig. 2. Learning phase diagram

Uncertainty Removal. Before feature extraction, those areas of high uncer-
tainty in the segmented image will be removed to avoid the possible distraction.
The uncertainty measurement is the product of two components: a numerical
solution uncertainty component ψ1(x, y) and a variance uncertainty component
ψ2(x, y) as shown:

ψ(x, y) = ψ1(x, y) · ψ2(x, y) =
1 + max(H(φi))

1 +
∑

H(φi)
·

∑
σiH(φi)∑ |u − ci|H(φi)

Feature Extraction and Principal Component Analysis. A window-based
feature extraction is applied to each segmented region in the image. This is
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Fig. 3. Feature extraction diagram

Fig. 4. Window based features Fig. 5. Average patch (first row)
and eigen patches

illustrated in Fig. 4. The PCA method used here is adapted from [14, 15]. Let
the features Γi (i = 1..M) constitute the training set (Γ ). The average matrix
(Γ ) and covariance matrix C are:

Γ =
1
M

M∑
i=1

Γi

Φi = Γi − Γ

C =
1
M

M∑
i=1

ΦT
i Φi = AAT

L = AT A(Ln,m = ΦT
nΦm)

ui =
M∑

k=1

vikΦk(l = 1, . . . , M) (6)

where L is a M × M matrix, vik are the M eigenvectors of L and ui are eigen-
patches which was called eigenfaces in [14, 15]. The advantage of the PCA anal-
ysis here is its ablity to remove the effects of noise and also to accelerate the
classification by reduced feature dimension.

SVM Training and Segmentation. The strength of the SVM classifier has
been demonstrated in many research areas such as handwriting recognition ap-
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plication, which is described in Dong et al. [16, 17]. The classifier we use is a
modified version of the SVM classifier proposed in [18].

3 Results

To evaluate the proposed method, both chest CT scans (two dimensional and
three dimensional images) and dental X-ray images are used to test the proposed
method.

3.1 Chest CT Scans

Two Dimensional Scans. Figs. 6 and 7 show the results of two dimensional
image segmentation. Fig. 6 shows the results of pathological variational level
set segmentation which divides the image into four regions of background, the
skeletal structure (bone), the fatty tissue, and the muscle and visceral tissue,
as defined in section 2.3. However the variational level set method is a time
consuming method which generally takes longer than 10 minutes to segment a
256 × 256 image for a PC (Pentium 1G Hz and 1GRAM). Moreover, for some
cases, level set methods, especially for coupled level set methods, may not con-
verge for some initial curves as pointed out in [3, 19, 20] which limit the usage
of the level set method in clinical image processing which has high requirements
on speed and robustness. Fig. 7 demonstrates the segmentation results using the
proposed method which just takes around 1 second.

Three Dimensional Scans. Figs. 8 and 9 show results on three dimensional
image segmentation. Fig. 8 shows variational level set segmentation on volumet-
ric CT scan image (256 × 256 × 100) which usually takes longer than 2 hours
while with our proposed method takes around 20 seconds.

Fig. 6. Experimental Results on CT scans. (a) Iteration 0. (b) Iteration 20. (c) Iteration
50. (d) Iteration 100
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Fig. 7. Experimental Results on CT scans. (a) (c) Original images. (b) (d) Segmented
images

Fig. 8. Volumetric coupled level set segmentation results. (a) Iteration 0. (b) Iteration
30. (c) Iteration 80. (d) Iteration 120

Fig. 9. Volume rending of segmentation results of using proposed method on chest CT
scans. (a) One View. (b) Another view

3.2 Dental X-Ray Images

Dental X-ray segmentation is a challenging problem for classic methods due to
the following characteristics: (1) poor image modalities: noise, low contrast, and
sample artifacts; (2) complicated topology; and (3) there may not be clear edges
between regions of interest which is especially true for dental images with early
stage problem teeth. Fig. 10 demonstrates the variational level set segmentation
described in section 2.3 on dental X-ray images. As can be seen, the variational
level set method is able to successfully segment with the given pathological mod-
elling which provides automatic feature extraction for PCA and SVM training.
Fig. 11 shows the results by the proposed method. Since pathological modelling
explicitly incorporates regions of problems as part of the modelling, the identi-
fication of such areas is an automatic byproduct of the segmentation.
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Fig. 10. Coupled level sets segmentation. (a) Iteration 0. (b) Iteration 100. (c) Iteration
500. (d) Iteration 2000. (f) Iteration 2500

Fig. 11. Experimental Results on Dental X-rays. (a) (c) Original image with problem
area circled by dentist. (b) (d) Segmented image

4 Conclusion

This paper proposes a general automatic clinical image segmentation method.
The proposed segmentation method contains two stages: a learning stage and
a clinical segmentation stage. During the learning stage, manually chosen rep-
resentative images are segmented using a variational level set method driven
by a pathologically modelled energy functional. Then a window-based feature
is extracted from the segmented images and the principal component analysis
is applied to those extracted features. These results are used to train a support
vector machine classifier. During the segmentation stage, the clinical images are
classified with the trained SVM. The proposed method takes the strengths of
newly developed machine learning and the variational level set methods while
limiting their weaknesses to achieve a automatic and fast clinical segmentation.
The method is tested with both chest CT scans and dental X-ray images. These
results show that the proposed method is able to provide a fast and robust clini-
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cal image segmentation of both 2D and 3D images. Due to the use of pathological
modelling to define the regions of interest, the segmentation results can be used
to further analyze the image. The proposed method can be used as pre-processing
step for automatic computer aided diagnosis. We are currently studying other
machine learning algorithms for the analysis of segmented images to provide
further improved assistance to the doctor or clinician.
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16. J. Dong, A. Krzyżak, and C. Y. Suen, “A fast parallel optimization for train-
ing support vector,” in International Conference on Machine Learning and Data
Mining(MLDM) (P. Perner and A. Rosenfeld, eds.), vol. LNAI 2734, (Leipzig, Ger-
many), pp. 96–105, Springer Lecture Notes in Articial Intelligence, July 2003.
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Abstract. The goal of this paper is to present the development of a new image 
mining methodology for extracting Magnetic Resonance Images (MRI) from 
reduced scans in k-space. The proposed approach considers the combined use 
of Support Vector Machine (SVM) models and Bayesian restoration, in the 
problem of MR image mining from sparsely sampled k-space, following several 
different sampling schemes, including spiral and radial. Effective solutions to 
this problem are indispensable especially when dealing with MRI of dynamic 
phenomena since then, rapid sampling in k-space is required. The goal in such a 
case is to make measurement time smaller by reducing scanning trajectories as 
much as possible. In this way, however, underdetermined equations are 
introduced and poor image extraction follows. It is suggested here that 
significant improvements could be achieved, concerning quality of the extracted 
image, by judiciously applying SVM and Bayesian estimation methods to the k-
space data. More specifically, it is demonstrated that SVM neural network 
techniques could construct efficient priors and introduce them in the procedure 
of Bayesian restoration. These Priors are independent of specific image 
properties and probability distributions. They are based on training SVM neural 
filters to estimate the missing samples of complex k-space and thus, to improve 
k-space information capacity. Such a neural filter based prior is integrated to the 
maximum likelihood procedure involved in the Bayesian reconstruction. It is 
found that the proposed methodology leads to enhanced image extraction 
results favorably compared to the ones obtained by the traditional Bayesian 
MRI reconstruction approach as well as by the pure Neural Network (NN) filter 
based reconstruction approach. 

Keywords: MRI Reconstruction, MRI Mining, SVM, MLP, Bayesian 
Restoration. 

1   Introduction 

A data acquisition process is needed to form the MR images. Such data acquisition 
occurs in the spatial frequency (k-space) domain, where sampling theory determines 
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resolution and field of view, and it results in the formation of the k-space matrix. 
Strategies for reducing image artifacts are often best developed in this domain. After 
obtaining such a k-space matrix, image reconstruction involves fast multi-
dimensional Inverse Fourier transforms, often preceded by data interpolation and re-
sampling.  

Sampling the k-space matrix occurs along suitable trajectories [1,2,3]. Ideally, 
these trajectories are chosen to completely cover the k-space according to the Nyquist 
sampling criterion. The measurement time of a single trajectory can be made short. 
However, prior to initiating a trajectory, return to thermal equilibrium of the nuclear 
spins needs to be awaited. The latter is governed by an often slow natural relaxation 
process that is beyond control of the scanner and impedes fast scanning. Therefore, 
the only way to shorten scan time in MRI when needed, as for instance in functional 
MRI, is to reduce the overall waiting time by using fewer trajectories, which in turn 
should individually cover more of k-space through added curvatures. Although, 
however, such trajectory omissions achieve the primary goal, i.e. more rapid 
measurements, they entail undersampling and violations of the Nyquist criterion thus, 
leading to concomitant problems for image reconstruction. 

The above mentioned rapid scanning in MRI problem is highly related with two 
other ones. The first is the selection of the optimal scanning scheme in k-space, that is 
the problem of finding the shape of sampling trajectories that more fully cover the k-
space using fewer trajectories. Mainly three such alternative shapes have been 
considered in the literature and are used in actual scanners, namely, Cartesian, radial 
and spiral [1], associated with different reconstruction techniques. More specifically, 
the Cartesian scheme uses the inverse 2D FFT, while the radial and spiral scanning 
involve the Projection Reconstruction, the linogram or the SRS-FT approaches 
[1,2,3].  

The second one is associated with image estimation from fewer samples in k-
space, that is the problem of omitting as many trajectories as possible without 
attaining worse reconstruction results. The main result of such scan trajectories 
omissions is that we have fewer samples in k-space than needed for estimating all 
pixel intensities in image space. Therefore, there is infinity of MRI images satisfying 
the sparse k-space data and thus, the image mining problem becomes ill-posed. 
Additionally, omissions usually cause violation of the Nyquist sampling condition. 
Despite the fact that solutions are urgently needed, in functional MRI for instance, 
very few research efforts exist in the literature. The most obvious and simplest such 
method is the so called “zero-filling the k-space”, that is, all missing points in k-space 
acquire complex values equal to zero. Subsequently, image mining is achieved as 
usually, by applying the inverse Fourier transform to the corresponding k-space 
matrix. Instead of zero-filling the k-space or using linear estimation techniques [2,3] it 
might be more advantageous to interpolate it by using nonlinear interpolation 
procedures, like Artificial Neural Networks (ANN). The Bayesian reconstruction 
approach, developed by two of the authors [1], briefly presented in the next section is 
another alternative solution. Such a solution could yield good results concerning MR 
image mining performance [1]. The main contribution, however, of this paper is to 
develop a novel MR image mining methodology by involving both Bayesian and 
Neural restoration (based on SVM approximation) techniques and present its 
competence and advantages over other rival approaches.  
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2   The Bayesian MRI Restoration Approach 

The Bayesian restoration approach proposed by two of the authors [1], attempts to 
provide solutions through regularizing the problem by invoking general prior 
knowledge in the context of Bayesian formalism. The algorithm amounts to 
minimizing the following objective function [1], by applying the conjugate gradients 
method, 

| S – T I |2/ (2σ2) + (3/2) x,y log { α2 + (xΔxy)
2 + (yΔxy)

2 }                (1) 

with regards to I, which is the unknown image to be reconstructed that fits to the 
sparse k-space data given in S. The first term comes from the likelihood term and the 
second one from the prior knowledge term of the Bayesian formulation [1]. The 
parameter   amounts to the variance encountered in the likelihood term and in the 
herein conducted simulations is set equal to 1. In the above formula, T((kx, ky),(x,y)) = 
e-2πi(xk

x
 + yk

y
)  represents the transformation from image to k-space data (through 2-D 

FFT). The second term symbols arise from the imposed 2D Lorentzian prior 
knowledge. xΔxy  and yΔxy are the pixel intensity differences in the x- and y- directions 
respectively and α is a Lorentz distribution-width parameter. Assuming that P(I) is the 
prior, imposing prior knowledge conditions for the unknown MRI image, then, the 
second term of (1) comes as follows. 

The starting point is that P(I) could be obviously expanded into P(I)=P(I0,0) P(I1,0| 
I0,0) P(I2,0| I0,0, I1,0 )… If, now, it is assumed that the intensity Ix,y depends only on its 
left neighbor ( Ix-1,y ), then the previous P(I) expansion takes on the form P(I) =  ∏(x,y) 
P(Ix,y| Ix-1,y), provided that the boundaries are ignored. Next, we assume that P(Ix,y| Ix-1,y) 
is a function only of the difference between the corresponding pixels. This difference 
is written down as xΔxy = Ix,y - Ix-1,y. It has been shown that the probability density 
function of  xΔxy is Lorentzian shaped (see [1,2,3]). These assumptions and 
calculations lead to computing the prior knowledge in the Bayesian reconstruction as 
in the second term of  (1). 

Although this Bayesian restoration approach tackles the problem of handling 
missing samples in k-space, it exhibits, however, the disadvantage that assumes the 
existence of special probability distributions, given in closed form descriptions, for 
representing the unknown ones occurred in MRI, which is an issue under question. In 
this paper we attempt to remedy this problem by proposing additional priors in the 
Bayesian formulation in order to capture the probability distribution functions 
encountered in MRI. These priors are constructed through applying a specifically 
designed Support Vector Machine (SVM) neural filter for interpolating the sparsely 
sampled k-space. 

3   Design of SVM Neural Network Priors 

The method herein suggested for designing efficient Priors for the Bayesian 
reconstruction formalism, is based on the attempt to extract prior knowledge from the 
process of filling in the missing complex values in k-space from their neighboring 
complex values. Thus, instead of assuming a Lorentzian prior knowledge to be 
extracted from the neighboring pixel intensities in MRI, as a constraint to be applied 
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in the conjugate gradient based Bayesian reconstruction process, the proposed 
strategy doesn’t make any assumption. Instead, it aims at extracting priors without 
any specific consideration concerning the shape of the distributions involved, by 
transforming the original reconstruction problem into an approximation one in the 
complex domain. While linear interpolators have already been used in the literature 
[2,3], ANN models could offer several advantages when applied as sparsely sampled 
k-space interpolators. The methodology to extract prior knowledge by applying the 
ANN filters in MRI reconstruction is described in the following paragraphs. 

Step 1. We compile a set of R representative N X N MRI images with k-space 
matrices completely known, which comprise the training set of the SVM 
approximators. Subsequently, we scan these matrices following the specific sampling 
schemes mentioned above and then, by randomly omitting trajectories the sparse k-
spaces are produced, in order to simulate the real MR data acquisition process.  

Step 2. The original k-space matrix as well as its corresponding sparse k-space matrix 
associated with one N X N MRI training image, is raster scanned by a (2M+1) X 
(2M+1) sliding window containing the associated complex k-space values. The 
estimation of the complex number in the center of this window from the rest of the 
complex numbers comprising it is the goal of the proposed approximation procedure. 
Each position of this sliding window is, therefore, associated with a desired output 
pattern comprised of the complex number in the original k-space corresponding to the 
window position, and an input pattern comprised of the complex numbers in k-space 
corresponding to the rest (2M+1) X (2M+1) -1 window points.  

Step 3. Each such pattern is then, normalized according to the following procedure. 
First, the absolute values of the complex numbers in the input pattern are calculated 
and then, their average absolute value |zaver| is used to normalize all the complex 
numbers belonging both in the input and the desired output patterns. That is, if z1 is 
such a number then this normalization procedure transforms it into the z1/|zaver|. In the 
case of test patterns we apply the same procedure. That is, the average absolute value 
|zaver| for the complex numbers zi of the test input pattern is first calculated. Then, the 
normalized complex values zi/|zaver| feed the SVM approximation filter to predict the 
sliding window central normalized complex number znorm

centre. The corresponding 
unnormalized complex number is simply znorm

centre  *  |zaver|. 

Step 4. The next step is the production of training patterns for the SVM 
approximators and their training procedure. To this end, by randomly selecting sliding 
windows from the associated k-spaces of the R training images and producing the 
corresponding input and desired output training pairs of patterns, as previously 
defined, we construct the set of training patterns. The assumption underlying such an 
approach of training SVM approximators is that there are regularities in every k-space 
sliding window, the same for any MRI image, to be captured by the SVMs without 
any prior assumption for the probability distributions.  SVM training is defined by 
applying the following procedure. 

SVMs is a Neural Network (NN) methodology, introduced by Vapnik in 1992 [5]. 
They have recently started to be involved in many different classification tasks with 
success. Few research efforts, however, have used them in nonlinear regression tasks 
as the MR image mining problem we herein present. One of the goals of the herein 
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study was to evaluate the SVM for Nonlinear Regression approach in such tasks in 
comparison with other ANN techniques and linear estimation methodologies. The 
results herein obtained justify that the SVM approach could widely and successfully 
be involved in function approximation/regression tasks. The task of nonlinear 
regression using a Support Vector Machine could be defined as follows. 

Let f(X) be a multidimensional scalar valued function to be approximated, like the 
real/imaginary part of the sliding window central normalized complex number znorm

centre 
above defined in step 3. Then, a suitable regression model to be considered is:  

D = f(X) + n 

where, X is the input vector comprised of  (2M+1) X (2M+1) -1 real/imaginary parts 
of the complex k-space normalized values associated with the window whose central 
normalized complex value is  znorm

centre, n is a random variable representing the noise 
and D denoting a random variable representing the outcome of the regression process. 
Given, also, the training sample set {(Xi, Di)} (i=1,..,N) then, the SVM training can be 
formulated as the optimization problem next outlined: 
Find the Lagrange Multipliers { i} (i=1, ..,N) and { ’i} (i=1, ..,N) that maximize the 
objective function, 

Q( i , ’i) = =1..  Di ( i - ’i) – e =1..  ( i + ’i) – ½ =1..  j=1..  ( i - ’i) ( j - ’j) 
K(Xi, Xj) 

subject to the constraints:  

i=1..  ( i - ’i) =0 and 0<= i <=C, 0<= ’i<=C for i=1..N, where C a user 
defined constant.  

In the above definition, K(Xi, Xj) are the kernel functions. In the problem at hand 
we have employed the radial basis kernel  

K(X, Xj) = exp(-1/2 2 || X - Xj||
2) 

Taking into account the previous definitions we can then, fully determine the 
approximating function as 

F(X) = i=1..  ( i - ’i) K(X, Xi) 

which estimates the real and the imaginary part of the complex number znorm
centre. 

Namely, Freal(Xreal) = i=1..  ( i_real - ’i_real) Kreal(Xreal, Xi_real) and 
Fimaginary(Ximaginary) = i=1..  ( i_imaginary - ’i_imaginary) Kimaginary(Ximaginary, Xi_imaginary) are 
the two corresponding SVMs. The former is applied to approximate the real part of  
znorm

centre while the latter for approximating its imaginary part. 

Step 5. After training phase completion, the SVM filter has been designed and can be 
applied to any similar test MRI image as follows. To this end, the (2M+1) X (2M+1) 
sliding window raster scans the sparse k-space matrix associated with this test image, 
starting from the center. Its central point position moves along the perimeter of 
rectangles covering completely the k-space, having as center of gravity the center of 
the k-space array and having distance from their two adjacent ones of 1 pixel. It can 
move clockwise or counterclockwise or in both directions. For every position of the 
sliding window, the corresponding input pattern of (2M+1) X (2M+1) – 1 complex 
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numbers is derived following the above described normalization procedure.  
Subsequently, this normalized pattern feeds the SVM approximator. The wanted 
complex number corresponding to the sliding window center, is found as zcentre = 
zSVM

out
  *  |zaver|, where zSVM

out is the SVM output and |zaver| the average absolute value 
of the complex numbers comprising the un-normalized input pattern. For each 
rectangle covering the k-space, the previously defined filling in process takes place so 
that it completely covers its perimeter, only once, in both clockwise and 
counterclockwise directions. The final missing complex values are estimated as the 
average of their clockwise and counter-clockwise obtained counterparts. The outcome 
of the SVM filter application is the reconstructed test image, herein named SVM_Img 
(equation (2) below). Its difference from the image I(t) obtained during the previous 
step of conjugate gradient optimization in the Bayesian reconstruction formula (1), 
provides the neural prior to be added  for the current optimization step. 

4   Incorporation of SVM Neural Prior Knowledge into the 
Bayesian Formalism 

Following the 5 steps above, we can formulate the incorporation of SVM priors to the 
Bayesian restoration process as follows. 

• Design the SVM Neural filter as previously defined 
• Consider the Bayesian reconstruction formula (1). The image to be optimized is I 

given the k-space S. The initial image in the process of conjugate gradient 
optimization is the zero-filled image. At each step t of the process a different I(t) (the 
image at the t step, that is, the design variables of the problem) is the result. Based on 
figure 1 below, by applying the SVM filter on the original sparse k-space, but with the 
missing points initially filled by the FFT of I(t)  (in order to derive the I(t) k-space)- and 
afterwards refined by the SVM predictions, we could obtain the difference I(t) -
SVM_Img(t) as the Neural Prior. 

• Therefore, the Neural Network (NN) Prior form, based on SVM approximation is: 

−
yx

tt yxIyxg
,

)()( |),(),(Im_SVM|                                       (2) 

where, SVM_Img(t)(x,y) is the SVM estimated pixel intensity in image space (SVM 
reconstructed image: Inverse FFT of SVM completed k-space) at step t and I(t)(x,y) is 
the image obtained at step t of the conjugate gradient optimization process in the 
Bayesian reconstruction. 

• The proposed Prior in the Bayesian reconstruction is given as  

Final Prior = Lorentzian Bayesian Prior + a* SVM_Prior                (3) 

• That is, the optimization process I(t) is attempted to be guided by the SVM_Img(t) 
produced by the SVM. Therefore, the proposed algorithm amounts to minimizing the 
following objective function, by applying again the conjugate gradients method, 
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| S – T I |2/ (2σ2) + (3/2) x,y log { α2 + (xΔxy)
2 + (yΔxy)

2 } + 

a* −
yx

tt yxIyxg
,

)()( |),(),(Im_SVM|                                  (4) 

where, a=3/2 is the value used for the parameter a above in our experiments. 

 

Fig. 1. The difference between the image to be mined I(t) and the SVM mined image 
SVM_Img(t) constitutes the neural prior 

5   Evaluation Study and Conclusions 

An extensive experimental study has been conducted in order to evaluate the above 
defined novel Bayesian reconstruction methodology. All the methods involved have 
been applied to a large MRI image database downloaded from the Internet, namely, 
the Whole Brain Atlas http://www.med.harvard.edu/ AANLIB/home.html (copyright 
© 1995-1999 Keith A. Johnson and J. Alex Becker). We have used 10 images 
randomly selected out of this collection for training the SVM approximation filters, 
and 10 images, again randomly selected for testing the proposed and the rival 
reconstruction methodologies. All images are 256 by 256. Their k-space matrices 
have been produced applying the 2D FFT to them. Radial trajectories have been used 
to scan the resulted 256 X 256 complex k-space arrays. 4 X 256 = 1024 radial 
trajectories are needed to completely cover such k-spaces. In order to apply the 
reconstruction techniques involved in this study, each k-space has been sparsely 
sampled using 128 only radial trajectories. Regarding the sliding window raster 
scanning the k-space, a 5 X 5 window was the best selection. 

Concerning the SVM filter architecture, the 48-17-2 (number of inputs-number of 
support vectors-number of outputs) one was found after the SVM design stage (step 4, 

Including SVM neural knowledge into the Bayesian prior

Image I(t)  to be 
mined  

FFT 

SVM 
iFFT 

Difference

SVM 
'gradient' 

image
Σ

SVM-prior

I(t) k-space  SVM_Img(t) k-space 
Filled in with SVM Predictions 

SVM_Img(t) 
Image  

with 'better' 
k-space 



332 D.A. Karras et al. 

 

section 3). Actually, as explained in step 4 of section 3 this SVM approximation filter 
is comprised of two different SVMs (this explains the number two of outputs). The 
first one is associated with approximating the real part of znorm

centre while the second 
one with approximating its imaginary part. This SVM approximation filter has been 
trained using 3600 training patterns. The compared reconstruction techniques 
involved in this study are: the proposed novel Bayesian mining approach, the 
traditional Bayesian reconstruction technique as well as the SVM filtering 
approximation technique. In addition, a Multilayer Perceptron (MLP) neural interpolator 
of 48-12-2 (number of inputs-hidden nodes-number of outputs) architecture (found to be 
the best one) has been involved in the comparisons. Moreover, the simplest 
“interpolation” approach, namely filling in the missing samples in k-space with zeroes 
and then, reconstructing the image, has been invoked. All these methods have been 
implemented using the MATLAB programming platform.  

Concerning the measures involved to quantitatively compare reconstruction 
performance, we have employed the usually used Sum of Squared Errors (SSE) between 
the original MRI image pixel intensities and the corresponding pixel intensities of the 
reconstructed image. Additionally, another quantitative measure has been used, which 
expresses performance differences in terms of the RMS error in dB [4]:  

lambda=(image_recon(:)'*image_orig(:))/(image_recon(:)'*image_recon(:));residu=i
mage_orig-lambda*image_recon; 
dB=10*log10((image_orig(:)'*image_orig(:))/(residu(:)'* 

   residu(:))); 

The quantitative results obtained by the different reconstruction methods involved 
are outlined in table 1 (average SSE and RMS errors for the 10 test MRI images). 
Concerning reconstruction performance qualitative results, a sample is shown in 
figure 2. Both quantitative and qualitative results clearly demonstrate the superiority 
of the proposed Bayesian image mining methodology embedding SVM filtering based 
prior knowledge, in terms of MRI image restoration performance over the other rival 
methodologies (simple Bayesian restoration, SVM / MLP MRI mining filter and zero-
filled reconstructions).  Future trends of our research efforts include implementation 
of the 3-D Bayesian reconstruction with Neural Network priors for f-MRI as well as 
applications in MRI image segmentation for tumor detection. 

Table 1. The quantitative results with regards to reconstruction performance of the various 
methodologies 

MRI Mining Method SSE (average in the 10 
test MRI images) 

dB (average in the 10 
test MRI images) 

Proposed Bayesian MR Image 
mining with SVM Prior 

2.63 E3 17.52 

Proposed Bayesian MR Image 
mining with MLP Prior 

2.85 E3 16.67 

Traditional Bayesian 
restoration 

3.40 E3 15.92 

SVM restoration 3.27 E3 16.02 
MLP restoration 3.30 E3 15.98 
Zero-filling restoration 3.71 E3 15.26 
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Fig. 2. From left to right: The proposed Bayesian MR Image mining involving SVM priors, the 
sparsely sampled k-space (nr=128)–zerofilled image reconstruction, the MLP filtering and the 
traditional Bayesian reconstruction results. The Test Image illustrates a brain slice with 
Alzheimer’s disease (http://www.med.harvard.edu/ AANLIB/cases/case3/mr1-tc1/020.html) 
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Abstract. Research in protein structure and function is one of the most impor-
tant subjects in modern bioinformatics and computational biology. It often uses 
advanced data mining and machine learning methodologies to perform predic-
tion or pattern recognition tasks. This paper describes a new method for predic-
tion of protein secondary structure content based on feature selection and multi-
ple linear regression. The method develops a novel representation of primary 
protein sequences based on a large set of 495 features. The feature selection 
task performed using very large set of nearly 6,000 proteins, and tests per-
formed on standard non-homologues protein sets confirm high quality of the 
developed solution. The application of feature selection and the novel represen-
tation resulted in 14-15% error rate reduction when compared to results 
achieved when standard representation is used. The prediction tests also show 
that a small set of 5-25 features is sufficient to achieve accurate prediction for 
both helix and strand content for non-homologous proteins. 

1   Introduction 

In the recent years increasing knowledge of protein structure accelerated medical 
research. Research in protein structure and interactions is of paramount importance to 
modern medicine, as it enhances general understanding of biological processes, and 
protein functions in particular. One of the most important related applied research and 
development areas is rational drug design, which aims to cut down costs and acceler-
ate development process of drugs based on analytical models. 

Protein structure can be learned by experimental and computational procedures. 
This paper develops a new computational method for prediction of protein secondary 
content. It proposes to perform prediction based on combination of feature selection 
procedure and data mining based approach. The proposed method extends the existing 
prediction methods by using a novel representation of primary protein structure. Com-
prehensive feature selection procedure performed with a very large set of almost 
6,000 proteins resulted in development of an accurate prediction method that reduced 
error rates by 14-15% when compared to commonly used feature representation. In-
dependent prediction on non-homogenous protein sets show that a small set of 5-25 
features is sufficient to achieve high quality prediction models. 
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In general, protein structure can be described on three levels: primary structure 
(Amino Acid (AA) sequence also called primer), secondary structure (folding of the 
primer into two-dimensional shapes, such as helices, strands, and various coils or 
turns), and tertiary structure (folding of the two-dimensional shapes into three-
dimensional molecule). The Dictionary of Secondary Structures of Proteins annotates 
each AA as belonging to one of eight secondary structure types [4], which are typi-
cally reduced to three groups: helix, strand, and coil. The primary structure is cur-
rently publicly known for hundreds of thousands of proteins, e.g. NCBI protein data-
base contains approximately 2 millions proteins, and SWISS-PROT database [3], 
stores over 159K primers. The secondary and tertiary structure is known for relatively 
small number of proteins, i.e. the Protein Data Bank (PDB) [1], currently contains 
about 30K proteins, out of which only a small portion have correct secondary struc-
ture and tertiary structure information. At the same time research in protein interac-
tions and functions requires knowledge of tertiary structure. Experimental methods 
for discovery of secondary and tertiary structure such as X-ray crystallography and 
nuclear magnetic resonance spectroscopy are time consuming, labor expensive, and 
cannot be applied to some proteins [6]. Computational methods perform prediction of 
the tertiary structure with an intermediate step of predicting the secondary structure. 

Computational methods for prediction of secondary structure from the primary se-
quence aim to close the existing gap between the number of known primary se-
quences and higher structures. One of the important pieces of information to perform 
prediction of secondary structure is protein content. While the secondary structure 
prediction aims to predict one of the three groups for each AA in the primary se-
quence, the secondary content prediction methods aim to predict amount of helix and 
strand structures in the protein. The secondary structure content can be learned ex-
perimentally by using spectroscopic methods, such as circular dichroism spectroscopy 
in the UV absorption range [13], and IR Raman spectroscopy [2]. Unsatisfactory 
accuracy and inconvenience of the experimental methods in some cases makes the 
computational approaches worth pursuing [20]. Computational methods have long 
history, and usually used statistical methods and information about AA composition 
of proteins to perform prediction.  

This paper describes a novel approach that considers two aspects of content predic-
tion task: quality of primary sequence representation and design of a prediction 
method. The existing methods, one the other hand, applied different prediction meth-
ods, but concentrated only on one dominant AA sequence representation. Secondary 
content prediction consists of two steps. First, primary sequence is converted into 
feature space representation, and next the helix and strand content are predicted using 
the feature values. A typical feature space representation consists of composition 
vector, molecular weight, and structural class, which are explained later. The first 
content prediction effort was undertaken in 1973 and used Multiple Linear Regression 
(MLR) method to predict content based on the composition vector [8]. A number of 
approaches, which used some combination of the composition vector, molecular 
weight, and structural class representation and neural network [10], analytic vector 
decomposition technique [5], and MLR method [17] [18] [19] [20] to predict the 
content were developed. A novel method that uses both composition vector and com-
position moment vector and a neural network was recently developed [12]. 
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2   Proposed Prediction Method 

The main difference between proposed and existing methods lies in the feature space 
representation used for prediction. The new method considers a large and diverse set 
of features, and performs feature selection to find optimal, in terms of quality of pre-
diction and number of used features, representation. The existing methods consider 
very limited feature representation. After optimal representation is selected, the new 
method uses the most popular MLR for prediction of the content, see Figure 1. 

 

Fig. 1. Procedure for prediction of helix and strand content 

 

The prediction is usually performed with an intermediate step when primary se-
quence is converted into feature space representation. The existing content prediction 
methods use a limited set of features while other methods, such as for prediction of 
protein structure or function, use a more diverse and larger number of features. This 
paper investigates if a more diverse set of features would help in content prediction. 
The considered set of features is summarized in Table 1 and later explained in detail. 

Table 1. Features used to describe primary protein sequence and their applications 

Feature application type reference(s) 
Protein sequence length, avg molecular 
weight, avg isoelectric point 

protein content and function prediction 
 

[10] [14] 

Composition vector protein structure and content prediction [5] [8] [10] [12] [17] [18] [19] [20] 
1st order composition moment vector 
2nd order composition moment vector  

protein content prediction [12] 

R-groups protein structure and content prediction [11] 
Exchange groups protein family and structure prediction [15] [16] 
Hydrophobicity groups protein function prediction, structural and functional relationships [7] [9] [14] 
Electronic groups protein structure prediction [6] 
Chemical groups protein structure prediction [6] 
Other groups protein function prediction, structural and functional relationships [7] [14] 
Dipeptides protein function prediction [14] 

The properties include length, weight, and average isoelectric point. Protein length 
is defined as the number of AAs. To compute the molecular weight, the residue aver-
age weight values are summed and a water molecule mass is added. Average isoelec-
tric point is computed using average isoelectric point values of all AAs in the primer; 
values are available at www.ionsource.com/virtit/VirtualIT/aainfo.htm. These features 
were used for protein content and function prediction [10] [14]. Composition vector is 
defined as composition percentage of each AA in the primary sequence. Composition 
moment vector takes into account position of each AA in the primary sequence [12]: 

% helix 
feature space representation 
using selected feature subset

MLR model for helix content 

MLR model for strand content % strand 

primary 
sequence 
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where nij and xi represent the jth position of the ith AA, and the composition of the ith 
AA in the sequence, respectively; k is the order of the composition moment vector.  

The 1st and 2nd orders were used, while the 0th order reduces to the composition 
vector. Composition vector was used extensively for both protein structure and con-
tent prediction [5] [8] [10] [12] [17] [18] [19] [20], while composition moment vector 
was recently proposed for protein content prediction [12]. The property groups divide 
the AA into groups related to specific properties of individual AAs or entire protein 
molecule. Several different properties, such as hydrobhobicity, pI, electric charge, 
chemical composition, etc., that are summarized in Tables 2 and 3 are considered. 

Table 2. Property based AA groups 

Groups Subgroups AAs  Groups Subgroups AAs 
Nonpolar aliphatic AVLIMG  Hydrophobic VLIMAFPWYCG 
Polar uncharged SPTCNQ  Hydrophilic basic  KHR 
Positively charged KHR  Hydrophilic acidic DE 
Negative DE  

R-group 

Aromatic FYW  

Hydropho-
bicity group

Hydrophilic polar with 
uncharged side chain 

STNQ 

(A) C  Electron donor DEPA 
(C) AGPST  Weak electron donor VLI 
(D) DENQ   Electron acceptor KNR 
(E) KHR   Weak electron acceptor FYMTQ 
(F) ILMV  Neutral GHWS 

Exchange 
group 

(G) FYW  

Electronic 
group 

Special AA  C 
Charged DEKHRVLI  Tiny  AG 
Polar  DEKHRNTQSYW  Bulky  FHWYR 
Aromatic FHWY  

Other 
group 

Small AGST  

Other group

Polar uncharged NQ 

R-group combine hydropathy index, molecular 
weight and pI value together [11]. Exchange group 
represent conservative replacements through evolu-
tion. Hydrophobicity groups divide AAs into hydro-
phobic, which are insoluble or slightly soluble in 
water, in contrast with hydrophilic, which are water-
soluble. Electronic group divides AAs based on their 
electronic properties, i.e. if they are neutral, electron 
donor or electron acceptor. Chemical group is associated with individual AAs. There 
are 19 chemical groups of which AAs are composed. Some of them are listed in Table 
3. Other group considers the following mixed classes: charged, polar, aromatic, small, 
tiny, bulky, and polar uncharged. For each of the groups, the composition percentage 
of each subgroup in a protein sequence is computed. We note that these groups were 
extensively used for protein family, structure, function, prediction and to discover 
structural and functional relationships between proteins [6] [7] [14] [15] [16]. Finally, 
dipeptides are simply pairs of adjacent AAs in the primary sequence. The composition 

Table 3. Chemical groups for 
AAs 

 

AA associated chemical groups 
A CH CO NH CH3 
C CH CO NH CH2 SH 
D CH CO NH CH2 CO COO- 
E CH CO NH CH2 CH2 CO COO- 
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percentage of each pair is computed. They were previously used for protein function 
prediction[14]. 

2.1   Feature Selection for Protein Secondary Content Prediction 

The above features were considered for prediction of protein secondary content. Ini-
tially correlation between features was investigated to find out if they are independ-
ent. The correlated features must be removed since they cannot be used with MLR 
model. Several correlated features were discovered. For example, some chemical 
subgroups were correlated with other features, such as composition vector, R-group, 
and other subgroups in the chemical group. The reason is that some chemical groups 
 

appear only in one AA or a group
of AAs for which the composi-
tion percentage is computed in
another feature. For example,
COO– is found only in AAs D
and E, which is identical to nega-
tive R-group, while some chemi-
cal groups always appear in the
same AAs, such as C and NH2. 
Table 4 shows final set of 495
features after removing overlap-
ping and correlated features and
provides abbreviation and indices
that are used in the paper. 

Table 4. List of features considered for feature selection 

Feature Abbr. Indices 
Protein sequence length SL 1 

Average molecular weight MW 2 
Average isoelectric point IP 3 

Composition vector (in alphabetical order) CV 4-23 
1st order composition moment vector (alphabetically) MV1 24-43 

2nd order Composition moment vector (alphabetically) MV2 44-63 
R-groups (AVLIMG, SPTCNQ, KHR, DE, FYW) RG 64-68 

Exchange groups (AGPST, DENQ, ILM) XG 69-71 
Hydrophobicity groups (VLIMAFPWYCG, STNQ) HG 72-73 

Electronic groups (DEPA, LIV, KNR, FYMTQ, GHWS) EG 74-78 
Chemical groups (C, CAROM, CH, CH2,, CH2RING, 

CH3,, CHAROM, CO, NH, OH) 
CG 79-88 

Other groups (DEKHRVLI, DEKHRNTQSYW, FHWY, 
AGST, AG, FHWYR NQ) 

OG 89-95 

Dipeptides (alphabetically) DP 96-495  

 

Fig. 2. Results of correlation test for the set of 495 features 

  SL 
MW             CV                      MV1                     MV2          RG     XG         CG        OG 
  IP                        HG   EG                        DP 
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Naïve Correlation Based Feature Selection. The simplest feature selection involves 
computing correlation between a given and the predicted feature and selection of a 
given number of features with highest correlations. Correlation values of 495 features 
and the helix and strand content were computed and are summarized in Figure 2.  

Analysis of the figure shows that there are no strong correlations that can be used 
to select a suitable subset of features for content prediction. The strongest correlation 
values were in 0.3-0.4 range. None of the feature sets, i.e. physical properties, compo-
sition and composition moment vectors, property groups and dipeptides, can be 
evaluated as better or best correlated. The strongest correlated features, using correla-
tion thresholds of 0.229 and -0.229, shown in Figure 2, are given in Table 5. 

Table 5. The best correlated feature 

struc-
ture 

corre-
lation 

feature /values 

RG2 CG10 EG5 CVP  CG5 CVS HG2 XG1 CVT MV2S MV1S DPSG CVG DPSS DPGS nega-
tive  0.47 0.42 0.37 0.32 0.32 0.32 0.32 0.31 0.29 0.28 0.27 0.27 0.25 0.24 0.22 

CVL OG1 CVA CG6 RG1 XG3 CG3 DPAA DPAL DPAK CG9 EG2 DPEA MV1L CG4 

0.39 0.38 0.34 0.31 0.31 0.30 0.29 0.28 0.27 0.26 0.26 0.25 0.25 0.25 0.25 
DPLA MV2L DPLR DPML MV2A MV1A DPLK CVM DPDA DPEL      

helix 

posi-
tive 

0.25 0.24 0.24 0.24 0.24 0.24 0.23 0.23 0.23 0.23      
CVL CVA CG4 OG1  RG3            nega-

tive  0.26 0.25 0.24 0.24 0.23           

CG10 CVT HG2 MV2S MV1S RG2 DPTY EG5 CVS DPVT XG1 MV1T MV2T DPSG  

strand 

posi-
tive 0.39 0.32 0.29 0.28 0.28 0.28 0.28 0.27 0.27 0.27 0.25 0.24 0.24 0.23  

Correlation accommodates only for correlation between individual features and the 
predicted values, while more complex correlation that include multiple features to-
gether exits. Therefore regression based correlation feature selection was performed. 

Regression-Correlation Based Feature Selection. The feature selection was per-
formed according to the procedure shown in Figure 3. 

 

 

Fig. 3. Feature selection procedure performed independently for helix and strand content 

Feature selection is performed independently for helix and strand content predic-
tion. It uses dataset of about 6000 proteins extracted from PDB (described later) to 
investigate two selection procedures. Each of the 6000 primers is first converted into 
495 features representation. Next, the dataset is split in the 10-fold cross validation 
(10CV) manner, and MLR model is computed for each fold. The model is tested with 
the test set and average quality over 10 folds is reported. Next, five worst features are 

495 features for 
~6000 primers 

~6000 
primers

ith train set 

ith test 
set 

ith train 
set 

feature representation 

design set of sequences 

10 fold cross validation 
i=1, 2, …, 10 

MLR model 

test to predict content of helix 
and strand

regression 
coefficients

feature-content correlation coefficients 

report average quality 
for all 10 folds

5 worst features 
are removed 
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selected and removed, and remaining 490 features are used again to perform MLR. 
The process repeats until 5 features are left. In each iteration the worst 5 features are 
selected according to two independent criterions: 1) smallest values of corresponding 
regression coefficients, 2) smallest values of correlation coefficients between a given 
feature and the helix/strand content. Both sets of coefficients are recomputed and 
averaged for each cross-validation fold. The regression coefficients are constants of 
the MLR model. We assume that the lower the coefficient value the lesser the corre-
sponding feature’s impact on the predicted helix or strand content, and therefore the 
less useful it is for prediction. Similarly correlation coefficients express correlation 
between a given feature and the predicted helix or strand values. Again, the lower the 
correlation values the less useful the feature is. The main difference between the coef-
ficient sets is that the MLR considers all features together while the correlation con-
siders each feature independently. The results are discussed in the next section. 

3   Experiments 

Experiments apply 3 datasets, one for feature selection and two for validation of the 
developed method and comparison with other prediction methods. The feature selec-
tion dataset was extracted from PDB (release as of August 12th 2004) to cover wide 
range of known proteins. For proteins that have isotopes, the last one was selected. 
The proteins were filtered according to a set of rules shown in Table 6 to eliminate 
errors and inconsistent data. Also, sequences with identical primer and different seco-  
ndary sequences were elimi-
nated. Lastly, sequences with
ambiguous AAs in the primer, 
i.e. B or Z, were removed re-
sulting in a dataset with  5834 
sequences that include homo-
logous sequences. The length
of the shortest sequence is 6
and  of  the  longest sequence is 

Table 6. Filters used to derive feature selection dataset 

Type of the Problem # seq Type of the Problem # seq 
Sequence length < 4 455 Helix indexed out of sequence 10038 
Illegal AA 11540 Strand indexed out of  sequence 8023 
residue called UKN 25 Coil indexed out of sequence 219 

Overlap of  helix and strand 782 More/less residues than 
the sequence length 

9
Overlap of helix and coil 1342 

Helix of length < 3 1291 No secondary structure 9972 
Strand of length < 2 19022 No primary structure 13  

1295. The test datasets include: 

- 210 non-homologous proteins set described in [20]. Although these proteins 
satisfy criteria defined in Table 6, 11 proteins were excluded from experiments, 
since they include unknown AA X in their primer in the newest PDB release. 
Therefore 199 proteins were used. The excluded proteins are: 1MBA_, 1MDC_, 
1OPAA, 4SBVA, 1FBAA, 1ETU_, 1GP1A, 3ADK_, 1CSEI, 1ONC_, 1FUS_. 

- 262 non-homologous proteins set described in [5]. Among the original set only 
52 proteins were found in newest PDB release and satisfied criteria from Table 6. 

Feature selection was performed using two approaches to select worst performing 
features for deletion, one based on correlation and the other based on regression coef-
ficients. The content prediction quality was evaluated using two measures [20]: 
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where e is an average error,  is standard deviation, FK is the predicted helix or strand 
content, DK is the known content, and N is number of predicted proteins. 

Results are shown in Figure 4. Each experiment involves 10CV. Feature selection 
results are based on computation of about 4000 MLR models. The optimal, in terms 
of trade-off between error e and number of features, subsets are shown by dashed 
lines. For both prediction of strand and helix content 4 subsets were selected: for the 
lowest error value (L), for the last five features (F), for a feature subset of small size 
(S), and for the best relative ratio between error and feature subset size (M). 

The results for selected 4 datasets for both correlation and regression coefficient 
based approaches and helix and strand prediction are given in Table 7. It shows that 
minimum error for helix and strand content prediction is 11.28% and 8.67% respec-
tively, and was achieved for regression based selection for dataset L.  The maximum 
error when using just last 5 features is 15.16% and 11.48% for helix and strand  
 

a) helix content prediction; regression coefficients b) strand content prediction; regression coefficients 

c) helix content prediction; correlation coefficients d) strand content prediction; correlation coefficients 

Fig. 4. Results for feature selection experiments using regression and correlation coefficients 

prediction respectively, and was achieved for correlation based selection. Therefore 
25% error reduction is achieved by using dataset L instead of F. Datasets S and M 
give relatively good tradeoff between prediction error and number of features. Dataset 
S with just 25 features for helix prediction gives 12.91% error, while for strand it 
gives 10% error. Similarly for M dataset, 125 features are used to predict helix con-
tent with 11.81% error while 135 features to predict strand content with 8.99% error. 
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The regression coefficients based selection gives better results for M and L datasets, 
while correlation coefficients based selection is better for small subsets. This results 
agrees with our expectations, since regression method benefits from relationships 
between features, while correlation based method considers each feature  
independently. 

Table 7. Summary of feature selection results (best and worst results are shown in bold; base-
line results achived when composition vector is used are shown in italics) 

dataset name 5Features (F) Small (S) Medium (M) Large (L) 
# features 5 25 125 365 helix 

prediction e( ) 0.1917 (.0171) 0.1315 (.0116) 0.1181 (.0106) 0.1128 (.0102) 
# features 5 25 135 320 

regression 
coeff. 
selection strand 

prediction e( ) 0.1203 (.0080) 0.1000 (.0067) 0.0899 (.0059) 0.0867 (.0057) 
# features 5 40 175 490 helix 

prediction e( ) 0.1516 (.0139) 0.1291 (.0117) 0.1232 (.0111) 0.1158 (.0115) 
# features 5 25 180 475 

correlation 
coeff. 
selection strand  

prediction e( ) 0.1148 (.0074) 0.0994 (.0067) 0.0926 (.0063) 0.0892 (.0063) 
# features 20 # features 20 composition 

vector 
helix 
prediction e( ) 0.1329 (.0117) 

strand 
prediction e( ) 0.1011 (.0067) 

Another experiment, which involves 10CV prediction using 20 features composi-
tion vector to predict the content, was performed, see Table 8. Since composition 
vector is the most utilized feature set for prediction (all published results use it for 
prediction [5] [8] [10] [12] [17] [18] [19] [20]) this results gives a baseline to verify 
that feature selection procedure improves the existing prediction approaches. For the 
helix prediction a slight improvement of about 0.5% (which translates into 3% error 
rate reduction) was achieved by using S subsets consisting of 40 features. The 2% 
error rate improvement (which translates into 15% error rate reduction) was achieved 
 

Table 8. Comparision of error rates for prediction of secondary structure content for different 
methods and for different considered feature subsets (best results shown in bold; baseline 
results shown in italics) 

Resubstitution e( ) Jackknife e( ) method test dataset (reference) feature 
subset helix strand helix strand 
Freg 0.176 (.017) 0.125 (.007) 0.181 (.018) 0.128 (.008) 
Sreg 0.143 (.013) 0.106 (.006) 0.166 (.018) 0.123 (.008) 
Mreg 0.092 (.005) 0.052 (.001) 0.263 (.044) 0.178 (.020) 
Fcorr 0.171 (.016) 0.126 (.007) 0.176 (.017) 0.130 (.007) 
Scorr 0.144 (.012) 0.103 (.006) 0.185 (.021) 0.119 (.008) 
Mcorr 0.051 (.001) 0.030 (.000) 0.514 (.167) 0.354 (.065) 

this paper 
MLR 

199 out of 210 [20] 

CV 0.148 (.014) 0.110 (.005) 0.167 (.018)  0.123 (.007) 
Freg 0.164 (.001) 0.156 (.016) 0.190 (.024) 0.179 (.023) 
Sreg 0.115 (.006) 0.098 (.004) 0.240 (.029) 0.208 (.024) 
Fcorr 0.164 (.014) 0.154 (.012) 0.189 (.021) 0.175 (.017) 
Scorr 0.085 (.004) 0.095 (.005) 0.448 (.126) 0.193 (.022) 

this paper 
MLR 

52 out of 262 [5] 

CV 0.118 (.005) 0.109 (.005) 0.211 (.022) 0.194 (.021) 
AVDM-1 CV 0.144 (.117) 0.118 (.096) 0.145 (.017) 0.120 (.097) 
AVDM-2 

262 [5] 
CV 0.132 (.109) 0.114 (.096) 0.142 (.115) 0.124 (.105) 

MLR 210 [20] CV 0.122 (.089) 0.108 (.082) 0.135 (.103) 0.120 (.097) 
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by using L subset consisting of 265 features. For the strand prediction, the 0.2% error 
rate improvement was achieved for the 25 features subset, while 1.4% improvement 
(14% error rate reduction) was achieved when 365 features were used. Although the 
achieved improvement seem small, the 15% and 14% error rate reduction in medi-
cally related field should be perceived as a significant result, especially that it is 
backed up by a study that considers a large and comprehensive set of proteins. 

Prediction tests were performed to test selected feature subsets. Subsets Freg, Sreg, and 
Mreg for regression coefficients and Fcorr, Scorr, and Mcorr for correlation coefficients 
based selection were used to perform independent test on the test datasets. Prediction 
of the secondary content was performed using MLR method. In case of regression 
number of data points (proteins in the dataset) should be larger than number of fea-
tures. Therefore for 52 protein dataset only F and S subsets were considered. 

Test consists of resubstitution and jackknife procedures [20] The fist procedure 
trains and test on the same dataset, while the other is a leave-one-out test. Test results 
are summarized and compared with other methods in Table 8. The table also includes 
results for MLR based prediction when the standard composition vector (CV) feature 
set is used. Since resubstitution test trains and test on the same data, it is prone to 
overfitting. Thus analysis concentrates on jackknife test results. Baseline results that 
apply composition vector are always worse that the best results achieved by the gen-
erated feature subsets. Subset Sreg generates slightly better results for helix prediction, 
while subset Scorr is better in case of strand prediction for the set of 199 proteins. 
Similarly models generated using subset Fcorr reduce error rates for both helix and 
strand prediction by over 10% in case of the 52 protein set (18.9% error rate was 
achieved for Fcorr while 21.1% was achieved for composition vector for helix predic-
tion, while 17.5% and 19.4% error rates were achieved for strand prediction respec-
tively). Subsets F that contain only 5 features achieve better results that prediction 
using 20 features composition vector. The results justify feature selection as a useful 
method not only to improve prediction results, but also to possibly reduce the number 
of features necessary for the secondary content prediction. The selected subsets F and 
S for both correlation and regression based feature selection are listed in Table 9. 

Table 9. Selected subsets of features  

Data Struct. Features 
Freg helix CV12  CV14 CV20  OG3  OG7 
 strand CV1 CV11 CV12 CV14 OG7 
Sreg helix CV2 CV5÷CV12 CV14 CV17 CV18 CV19 CV20 RG1 XG2 XG3 EG1 EG2 EG3 CG6 OG2 OG3 OG6 OG7 
 strand CV1÷CV20 RG1 RG2 RG4 RG5 XG1 XG2 XG3 HG1 HG2 EG1÷EG5 CG1÷CG10  OG1÷OG7 DP13 DP20 DP22 

DP29 DP30 DP31 DP32 DP34 DP35 DP38 DP46 DP58 DP66  DP67 DP71 DP73 DP78 DP81 DP82 DP87 DP89  DP92 DP93 

DP95 DP97 DP99 DP100 DP108 DP114 DP122 DP132 DP135 DP139 DP162  DP170 DP173 DP178 DP179 DP193 DP214 DP226 

DP238 DP244 DP256 DP257 DP266  DP267 DP270 DP273 DP277 DP278 DP279 DP285 DP286 DP290 DP293 DP298 DP304  

DP308 DP321 DP326 DP327 DP330 DP331 DP334 DP338 DP339 DP352  DP353 DP362  DP364 DP368 DP369 DP372 DP374 

DP375 DP376 DP378 DP379  DP380 DP384 DP391  DP398 DP399 
Fcorr helix CV10 RG3 EG5 CG10 OG1 
 strand CV17 MV116 MV216    HG2 CG10 
Scorr helix CV1 CV5 CV10 CV11 CV13 CV16 CV17 MV11 MV110 MV116 MV21 MV210 MV216 RG1 RG3 XG1 XG3 HG2 EG2 

EG5 CG3 CG4 CG5 CG6 CG9 CG10 OG1 DP1 DP9 DP10 DP41 DP61 DP70  DP116 DP181 DP189 DP195 DP210 DP306 

DP316 
 strand CV1 CV10 CV16 CV17 CV18 MV116 MV117 MV216 MV217 RG3 RG4 XG1 HG2 EG5 CG4 CG10 OG1 OG4 DP9 

DP10   DP306   DP316   DP318   DP338   DP357 
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Results achieved for subset Scorr for strand prediction are better than results of both 
AVDM and MLR methods, while the existing methods are better in case of helix 
content prediction, see Table 9. The AVDM method uses more advanced predictive 
model called analytic vector decomposition technique [5]. The MLR method uses 
MLR method, as in [8], but tests on the set of all 210 proteins. We anticipate that 
using more advanced prediction model in combination with feature selection per-
formed in this paper would results in system that surpasses the existing approaches. 

4   Summary and Future Work 

The paper presents a novel method for prediction of protein secondary structure con-
tent. The method is the first to consider alternative feature representation of primary 
protein sequences. It performs feature selection task to generate optimal, in terms of 
trade-of between prediction error rates and number of feature, feature representation 
and performs MLR based prediction of the helix and strand protein content. The re-
sults based on the leave-one-out test for non-homologous protein sets show that not 
only 5-25 features set can be used to predict the secondary content values, but that the 
representation based only on 5 features can reduce error rates by 10% when compared 
to standard 20 features representation based on composition vector. The results for a 
comprehensive set of 6000 mixed homologous and non-homologous proteins also 
show that error rate reduction of 14-15% can be achieved when the proposed feature 
representation is used instead of standard composition vector based representation. 

Future work will design 2-layer prediction system. First, protein structural class  
( , β, and β) will be predicted and next specialized prediction models for each class 
and predicted structure will be used. Design is similar to [17] [18] [19] [20], but con-
siders that structural class will be predicted, not assumed, and utilizes feature  
sselection. 
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Abstract. In this paper, we present a linked-list based encoding scheme
for multiple objectives based genetic algorithm (GA) to identify clusters
in a partition. Our approach obtains the optimal partitions for all the
possible numbers of clusters in the Pareto Optimal set returned by a
single genetic GA run. The performance of the proposed approach has
been tested using two well-known data sets, namely Iris and Ruspini.
The obtained results are promising and demonstrate the applicability
and effectiveness of the proposed approach.

Keywords: clustering, genetic algorithms, linkage-encoding, k-means,
multi-objective optimization.

1 Introduction

In this paper, a new scheme is proposed for encoding clustering solutions into
chromosomes. The proposed representation forms a linked-list structure for ob-
jects in the same cluster. The genetic operators modify the chromosomes by
altering the links. Also, we deal with the partitional clustering problem by using
a multi-objective GA [15] to minimize Total Within Cluster Variation (TWCV),
together with the number of clusters. TWCV [17] is a measure which denotes
the sum of the average distance of cluster elements to cluster center. If this
measure is used as the sole objective in the search, GA will tend to reduce the
size of the clusters and eventually will form clusters with single elements where
the variation turns out to be zero. Hence, traditionally, a prior specified number
of clusters is needed for GA based k-clustering approaches treating TWCV as
the single objective function. The other objective (minimizing the number of
clusters) effectively handles this.

The new representation proposed in this paper is able to encode the solution
space in fixed-length chromosomes. It enables an efficient exploration of the
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solution space. Together with the use of multi-objective GA, this approach can
be extended to deal with the general clustering problem where the optimum
number of clusters is unknown. The Pareto Optimal set [15], obtained at the
end of the run provides solutions with the optimum TWCV for various potential
numbers of clusters.

Two well-known data sets Iris [3] and Ruspini [22] have been used in the
experiments to demonstrate the applicability, usefulness and effectiveness of the
proposed approach. These data sets have been widely used as benchmark prob-
lems for testing different techniques, and their corresponding optimal clustering
is known. Hence, it is easy to evaluate the performance of a clustering method
by using these data sets.

The rest of the paper is organized as follows. The objective functions used
are discussed in Section 2. A closer look at the proposed approach is presented
in Section 3. The experimental results obtained on two well-known data sets are
reported in Section 4. Section 5 is conclusions.

2 The Objective Functions

Many optimization problems are multi-objective by nature. The classical ap-
proach to such problems is to use a single objective function which is obtained by
a linear combination (weighted sum) of multiple objectives. Another approach
is to treat different objectives as different constraints and use thresholds and
penalties during the search. However, the usage of weights and penalties has
been clearly proved problematic in the domain of GA. In our approach, the
Niched Pareto Genetic Algorithm described in [15] is used in order to minimize
the following two objectives.

1. Total within cluster variation (TWCV), which has been effectively used for
the k-clustering problem.

2. Number of clusters.

The formal definition of TWCV is given in [17] as follows. Let the clustering
problem be partitioning n objects, each has d different properties, into k different
groups. So, each object can be represented as a vector with dimension d, and
the collection of these objects would be a matrix X, where entry xij denotes the
jth property of the ith object. Then, another matrix W can be defined as:

wik =
{

1, if ith pattern belongs to kth cluster.
0, otherwise

(1)

The following two properties will hold for the new matrix; wij ∈ {0, 1} and∑K
k=1 wij = 1, where K is the total number of clusters.
Let ck = {ck1, ck2..., ckd} denote the center of the kth cluster, then

ckj =
∑n

i=1 wikxij∑n
i=1 wik

. (2)
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The within-cluster variation (WCV) of the kth cluster can be defined as

S(k)(W ) =
n∑

i=1

wik

d∑
j=1

(xij − ckj)2 (3)

Lastly, TWCV is defined as

S(W ) =
K∑

k=1

S(k) =
K∑

k=1

n∑
i=1

wik

d∑
j=1

(xij − ckj)2 (4)

3 A Closer Look at the Proposed Approach

The most straightforward and the most widely used encoding scheme is Group
Number Encoding [16]. In this scheme, the value of each gene represents the
membership of an object to one of the clusters. Let the set of objects to be
clustered in k groups be O = {o1, o2, ..., on}. Since one gene is reserved for each
object, the length of the chromosomes will be n. Let V be a function denoting
the value of a gene in a chromosome. If C = {g1, g2, ..., gn} is a chromosome in
the population, where ∀gi ∈ C, 1 ≤ V (gi) ≤ k, then V (gi) will denote the cluster
number for object oi. Two objects, oi and oj will be in the same cluster if and
only if V (gi) = V (gj).

For example, the sample chromosome 2316736211 would encode the cluster-
ing solution where the first object is in cluster 2, the second in 3 and so on.
However, it is possible to have multiple distinct chromosomes for the same solu-
tion with this encoding. In a clustering process, the naming or the ordering of the
clusters is irrelevant. For instance, renaming cluster 2 to cluster 5 in chromosome
2316736211 creates a new chromosome 5316736511. However, both chromosomes
are mapping to the same clustering solution. The drawbacks of this traditional
encoding are presented in [8], and it is pointed out in [20] that this encoding is
against the minimal redundancy principles set for encoding scheme design. The
remedy proposed in [8] is to use a length variable encoding scheme. It reduces
redundancy of chromosome population, but in the meantime it adds redundancy
inside a chromosome; it needs more genes to encode a solution than traditional
encoding. The other deficiency of the length variable encoding is that it cannot
take advantage of conventional simple crossover and mutation operators. This
gives advantage to the Linear Linkage Encoding presented in this section; it is
a fixed length encoding scheme without any type of redundancy.

Under linkage encoding scheme, although each gene still stores an integer,
the value of the gene no longer directly denotes the membership of an object
but its fellowship - this is the fundamental difference between the group num-
ber encoding and the linkage encoding. Each gene is a link from an object to
another object of the same cluster. Given n objects, any partition on them can
be described as a chromosome of length n. Two objects are in the same group
if either object can be directed to the other object via the links. Without any
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constraint, the state of redundancy is just as bad as that of the group number
encoding because the number of feasible chromosomes is still nn.

Linear linkage encoding is a restricted linkage encoding. Let the n genes be
indexed inside a chromosome from 1 to n. The value of each gene in LL chromo-
some denotes the index of a fellow gene where the objects that corresponding
to these two genes would be in the same cluster. We can also treat the stored
index as an out-link from a node, and if a gene stores its own index, it depicts
an ending node. To qualify an unrestricted linkage chromosome as a valid linear
linkage encoding chromosome, there are two constraints the chromosome must
comply to:

1. The integer value stored in each gene is greater than or equal to its index
but less than or equal to n.

2. No two genes in the chromosome have the same value with the exception
that at most two genes can have the same integer value if the integer is the
index of an ending node.

Formally, let the set of objects to be clustered be O = {o1, o2, ..., on} and let
C = {g1, g2, ..., gn} be a sample chromosome in the population. Assume V is a
function that denotes the value of a gene and I is the function which returns its
index. Then, the following two properties hold for the LL encoding.

∀gi ∈ C [I(gi) ≤ V (gi) ≤ n] . (5)

∀gi, gj ∈ C[V (gi) = V (gj) =⇒ (i = j)
∨((i > j)) ∧ (V (gi) = I(gi))
∨((i < j) ∧ (V (gj) = I(gj))].

(6)

The boolean function (ϕ : OXO �→ {True, False}), which would determine if
two given objects are in the same cluster or not, can be recursively defined. If
oi and oj are two objects where i < j, then

ϕ(oi, oj) =
{

[V (gi) = I(gj)]∨
∃gk[(i < k < j) ∧ ϕ(oi, ok) ∧ V (gk) = I(gj)]

(7)

Linear linkage encoding gets its name because objects in a cluster construct a
pseudo linear path with the only loop allowed being a self loop link to mark the
last node. It can be represented by the labeled oriented pseudo (LOP) graph.

A LOP graph is a labeled directed graph G(V, E), where V(G)={v1, v2, ..., vn}.
A composition of G is a partition of V(G) into disjointed oriented pseudo path
graphs G1,G2, ...,Gm with the following properties:

1. Disjoint paths:
⋃m

i=1 V(Gi) = V(G) and for i �= j,V(Gi)
⋂V(Gj) = ∅

2. Non-backward oriented edges: If there is an edge e directed from vertex vl

to vk, then l ≤ k.
3. Balanced connectivity:

(a) |E(G)| = |V(G)|
(b) Each Gi must have only one ending node with a self referencing directed

edge exists. The ending node has an indegree of 2 and an outdegree of 1.
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(c) Each Gi must have only one starting node whose indegree is 0 and out-
degree is 1.

(d) All other |V(Gi)|−2 vertexes in Gi have both their indegree and outdegree
equal to 1.

Theorem 1: Given a set of objects S, there is one to one mapping between the
chromosomes of LL encoding and the possible partition schemes.

In order to prove this theorem the following lemmas are used.

Lemma 1: Linear linkage encoding is an implementation of the LOP graph.

Lemma 2: Given a set of objects S, there exists one and only one composition
of LOP graph G(V, E) for each partition scheme of S, where |V| = |S|.

Note that, there is only one possible ascending order within clusters for a
possible partition scheme. Thus, there exists only one composition of G for each
partition. Reversely, a LOP graph represents only a single partition scheme by
definition. Based on Lemmas 1 and 2, it can be claimed that LL encoding makes
a one-to-one mapping between the chromosomes and clustering solutions.

Corollary: The number of chromosomes corresponding to all possible partition
schemes is given by the nth Bell number.

The number of ways a set of n elements can be partitioned into non-empty
subsets is called a Bell number [4]. According to Theorem 1, there is one-to-
one correspondence between the chromosomes of LL encoding and the possible
partition schemes. Hence, the number of chromosomes in consideration would be
denoted by the nth Bell number B(n), too. Compared to LL encoding scheme,
traditional group number encoding demands GA to work in a solution space of

nn

B(n) times larger. When n is 10, nn

B(n) is about 105.
Although LL encoding keeps only fellowship in genes, it also implies the

membership of each object. Since each cluster must have one starting node and
one ending node, both nodes can be used to identify a cluster. In practice, ending
node is treated as the membership identifier for clusters because it is easier to
detect. Apparently, finding the membership of an object in LL encoding requires
only linear time.

The initial population should include diverse chromosomes. It is intuitive to
achieve this goal by generating random chromosomes, which means each gene
in a chromosome is assigned an integer randomly selected from the range 1 to
n, where n is the number of objects to be clustered. However, the chromosomes
generated this way may violate the restrictions of linear linkage encoding. Based
on the first LL encoding constraint, each integer should be between its index
and the maximum integer index number, inclusive. Therefore, a chromosome
generator for creating each gene based on this constraint would be a better choice
for diversity. Note that, the chromosomes produced this way still would not be
fully complied with the constraints laid for linear linkage encoding. Obviously,
backward links are prevented with this generator, but multiple nodes can link
to the same node, violating the second constraint.
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Note that multiple links are allowed during the initialization process. Later,
we will see backward links in a chromosome emerge in the process of the mutation
operation. Therefore, a recovery process is needed after the constructors, and
later other GA operators are employed to rectify a chromosome into its legitimate
format. The Rectifying algorithm used for the recovery process involves two
correction steps. First, backward links are eliminated from a chromosome. Then,
multiple links to a node (except for the ending nodes) are replaced with one link
in and one link out.

The selection process is very similar to that of Niched Pareto GA described
in [15]. A chromosome is said to be fitter or to dominate another one when
it is superior to the latter in terms of all the objective functions used. If only
a part of the objective values of one chromosome are better than the other’s,
neither chromosome is deemed dominant to the other. A chromosome can be
compared to a set of chromosomes. It is dominated by the set if any individual
in the set is fitter than it. Otherwise, the chromosome is not dominated by the
set.

When two randomly selected chromosomes competing for a spot in the parent
pool, they are not directly compared with each other. Rather, each is compared
to a comparison set of chromosomes sampled from the current generation. If
one of the competing chromosomes, say A, is dominated by the comparison
set and the other chromosome, say B, is not dominated, then B advances to
the parent pool. However, when both A and B are either dominated or not
dominated by the set, the niche count of each chromosome is compared. The
chromosome with the smaller niche count gets advantage. Niche count is an
indicator of the solution density around a chromosome in a certain solution
population. This approach encourages even distribution of solutions in the GA
population [15].

In each generation, the Pareto dominant set is achieved through a search in
the whole population. Every individual is compared with the rest. If a chromo-
some is not dominated by the rest, it is copied to the Pareto dominant set. The
Pareto dominant set of the last generation contains the optimal solution.

In our experiments, one point crossover is adapted. The operation both allows
different clusters to exchange partial contents and may split a cluster into two.

The classical mutation was implemented for LL-encoding and the test results
were not encouraging. With the classical mutation, the out-link of a node is
very likely to change to a different one, but the new out-link might still point
to the same cluster. This results in no change in the chromosome after being
rectified, and hence lessens the affect of the mutation during the search. The
solution is to make sure that the mutated gene gains a link to a different cluster
instead of just a different node. Also, when the mutated gene is again assigned
to its original cluster, that cluster is split into two. Hence, the mutation might
have two different effects on the chromosome; a sub-group of objects can be
moved to a new cluster or a cluster can be split into two. This new muta-
tion method changes the membership of set of objects rather than just a single
object.
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4 Experimental Results

In this section, we report the result of our experiments on two widely used data
sets, namely Iris and Ruspini. The former is a real dataset recording 150 obser-
vations of the three species (Setosa, Versicolor, and Virginica) of iris flowers, all
described in four features. The latter is an artificial dataset of two attributes. Its
75 data points naturally form 4 clusters. Originally data points in both datasets
are sorted so that the clusters are easily perceived. To obtain unbiased result,
we reorganized the datasets and all the data points are randomly placed. In
addition, data standardization process is applied to the dataset to neutralize
the effects brought by data attributes of disparage magnitude. We divide each
data element by the maximum value of its dimension to scale all data elements
ranging from 0 to 1. In our experiments, two GAs are developed. Apart from
the encoding schemes, all GA operators are kept the same as described in Sec-
tion 3. The genetic parameters are fixed for all GA runs and they are presented
in Table 1.

Note that the multi-objective GA tries to minimize TWCV for all possible
number of clusters. For the Iris data set, the possible number of clusters ranges
from 1 to 150. The single cluster is the case where all instances are placed into
the same cluster, and each instance is considered as a separate cluster when
number of clusters increases to 150. This range is between 1 and 75 for the
Ruspini dataset since the number of instances is 75 in this domain. Note that
the optimal number of clusters for Iris and Ruspini is 3 and 4, respectively. Hence,
TWCV values obtained for smaller number of clusters is of more interest.

For Iris, the change in TWCV is quite stable down to 3 clusters. However,
there is a considerable leap between TWCV values of 2 and 3 clusters. The same
is valid for Ruspini between 3 and 4 clusters. Hence, it is possible to derive
conclusions about the optimum number of clusters by considering the pareto
optimal set obtained at the end of the GA search. In both data sets the optimum
clusters are well separated from others. We realize that in a domain where the
cluster borders are not very clear, the leap at the optimum number of clusters
may not be as clear as the result obtained in these two domains.

Table 1. Genetic parameters used for the experiments

Parameter Value

Number of Experiments 10

Number of Generations 2000

population size (Iris) 800

population size (Ruspini) 500

Niche Comparison Size (selection) 5

Nitch Radius 5

Nitch Count Size 25

Crossover Rate 0.9

Mutation Rate 0.2
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Fig. 1. The best TWCV values obtained when the number of clusters is: a) 3; b)4; c) 5
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Note that Ruspini dataset has only two attributes. It is easy to display the
clusters obtained on this data set as two-dimensional diagrams. In Figure 1 the
best partitions obtained by the Linkage encoding are presented for 3, 4 and 5
clusters. From Figure 1, it can be easily realized that the natural partition of the
dataset is formed by four clusters (Figure 1-b). However, the partitions obtained
when the number of clusters is decreased to 3 or increased to 5 are also plausible.
When the number of clusters is 3, two of the clusters that appear in the natural
solution merge into a single cluster (Figure 1-a). On the other hand, one of the
clusters in the natural solution splits into two when the number of clusters is 5.
In this case, a new cluster is created with the elements that seem to be a bit
more separate compared to the other elements in the original class (Figure 1-c).

5 Conclusions

In this paper, a new encoding scheme is proposed for the application of GA to the
clustering problem. This new scheme has been successfully used with the multi-
objective GA which is a powerful optimization technique. The results obtained
on two well-known data sets provide a good insight about the importance and
effectiveness of the new scheme. The analysis carried out clearly notifies that the
new scheme is applicable, useful and effective. Although some extra processes
are needed in order to keep the redundancy low, it has been observed that the
computational cost of these processes is not significant.

The leap in TWCV after the optimum number of clusters seems to be an
important issue about the proposed technique. The experiments demonstrate
that it is expected to observe such a leap for datasets with well separated clusters.
It would be interesting to observe the change in TWCV, in domains where cluster
borders are not clear. In such domains, probably it would not be possible to
directly observe the optimum number of clusters. However, an automatic analysis
of the change in TWCV values might be helpful to determine the optimum point.
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Abstract. We propose an approach to embed time series data in a vec-
tor space based on the distances obtained from Dynamic Time Warping
(DTW), and to classify them in the embedded space. Under the problem
setting in which both labeled data and unlabeled data are given before-
hand, we consider three embeddings, embedding in a Euclidean space
by MDS, embedding in a Pseudo-Euclidean space, and embedding in a
Euclidean space by the Laplacian eigenmap technique.

We have found through analysis and experiment that the embedding
by the Laplacian eigenmap method leads to the best classification result.
Furthermore, the proposed approach with Laplacian eigenmap embed-
ding shows better performance than k-nearest neighbor method.

1 Introduction

1.1 Classification of Time Series Data

With the development of information technology, recognition of time series data,
such as gesture recognition, video retrieval, online handwriting recognition, is
becoming more important. Here, we consider the following 2 class classification
problem for time series data.

A set of n time series data, X = {X1, . . . , Xn}, is given, where, Xi (1 ≤ i ≤ n)
is a sequence of feature vectors whose length is li Xi = (xi

1, . . . ,x
i
li
). First s of

the time series data{Xi | 1 ≤ i ≤ s}, are labeled with a class label yi ∈ {−1,+1}.
The task is to estimate the labels of unlabeled data: {Xi | s + 1 ≤ i ≤ n}.

Time series data are much more difficult to deal with than vector data with
a fixed dimension, Many of the classification methods for time series data use
generative models such as Hidden Markov Models (HMMs) [1]. When the true
models are estimated correctly, these methods are accurate. But they needs lots
of training data. Other classification methods such as k nearest neighbors are
based on distances which are obtained from dynamic time warping (DTW) [1].
K nearest neighbors can express class boundaries which have complex shapes
without assuming the form of probability densities, but they tend to be sensitive
to noise in general .
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1.2 Proposed Approach

We propose a distance based approach which can be summarized as follows.

1. Compute the distances between time series data from DTW.
2. Map by Φ the time series data into a vector space (a feature space) F , such

that the DTW distances are preserved in some sense.

Φ : X → F
Xi �→ Φ(Xi)

Project Φ(Xi) to a lower dimensional subspace, and obtain Φ̃(Xi).
3. Train a classifier in F using the labeled data {(Φ̃(Xi), yi) | 1 ≤ i ≤ s}.
4. Classify the unlabeled data, {Φ̃(Xi) | s + 1 ≤ i ≤ n}, using the classifier.

1.3 Embedding in a Vector Space

We consider three methods, i.e. three kinds of mapping Φ, for embedding time
series data in a vector space. The first method is multidimensional scaling
( MDS [2], which embeds data in a Euclidean space. The second method, which
is an extension of the first one, embeds data in a pseudo Euclidean space [3, 4, 5].
The third method uses the technique known as manifold learning [6, 7], and em-
beds time series data in a Euclidean space.

We consider the three embedding methods from the following reasons. MDS
(the first method) is popular as an embedding method using distances between
data. We consider the embedding in a pseudo Euclidean space (in the second
method), because dynamic time warping distances do not satisfy the triangle in-
equality relationship for (Euclidean) distances. For the third embedding method,
we have chosen, from several manifold learning techniques, one which can be ap-
plied to non vector data. Generally speaking, manifold learning embeds data
on a manifold in a low dimensional space such that the geodesic distances are
preserved. Manifold learning is gaining more and more attentions recently as a
nonlinear dimensionality reduction method.

In order to analyze the three embedding methods, we employ the theoretical
framework of kernel PCA [8], which is an extension of principal component
analysis (PCA).

1.4 Related Work

Shimodaira et al. [9] propose dynamic time alignment kernel for voice recogni-
tion, and report better classification accuracy than HMMs when the number of
training data is small. Bahlmann et al.[10] propose GDTW kernel, which substi-
tutes the distance term in the Gaussian kernel with DTW distance, and obtained
classification accuracy comparable with that of HMMs for online handwritten
characters. However, neither method can prove the positive definiteness of the
corresponding kernel matrix which guarantees the existence of a feature space
(a Hilbert space).
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Graepel et al. [4] embed data in a pseudo Euclidean space on the basis of the
similarity measures of pairs of data, and then classify the embedded data using
SVM. They experimented with cat’s cortex data and protein data, and obtained
a favorable result when compared with k-nearest neighbors. Pekalska et al. [5]
propose a similar method and report a good result in the experiment to classify
offline handwritten characters / object shapes in binary images. But, neither of
them consider the classification of time series data.

Belkin et al. [6, 7] propose Laplacian eigenmap method to embed data in a low
dimensional vector space based on a similarity matrix. They have experimented
with offline handwritten digit classification and report a better result than
k-nearest neighbors. But they do not consider time series data, either.

1.5 Paper Organization

After briefly explaining DTW (Sec. 2) and kernel PCA (Sec. 3), we propose
the embedding methods in Sec. 4, compare the distance between data before
and after the embeddings in Sec. 5, and explain the classification including the
classifier learning in Sec. 6. We report on the experiment to evaluate the proposed
methods in Sec. 7. Sec. 8 concludes the paper.

2 DTW

The DTW distances {d2(Xi, Xj) | 1 ≤ i, j ≤ n} which we use in the paper are
computed as follows (‖ · ‖ is the Euclidean norm.)

1. Initialize: g(0, 0) = 0
2. Repeat: for 1 ≤ ti ≤ li1 ≤ tj ≤ lj

g(ti, tj) = min

⎧⎪⎨
⎪⎩

g(ti − 1, tj) + ‖xi
ti
− xj

tj
‖2

g(ti − 1, tj − 1) + 2‖xi
ti
− xj

tj
‖2

g(ti, tj − 1) + ‖xi
ti
− xj

tj
‖2

3. Finish: d2(Xi, Xj) = g(li, lj)/(li + lj)

3 Kernel PCA

We explain kernel PCA by following [8]. Let X = {X1, X2, . . .} be a finite or an
infinite set (which need not be a subset of a vector space), and let k be a positive
definite kernel function defined on X × X . Then, there exists a mapping to a
Hilbert space, Φ : X → H, and for any X,X ′ ∈ X , k(X,X ′) = 〈Φ(X),Φ(X ′)〉
holds, where 〈., .〉 stands for the inner product in the Hilbert space H.

Kernel PCA performs the principal component analysis of the set: {Φ(X1),
Φ(X2), . . . , Φ(Xn)}. Let C be the covariance matrix: C = 1

n

∑
i Φ(Xi)Φ(Xi)T ,

and let λ and v be an eigenvalue and eigenvector of the covariance matrix:
Cv = λv. Then, it can be shown that an eigenvector whose eigenvalue is not 0
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is in the subspace spanned by {Φ(Xi) | 1 ≤ i ≤ n}, and hence can be expanded as
v =
∑n

i=1 αiΦ(Xi). The expansion coefficients, α = (α1, . . . , αn)T , are obtained
from the eigenvectors of the Kernel matrix K : Kij = k(Xi, Xj) as follows.

nλα = Kα (1)

As a consequence, it can be shown that m-th principal component of Φ(Xi) can
be computed by the following formula:

〈vm,Φ(Xi)〉 =
√

nλmαm(i) (1 ≤ i ≤ n) (2)

where λm is an eigenvalue of the matrix Kαm(i) is the i-th element of the
m-th eigenvector αm. Note that we have assumed that 1

n

∑n
i=1 Φ(Xi) = 0 in

computing the covariance matrix, C, but this can be easily realized by centering
the kernel matrix K.

4 Embedding in a Vector Space

4.1 First Method: MDS

The first method uses MDS[2] to obtain a mapping Φ1 : X → �n such that the
following holds.

‖Φ1(Xi) − Φ1(Xj)‖2 = d2(Xi, Xj) (1 ≤ i, j ≤ n) (3)

We abbreviate Φ1(Xi) as zi in what follows. In order to centralize the kernel
matrix, let z = 1

n

∑
i zi, and consider the inner product: k1(Xi, Xj) = 〈zi −

z,zj − z〉. Using (3), we can obtain, after some manipulations, a formula to
compute the kernel matrix from DTW distances.

k1(Xi, Xj) = −1
2
d2(Xi, Xj) +

1
2n

n∑
l=1

d2(Xi, Xl) +
1
2n

n∑
l=1

d2(Xj , Xl)

− 1
2n2

n∑
l=1

n∑
m=1

d2(Xl, Xm) (4)

The kernel matrix K : Kij = k1(Xi, Xj) is decomposed through eigenvalue
analysis as follows.

K = UΛUT (5)

where Λ = diag(λ1, . . . , λn), λ1 ≥ . . . ≥ λn is a diagonal matrix of the eigenval-
ues, and U = [e1, . . . ,en] is a matrix of the eigenvectors.

When K is semi-positive definite, let Z = Λ
1
2 UT , and then K = ZT Z holds.

Hence, we can view the i-th column of Z as zi − z. Translate the origin to the
centroid, keep up-to the p-th principal components, we obtain the following.

z̃i = (
√

λ1e
1(i),

√
λ2e

2
(i), . . . ,

√
λpe

p(i))T (1 ≤ i ≤ n) (6)

Note that the above (6) and (2) are identical up to a constant (
√

n).
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Unfortunately, DTW distances do not satisfy the triangle inequality, and the
matrix K computed from (4) is not necessarily semi-positive definite. Neverthe-
less, the first method embeds data in the Euclidean space, simply by neglecting
negative eigenvalues / vectors.

4.2 Second Method: Embedding in a Pseudo Euclidean Space

Like the first method, K is computed from DTW distances using (4), and is
eigen-decomposed as in (5). While the first method embeds data by viewing K
as a matrix of inner products in a Euclidean space, the second method embeds
data by viewing K as a matrix of symmetric bilinear forms in �(n+,n−), a pseudo
Euclidean space 1, without neglecting negative eigenvalues / vectors [3, 4, 5].

The concrete embedding procedure is as follows. Take the absolute value
Λ̄ of the eigenvalue matrix Λ in (5): Λ̄ = diag(|λ1|, |λ2|, . . . , |λn|). Let Z be
Λ̄

1
2 UT , choose p eigenvalues / vectors whose absolute values are the largest.

The coordinates in the embedded space will be as follows.

z̃i = (
√

|λm1 |em1(i), . . . ,
√

|λmp
|emp(i))T (1 ≤ i ≤ n) (7)

We explain briefly about a pseudo Euclidean space 2. A pseudo Euclidean
space �(n+,n−) is a vector space with the following bilinear form : 〈·, ·〉M , which
corresponds to the inner product in a Euclidean space.

〈z,z′〉M = zT Mz′

M =

⎛
⎝In+ 0 0

0 0 0
0 0 −In−

⎞
⎠

n×n

M is called as the signature matrix of a pseudo Euclidean space. For a pseudo
Euclidean space, one can define, from its bilinear form 〈·, ·〉M , a pseudo metric
(distance): ‖z−z′‖2

M = (z−z′)T M(z−z′). The second method seeks a mapping
Φ2 : X → �(n+,n−) which satisfies

‖Φ2(Xi) − Φ2(Xj)‖2
M = d2(Xi, Xj) (1 ≤ i, j ≤ n) (8)

4.3 Third Method: The Laplacian Eigenmap

The third method embeds time series data by employing the Laplacian Eigenmap
technique [6, 7]. The procedure is as follows.

1 n+, n− in �(n+,n−) stands for the number of positive and negative eigenvalues of K ,
respectively.

2 In the literature on pattern recognition, a feature space generally means a Hilbert
space. The second method, however, considers a pseudo Euclidean space also as a
feature space.
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1. Compute the similarity matrix W from DTW distances.

W ij =
{

e−d2(Xi,Xj)/t i �= j ∧ d(Xi, Xj) < ε
0 if otherwise

(9)

where t(> 0) is a hyper parameter.
2. Compute the Laplacian Matrix L.

L = D − W ,D is a diagonal matrix such that Dii =
∑n

j=1 W ij .
3. Solve a generalized eigenvalue problem: Le = λDe, and compute p smallest

eigenvectors e1, . . . ,ep (λ1 ≤ λ2 ≤ . . . ≤ λp) 3.
4. Compute the coordinates in the embedded space.

Let Ũ =
[
e1,e2, . . . ,ep

]
, and Z̃ = [z̃1, . . . , z̃n] = UT , that is to say

z̃i = (e1(i),e2(i), . . . ,ep(i))T (1 ≤ i ≤ n) (10)

5 Distances Before and After the Embedding

We investigate how the distances between time series data change when they are
embedded in vector spaces.

As we can see clearly from Eq. (3) and (8), the first and the second methods
perform, so to speak, a global embedding which maintains both short DTW
distances and long DTW distances equally.

Next, let us consider the meaning of the solution for the generalized eigenvalue
problem: Le = λDe in the third method [6]. To begin with, seek a mapping
from time series data to p dimensional space, Ψ : X → Rp (Xi �→ z̃i), such that∑

i

∑
j ‖z̃i − z̃j‖2W ij will be minimized. In other words, we try to map those

time series which are close to each other (in DTW distances) to nearby points in
Rp. Let n × p matrix Ũ be such that Ũ

T
= [z̃1z̃2 . . . z̃n], then it can be shown

that the following holds 4.

1
2

n∑
i=1

n∑
j=1

‖z̃i − z̃j‖2W ij = tr(Ũ
T
LŨ) (11)

Hence, we are left with the following minimization problem.

Ũ
∗

= argmin
Ũ

T
DŨ=I

tr(Ũ
T
LŨ) (12)

It is well known that the above minimization problem is reduced to finding the
p smallest eigenvalues / vectors for a generalized eigenvalue problem: Le = λDe.
Since the distances after the embedding are weighted according to the similarity

3 It has recently been pointed out [11] that KL = L†, i.e., the pseudo inverse of
the Laplacian matrix L is the kernel matrix for the Laplacian eigenmap technique.
Therefore, embedding using the eigenvectors with the smallest eigenvalues of L is
equivalent to kernel PCA for the kernel matrix: KL.

4 From (11), we can see that L is semi-positive definite.
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W ij in (11), the third method performs, so to speak, a local embedding which
maintains short DTW distances, neglecting long distances.

6 Classification

6.1 Classifier Training

We consider here linear classifiers only for simplicity.

f(X) = 〈w, Φ̃(X)〉 + b = 〈w, z̃〉 + b (13)

The term 〈w, Φ̃(X)〉 in the above should be 〈w, Φ̃(X)〉M for the second method.
However, by setting w′ = Mw, and considering 〈w, z̃〉M = 〈w′, z̃〉, pseudo
Euclidean coordinates will be treated as Euclidean coordinates from now on [4].

Least Mean Square Error. Here, we seek a linear classifier which minimizes
the mean square error for the labeled data: {(Φ̃(Xi), yi) | 1 ≤ i ≤ s}. In other
words, the following error function in terms of w, b should be minimized.

Err(w, b) =
s∑

i=1

{yi − (〈w, z̃i〉 + b)}2 (14)

Maximal Margin. A hyperplane which has the maximal margin will be ob-
tained by minimizing ‖w‖2 under the following constraint [12]

yi(〈w, z̃i〉 + b) ≥ 1, i = 1, . . . , s (15)

6.2 Classifying Unlabeled Data

Let f(X) = 〈w∗, z̃〉 + b∗, and for Xi(i > s),

yi =

{
1, if f(Xi) ≥ 0

−1, if f(Xi) < 0
(16)

7 Experiments

7.1 Experiment 1

We compare the three embedding methods using Australian sign language (ASL)
data [13]. The ASL data consists of 95 signs obtained from 5 subjects, each of
which is a sequence of 9 dimensional feature vectors. We picked up two pairs,
”sad” and ”what”, ”go” and ”please” among the 95 signs, and classified each
pairs into two classes. Each sign class has 70 samples.

As to the third method, the similarity matrix was computed by using 8
nearest neighbors instead of ε distance neighbors. The value for t, t = 10000,
was determined experimentally.



Embedding Time Series Data for Classification 363

Fig. 1. Experiment 1 “sad” vs “what” (left) and “go” vs “please” (right). Average
error rate from 30 trials are plotted. Solid lines (Hilbert) are for the third method

Fig. 2. Distances before and after the embedding: 1st Method (left) and 3rd Method
(right) for 140 data of “go” and “please” signs

We varied the total number of training data. The rest were used as test data.
The dimensionality of the embedded space, p, was set to 20% of the number of
the training data. We used the maximal margin linear classifier for the first and
second method, and the least mean squared error classifier for the third method,
about which good results have been reported [4, 5, 7].

Fig. 1 shows that the third method has the best accuracy. Let us consider
the reason. Since DTW distances are originally pattern matching scores, short
distances which show a good match tend to be reliable, but long distances tend
to be unreliable. While the first and the second method maintain both short
and long distances equally alike in the embeddings, the third method tries to
maintain only short distances by putting more weights on short distances. We
thus conjecture that the third method has yielded the best result because it is
compatible with the above nature of DTW distances. (See also Fig. 2, which
supports the analysis in Sec. 5 on distances.)

7.2 Experiment 2

In the second experiment, we compare the third method: Laplacian eigenmap
embedding, which had the highest accuracy in the first experiment, with k near-
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Fig. 3. Experiment 2: ”sad” vs ”what” (left) and ”go” vs ”please” (right). The average
error rate is plotted for the same ASL data used in the first experiment

Fig. 4. Experiment 2: ”upward shift” vs ”increasing trend” in Control Chart Time
Series [13]

est neighbors (k = 1, 3, 5). K nearest neighbors also use DTW distances, but do
not embed data.

The results in Fig. 3 and 4 show that the third method has the best classifi-
cation accuracy. We conjecture the reasons as follows. Firstly, the third method
uses a linear classifier, which is expected to be more robust to noise than k near-
est neighbors. Secondly, the third method seems to use unlabeled data effectively
[14], because the coordinates of test data in the embedded space are determined
by the DTW distances not only to the labeled data (the training data), but
also to the unlabeled data (the test data), as far as they are within 8 nearest
neighbors.

8 Conclusion

We have proposed an approach to embed time series data in a vector space based
on the distances obtained by Dynamic Time Warping, and to classify them in
the embedded space. Under the problem setting in which both labeled data
and unlabeled data are given beforehand, we have considered three embeddings,
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embedding in a Euclidean space by MDS, embedding in a Pseudo-Euclidean
space, and embedding in a Euclidean space by the Laplacian eigenmap technique.
We have found that embedding by the Laplacian eigenmap technique leads to
the best classification result. Furthermore, the proposed approach with Laplacian
eigenmap embedding shows better performance than k-nearest neighbors.
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Abstract. This paper is concerned with time series of graphs and pro-
poses a novel scheme that is able to predict the presence or absence
of nodes in a graph. The proposed scheme is based on decision trees
that are induced from a training set of sample graphs. The work is mo-
tivated by applications in computer network monitoring. However, the
proposed prediction method is generic and can be used in other ap-
plications as well. Experimental results with graphs derived from real
computer networks indicate that a correct prediction rate of up to 97%
can be achieved.

1 Introduction

Time series, or sequence, data are encountered in many applications, such as fi-
nancial engineering, audio and video databases, biological and medical research,
and weather forecast. Consequently, the analysis of time series has become an im-
portant area of research [1]. Particular attention has been paid to problems such
as time series segmentation [2], retrieval of sequences or partial sequences [3], in-
dexing [4], classification of time series [5], detection of frequent subsequences [6],
periodicity detection [7] and prediction [8, 9, 10].

Typically a time series is given in terms of symbols, numbers, or vectors [1].
In the current paper we go one step further and consider time series of graphs.
A time series of graphs is a sequence, s = g1, . . . , gn, where each gi is a graph.
In a recent survey it has been pointed out that graphs are a very suitable and
powerful data structure for many operations needed in data mining in intelligent
information processing [11]. As a matter of fact, traditional data structures, such
as sequences of symbols, numbers, or vectors, can all be regarded as a special
case of sequences of graphs.

The work presented in this paper is motivated by one particular application,
which is computer network monitoring [12, 13]. In this application, graphs play
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an important role [14]. The basic idea is to represent a computer network by
a graph, where the clients and servers are modelled by nodes, and physical
connections correspond to edges. If the state of the network is captured at regular
points in time and represented as a graph, a sequence, or time series, of graphs is
obtained that formally represents the network. Given such a sequence of graphs,
abnormal network events can be detected by measuring the dissimilarity, or
distance, between a pair of graphs that represent the network at two consecutive
points in time. Typically an abnormal event manifests itself through a large
graph distance [14].

In the current paper we address a different problem, viz. the recovery of
incomplete network knowledge. Due to various reasons it may happen that the
state of a network node or a network link can’t be properly captured during
network monitoring. This means that it is not known whether a certain node or
edge is actually present or not in the graph sequence at a certain point in time.
In this paper we describe a procedure that is able to recover missing information
of this kind. This procedure is capable to make a decision as to the presence
or absence of such a network node or edge. An information recovery procedure
of this kind can also be used to predict, at time t, whether a certain computer
or a certain link will be present, i.e. active, in the network at the next point
in time, t + 1. Such procedures are useful in computer network monitoring in
situations where one or more network probes have failed. Here the presence, or
absence, of certain nodes and edges is not known. In these instances, the network
management system would be unable to compute an accurate measurement of
network change. The techniques described in this paper can be used to determine
the likely status of this missing data and hence reduce false alarms of abnormal
change.

Although the motivation of our work is in computer network monitoring, the
methods described in this paper are fairly general and can be applied in other
domains as well. Our proposed recovery scheme is based on decision tree learning
as described in [15]. Basically we cast the recovery and prediction task into a
classification framework, where one wants to decide whether a node is present
in the network at a certain point in time or not. Clearly such a decision can be
understood as a two-class classification problem, with one class, Ω0, indicating
the absence of the node in question, and another class, Ω1, representing its
presence in the network at a given point in time.

The rest of this paper is organized as follows. Basic terminology and nota-
tion will be introduced in the next section. Then, in Section 3, we will describe
our novel information recovery and prediction scheme. Experimental results
with this new scheme will be presented in Section 4 and conclusions drawn in
Section 5.

2 Basic Concepts and Notation

A labeled graph is a 4-tuple, g = (V,E, α, β), where V is the finite set of nodes,
E ⊆ V × V is the set of edges, α : V → L is the node labeling function, and
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β : E → L
′

is the edge labeling function, with L and L
′

being the set of node
and edge labels, respectively. In this paper we focus our attention on a special
class of graphs that are characterized by unique node labels. That is, for any two
nodes, x, y ∈ V , if x �= y then α (x) �= α (y). Properties of this class of graphs
have been studied in [16]. In particular it has been shown that problems such as
graph isomorphism, subgraph isomorphism, maximum common subgraph, and
graph edit distance computation can be solved in time that is only quadratic in
the number of nodes of the larger of the two graphs involved.

To represent graphs with unique node labels in a convenient way, we drop set
V and define each node in terms of its unique label. Hence a graph with unique
node labels can be represented by a 3-tuple, g = (L,E, β) where L is the set of
node labels occurring in g, E ⊆ L × L is the set of edges, and β : E → L

′
is

the edge labeling function [16]. The terms “node label” and “node” will be used
synonymously in the remainder of this paper.

In this paper we will consider time series of graphs, i.e. graph sequences, s =
g1, g2, . . . , gN . The notation gi = (Li, Ei, βi) will be used to represent individual
graph gi in sequence s; i = 1, . . . , N . Motivated by the computer network analysis
application considered in this paper, we assume the existence of a universal set
of node labels, or nodes, L, from which all node labels that occur in a sequence
s are drawn. That is, Li ⊆ L for i = 1, . . . , N and L =

⋃N
i=1 Li.1

Given a time series of graphs, s = g1, g2, . . . , gN , and its corresponding uni-
versal set of node labels, L, we can represent each graph, gi = (Li, Ei, βi), in
this series as a 3-tuple (γi, δi, β̂i) where

– γi : L → {0, 1} is a mapping that indicates whether node l is present in gi

or not. If l is present in gi, then γi (l) = 1; otherwise γi (l) = 0.2

– δi : L′ × L′ → {0, 1} is a mapping that indicates whether edge (l1, l2) is
present in gi or not; here we choose L′

= {l | γi (l) = 1}, i.e. L′
is the set of

nodes that are actually present in gi.
– β̂i : L′ × L′ → L

′
is a mapping that is defined as follows:

β̂i (e) =
{

βi (e) , if e ∈ {(l1, l2) | δi (l1, l2) = 1}
undefined, otherwise

The definition of β̂i (e) means that each edge e that is present in gi will have
label βi (e). The 3-tuple (γi, δi, β̂i) that is constructed from gi = (Li, Ei, βi) will
be called the characteristic representation of gi, and denoted by χ (gi). Clearly,
for any given graph sequence s = g1, g2, . . . , gN the corresponding sequence
χ (s) = χ (g1) , χ (g2) , . . . , χ (gN ) can be easily constructed and is uniquely de-
fined. Conversely, given χ (s) = χ (g1) , χ (g2) , . . . , χ (gN ) we can uniquely recon-
struct s = g1, g2, . . . , gN .

1 In the computer network analysis application L will be, for example, the set of all
unique IP host addresses in the network. Note that in one particular graph, gi,
usually only a subset is actually present. In general, L may be any finite or infinite
set.

2 One can easily verify that {l | γi (l) = 1} = Li.
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In the current paper we’ll pay particular attention to graph sequences with
missing information. There are two possible cases of interest. First it may not
be known whether node l is present in graph gi or not. In other words, in χ (gi)
it is not known whether γi (l) = 1 or γi (l) = 0. Secondly, it may not be known
whether edge (l1, l2) is present in gi, which is equivalent to not knowing, in
χ (gi), whether δi (l1, l2) = 1 or δi (l1, l2) = 0. In this paper, we focus on the case
of missing node information. To cope with the problem of missing information
and in order to make our notation more convenient, we extend function γ in
the characteristic representation, χ (g), of graph g = (L,E, β) by including the
special symbol ? in the range of values of each function to indicate the case of
missing information. That is, we write γ (l) =? if it is unknown whether node l
is present in g or not.

3 Recovery of Missing Information Using Decision Trees

Our goal is to construct a function that computes γt (l) for a node, l, given some
data extracted from time series g1, g2, . . . , gt as input. In the approach proposed
in this paper the function that computes γt(l) will actually use only information
extracted from gt. However, graphs g1, . . . , gt−1 will be used as a training set,
i.e. they are used to learn this function.

The approach proposed in this paper is based on decision trees. Decision
tree classifiers have often been used for the purpose of object classification. An
object, x, is given in terms of the values of d different features and represented
by means of a d-dimensional vector, i.e. x = (x1, . . . , xd). The feature values, xi,
1 ≤ i ≤ d, can be numerical or non-numerical. It is possible that one or several
feature values are unknown. To classify an object means to assign it to a class,
Ωi, out of a number of given classes, Ω1, . . . , Ωc. For all further technical details
we refer the reader to [15].

Assume we want to make a decision as to γt (l) = 0 or γt (l) = 1, given
γt (l) =?. Actually, this decision problem can be transformed into a classification
problem as follows. The network at time t, gt, corresponds to the unknown
object to be classified. Network gt is described by means of a feature vector,
x = (x1, . . . , xd), and the decision as to γt (l) = 0 or γt (l) = 1 can be interpreted
as a two-class classification problem, where γt (l) = 0 corresponds to class Ω0

and γt (l) = 1 corresponds to class Ω1. As features x1, . . . , xd that represent the
unknown object x, i.e. graph gt, one can use, in principle, any quantity that
is extractable from graphs g1, . . . , gt. In this paper we consider the case where
these features are extracted from graph gt exclusively. Assume that the universal
set of node labels is given by L = {l0, l1, . . . , lD}, and assume furthermore that
it is node label l0 for which we want to make a decision as to γt (l0) = 0 or
γt (l0) = 1, given γt (l0) =?. Then we set d = D and use the D-dimensional
binary feature vector (γt (l1) , . . . , γt (lD)) to represent graph gt. In other words,
x = (γt (l1) , . . . , γt (lD)). This feature vector is to be classified as either belonging
to class Ω0 or Ω1. The former case correspond to deciding γt (l0) = 0, and the
latter to γt (l0) = 1. Intuitively, using (γt (l1) , . . . , γt (lD)) as a feature vector for
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the classification of gt means we make a decision as to the presence or absence
of l0 in gt depending on the presence or absence of all other nodes from L in gt.3

For the implementation of the classification procedure described in the last
paragraph, we need a training set. For the training set we can use all previous
graphs in the given time series, i.e. g1, . . . , gt−1. From each graph, gi, we extract
the D-dimensional feature vector

xi = (γi (l1) , . . . , γi (lD)) (3.1)

So our training set becomes L = {x1, . . . ,xt−1} . We do need to assign the
proper class to each element of the training set. This can be easily accomplished
by assigning class Ω0 to xi if γi (l0) = 0; otherwise, if γi (l0) = 1, we assign class
Ω1 to xi; i = 1, . . . , t − 1.

Given such a training set, constructed from g1, . . . , gt−1, we can now apply
any known procedure to infer a decision tree from training set L. In the experi-
ments described in Section 4, we have used C4.5 [15]. Once the decision tree has
been produced, it is straightforward to classify feature vector xt (see Eq. (3.1)),
which describes gt, as belonging to Ω0 or Ω1.

Decision tree classifiers are able to deal with unknown attribute values. This is
important in our application because we must expect that not only information
about node l0 in gt is missing, but also about other nodes, li, in gt, where
i ∈ {1, . . . , D}. Similarly, when building the decision tree from training set L =
{x1, . . . ,xt−1}, there may be graphs, gi, i ∈ {1, . . . , t − 1} where it is not known
for some nodes whether they are present or not in gi. Hence some of the γi (lj)
may be unknown. Fortunately, decision tree induction methods are able to cope
with such cases of missing data [15].

The procedure described in this section is based on two assumptions. The
first assumption is that there is some kind of correlation between the occurrence
of a node, l, in graph gt, and the occurrence of some (or all) other nodes in
the same graph. In other words, we assume that the behaviour of node l is
dependent, in some way, on the behaviour of the other nodes. Note, however,
that we don’t need to make any assumptions as to the mathematical nature of
this dependency. Our second assumption is that there is some stationarity in
the dependency between l and the other nodes. Using graphs g1, . . . , gt−1 as a
training set to derive a classifier that makes a decision pertaining to graph gt

will work well only if the dependency between l and the other nodes in gt is of
the same nature as in g1, . . . , gt−1.

In a practical setting it may be computationally too demanding to infer a
decision tree at each point of time, t. Hence it may be preferable to do an
update of the actual decision tree only after a certain period of time has elapsed.
Moreover, in the decision tree updating process it is possible to use only part
of the network history. This means that for the construction of the decision
tree for gt, we don’t use g1, . . . , gt−1, but focus on only the M most recent

3 Note that in principle also information about edges could be incorporated in the
feature vector. However such an extension would increase the space complexity from
O(D) to O(D2).
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Table 1. Characterisation of the graph sequences used in the experiments

S1 S2 S3 S4

Number of graphs in sequence 102 292 202 99

Size of smallest graph in sequence 38 85 15 572

Size of largest graph in sequence 94 154 329 10704

Average size of graphs in sequence 69.7 118.5 103.9 5657.8

graphs gt−M , . . . , gt−1. This is particularly advisable if there is evidence that
the behaviour of the network is not perfectly stationary, but changing over time.

4 Experimental Results

The method described in Section 3 of this paper has been implemented and
experimentally evaluated on real network data. For the experiments four time
series of graphs, S1, S2, S3 and S4, acquired from existing computer networks
have been used. Characteristics of these graph sequences are shown in Table 1,
where the size of a graph is defined as the number of its nodes. All four series
represent logical communications on the network. Series S1, S2 and S4 were
derived from data collected from a large enterprise data network, while S3 was
collected from a wireless LAN used by delegates during the World Congress for
Information Technology (WCIT2002). The nodes in each graph of S1 and S2

represent business domains in the network, while in S3 and S4 they represent
individual IP addresses. Note that all graph sequences are complete, i.e. there
are no missing nodes and edges in these sequences.

For the experiments described in this section each time series is divided into
two disjoined sets of graphs. The first set, G1, consists of all graphs gi with
index i being an odd number (i.e. graphs g1, g3, g5, . . .), while the other set,
G2, includes all graphs with an even index i (i.e. graphs g2, g4, . . .). First, set
G1 is used as the training set for decision tree induction and G2 serves as the
test set. Then G1 and G2 change their role, i.e. G1 becomes the test and G2

the training set. In the learning phase an individual decision tree is build for
each node, i.e. for each label, l, belonging to the universal set of node labels,
L, as described in Section 3. Once all decision trees have been learned, testing
takes place by assuming, for each graph gi from the test set and each node label
l ∈ L, that γi(l) =?. The decision tree learned for label l is used to decide either
γi(l) = 0 or γi(l) = 1. Then the predicted value is compared to the real value.
For each graph, gi, in the test set we count the number of nodes that have been
correctly predicted and divide this number by the total number of nodes in g.
Splitting the considered time series of graph, S, into disjoined sets, G1 and G2,
is equivalent to performing a two-fold cross-validation, where each graph in time
series S serves one time as a training and one time as a test sample. Clearly,
a number of alternative scenarios for testing the proposed method are feasible.
For example, instead of performing just a two-fold cross-validation, one could
split the dataset into n > 2 disjoint subsets and do an n-fold cross-validation.
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Fig. 1. Percentage of correctly predicted nodes in sequence S1, using both pruned and
non-pruned decision trees

Fig. 1 shows the correct prediction rate for each graph in time series S1. Two
different versions of the decision tree induction procedure were applied. The first
version generates a tree without any pruning, while the second version applies
pruning, as described in [15].

For each of the two versions the percentage of correctly predicted nodes in
the corresponding graph is shown. We observe that the correct prediction rate is
around 89% on the average. This is a remarkably high value taking into consider-
ation that for a two-class classification problem, such as the one considered here,
random guessing would give us an expected performance of only 50%. There are
some obvious drops in prediction performance in Fig. 1, for example between
time 20 and time 25, and around time 65. These drops correspond to abnor-
mal events in the underlying computer network where major changes in network
topology take place. Obviously these abnormal events don’t follow the normal
network behaviour represented in the training set. But the correct prediction
rate is still quite high (more than 75% in any case).

From Fig. 1 it is hard to tell which of the two decision tree induction methods,
including or excluding pruning, gives the better overall result. However if we
average the correct prediction rate over all graphs in the time series, we get
values of 89, 5% and 88, 6% for pruned and non-pruned trees, respectively. Hence
using decision tree pruning gives us a slightly better performance.

Fig. 2 shows the percentage of correctly predicted nodes in sequence S2 for
pruned and non-pruned trees. We observe again a high correct prediction rate,
with the curve showing a bit more jitter than Fig. 1. The correct prediction
rate, averaged over all graphs of Sequence S2, is 93, 4 for pruned and 92, 8 for
non-pruned decision trees.
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Fig. 2. Percentage of correctly predicted nodes in sequence S2, using both pruned and
non-pruned decision trees

Table 2. Summary of correct prediction rates for sequences S1 to S4

S1 S2 S3 S4

Pruned trees 89,5 93,4 96,9 89,4

Non-pruned trees 88,6 92,8 96,3 87,4

Results for sequences S3 and S4 are similar. A summary of the correct pre-
diction rates, averaged over all graphs in a sequence, for both pruned and non-
pruned decision trees, is shown in Table 2. From this figure we can conclude that
for all time series used in this study quite high prediction rates were achieved.
Pruned trees are consistently slightly better than non-pruned trees.

5 Conclusions

The problem of incomplete knowledge recovery and prediction of the behaviour
of nodes in time series of graphs is studied in this paper. Formally, this task
is formulated as a classification problem where nodes with an unknown status
are to be assigned to one of the classes ’present in’ (Ω1) or ’absent from’ (Ω0)
the actual graph. A decision tree learning scheme is proposed in order to solve
this classification problem. The motivation of this work derives from the field
of computer network monitoring. However the proposed framework for graph
sequence analysis is fairly general and can be applied in other domains as well.
In computer network monitoring, prediction procedures, as studied in this paper,
are important for patching missing network data in instances where one or more
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network probes have failed. Without such procedures, the network management
system would have diminished capability in detecting abnormal change.

The proposed prediction procedure is straightforward to implement using
decision tree induction software tools. Excellent performance with correct pre-
diction rates ranging between about 89% and 97% with pruned trees has been
achieved, using the proposed method on four independent data sets acquired
from real computer networks.

The task in this paper has been cast as a classification problem. Consequently,
not only decision trees, but also any other type of classifier can be applied, for
example, neural network, Bayes classifier, nearest neighbor, or support vector
machine. However, decision trees have at least two advantages. First, they can
cope with missing data in both the training and test set. Secondly, it is possible
to extract, from a trained decision tree, a number of rules that are interpretable
by a human expert. This second aspect has not been stressed in our work yet,
but is interesting to be investigatedin future research.

The proposed schemes can be extended in a variety of ways. First of all,
a prediction scheme, similar to the one proposed in this paper for nodes, can
be designed for edges. In both, node and edge prediction, node as well as edge
information can be utilized. That is, feature vectors as described in Section 3 can
be extended to including information about the presence or absence of edges and
they can be used for both node and edge prediction. Dealing with edges, however,
introduces a substantially higher cost from the computational complexity point
of view, because in a graph with n nodes we may have up to O(n2) edges, i.e. the
complexity of our algorithms is going up from O(n) to O(n2).

In the scheme proposed in Section 3 we have used within-graph context ex-
clusively, i.e. the only information that is used in order to make a decision as
to the presence or absence of a certain node in a graph, g, comes from that
graph, g. One could use, however, also context in time. This means that we in-
clude information about the past behaviour of a network node in order to decide
about its presence in the actual graph. From the conceptual point of view it is
straightforward to integrate information of this kind in the proposed decision
tree learning procedures. A more detailed investigation of this issue is left to
future research.

Acknowledgement

The authors are thankful to J. Marbach and T. Varga for valuable contributions
to this paper.

References

1. Last, M., Kandel, A., Bunke, H. (eds.): Data Mining in Time Series Databases,
World Scientific, 2004

2. Keogh, E. et al: Segmenting time series: A survey and novel approach, in [1], 1-21



Analysis of Time Series of Graphs 375

3. Kahveci, T., Singh, K.: Optimizing similarity search for arbitrary length time series
queries, IEEE Trans. KDE, Vol. 16, No 2, 2004, 418-433

4. Vlachos, M. et al.: Indexing time-series under conditions of noise, in [1], 67-100
5. Zeira, G. et al: Change detection in classification models induced from time series

data, in [1], 101-125
6. Tanaka, H., Uehara, K.: Discover motifs in multi-dimensionaltime-series using the

principle component analysis and the MDL principle, in Perner, P., Rosenfeld, A.
(eds.): Machine Learning and Data Mining in Pattern Recognition, Proc. 3rd Int.
Conference, Springer LNAI 2734, 2003, 252-265

7. Yang, J., Wang, W., Yu, P.S.: Mining asynchronous periodic patterns in time series
data, IEEE Trans. KDE, Vol. 15, No 3, 2003, 613-628

8. Schmidt, R., Gierl, L.: Temporal abstractions and case-based reasoning for medical
course data: two prognostic applications, in Perner, P. (ed.): Machine Learning in
Pattern Recognition Proc. 2nd Int. Workshop, Springer, LNAI 2123, 2001, 23-34

9. Fung, G.P.C.F., Yu, D.X., Lam, W.: News sensitive stock trend prediction, in
Chen, M.-S., Yu, P.S., Liu, B. (eds.): Advances in Knowledge Discovery and Data
Mining, Proc. 6th Pacific-Asia Conference, PAKDD, Springer, LNAI 2336, 2002,
481-493

10. Povinelli, R.F., Feng, X.: A new temporal pattern identification method for char-
acterization and prediction of complex time series events, IEEE Trans. KDE, Vol.
15, No 2, 2003, 339-352

11. Bunke, H.: Graph-based tools for data mining and machine learning, in Perner, P.,
Rosenfeld, A. (eds.): Machine Learning and Data Mining in Pattern Recognition,
Proc. 3rd Int. Conference, Springer LNAI 2734, 2003, 7-19

12. Hayes, S.: Analysing network performance management, IEEE Communications
Magazine, 31 (5):52-58, May 1993

13. Higginbottom, G.N.: Performance Evaluation of Communication Networks, Artech
House, Massachusetts, 1998

14. Bunke, H., Kraetzl, M., Shoubridge, P., Wallis, W.: Detection of abnormal change
in time series of graphs, Journal of Interconnection Networks, Vol. 3, Nos 1,2, 2002,
85-101

15. Quinlan, R.: C4.5: Programs for Machine Learning, Morgen Kaufmann Publ., 1993
16. Dickinson, P., Bunke, H., Dadej, A., Kraetzl, M.: Matching graphs with unique

node labels, accepted for publication in Pattern Analysis and Applications



Disjunctive Sequential Patterns on Single Data
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Abstract. In this work, we proposes a novel method for mining fre-
quent disjunctive patterns on single data sequence. For this purpose, we
introduce a sophisticated measure that satisfies anti-monotonicity, by
which we can discuss efficient mining algorithm based on APRIORI. We
discuss some experimental results.

Keywords: Disjunctive Sequence Pattern, Anti-Monotonicity, Single
Data Sequence.

1 Motivation

Recently there have been much investigation discussed to text data analysis
using data mining techniques proposed so far. This is because generally text
data has been analyzed qualitatively but not quantitatively, which means it is
hard to apply several quantitative techniques such as statistical tests and data
mining approach[6, 9]. However, much attention has been focused on quantitative
analysis of several features of text thus new approach, called text mining, has
been proposed to extend traditional methodologies.

Main ideas in text mining approach come from frequency and co-occurrence,
the former means important words arise many times while the latter says related
words occur at the same time[12, 14]. For example, when we analyze purchase
logs in some bookstore, we could obtain co-occurrence of “Snakes and Earrings”
and “The Back One Wants to Kick” and arrange the books on shelf or promoting
the campaign1.

The idea can be extended to many activities. Here we discuss em sequence
data that means an ordered list of information along with time or any other and
we extract patterns from the list as common behavior. In our case, we could
obtain correlation that says those who get Snakes and Earrings would also get
The Back One Wants to Kick in a month, and we would arrange some promotion
behavior such as direct-mail or any other campaign in the month. Also we could
apply the techniques for analyzing Web access patterns, medical-care and DNA
sequence[8, 10, 11].

1 The both books win the 130-th Akutagawa award in 2003. The authors, Ms. Hitomi
Kanehara and Ms. Risa Wataya, are in 20’s and have gotten into the news in Japan.

P. Perner and A. Imiya (Eds.): MLDM 2005, LNAI 3587, pp. 376–383, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Among others, text mining has been paid much attention recently where text
describes some context consisting of sequence of words. The main idea is similar
to data mining, i.e., frequency and co-occurrence. We extract frequent patterns
(lists of words, phrase) and we summarize (abstract) and label important events
from them.

Clearly it is hard to extract all the frequent patterns from very long lists of
words, since the search-space is so huge that we face to combinatorial explosion
to the problems. For instance, we might have some sentences:

(1) I met a mother of my friend’s brother. Next day, I met a mother of
my brother’s friend.
(2) I saw a red and white flag2. Next day, I saw a white and red flag.

Clearly, in (1), we have two distinct mothers while, in (2), we see a same flag. To
extract frequent patterns, we should count separately in (1) but count double in
(2). In text mining, we want to extract a pattern [red, white] flag that means a
pattern contains both a red white flag and a white red flag by ignoring permu-
tation of red and em white. This is called a disjunctive pattern or a permuted
pattern.

We might think about regular expression by adding Kleene closure but we
avoid the extension because of vast amount of complexity in this work.

When we examine disjunctive patterns, we might generate huge number of
candidate patterns such as “Snakes and Earrings The Back One Wants to Kick”.
To obtain smaller search space, we need to scan a database many times thus we
should have heavy I/O access to the data on hard disks. Sampling or any spe-
cialized data storage techniques might be helpful but the performance efficiency
depends heavily on data distribution.

There have been important research results obtained based on APRIORI
[6, 9]. Generally we can avoid vast range of search but not enough to sequence
data. In general APRIORI based approach, when q is a sub-pattern of a pattern
p, any sequence data that matches p should also match q. This property (called
anti-monotonicity of patterns) provides us with the reduction of search space.

However, in a case of text mining, this is not true and we can’t apply APRI-
ORI technique any more. For example, in a text ‘‘aabbba", a is a sub-pattern
of ab but we see a pattern ab matches 6 times, both a and b 3 times respectively
and [ab] 9 times. In other words, we can’t have a naive counting method any
more.

In this investigation, given an integer m and single long sequence data S, we
discuss how to extract p where a new count MS(p) is more than m. Here the
true problem is the counting scheme M. We extend some approach proposed[16]
and discuss a new framework for disjunctive patterns within APRIORI.

In section 2 we formalize our problem, and, in section 3, we introduce a
new measure for counting satisfying anti-monotonicity. Section 4 contains some
experimental results.

2 The national flag of Japan consists of red and white parts.
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2 Text Mining from Single Sequence Data

In this work, we consider a word as a unit, called item. Any element in an
itemset I = {i1, .., iL}, L > 0 is called alphabet, and a sequence data (or, text)
S = s1...sm, m > 0 is an ordered list of items, m is called a length of S, and S is
called m-sequence. Note an item may appear many times in S.

A disjunctive pattern (or just a pattern) p is a form of t1...tn, n > 0 where
each ti is an alphabet a or a disjunction [a1a2...am], m > 0, each aj is a distinct
alphabet.

Given two patterns p = t1...tn, n > 0 and q = v1v2...vm, m ≤ n, we say q is a
sub-pattern of p, denoted by q  p, if there exist 1 ≤ j1 < ... < jm ≤ n such that
each vk corresponds to tjk

(denoted by vk  tjk
if no confusion arises) satisfying:

If vk is an alphabet a, tjk
= a or tjk

is a disjunction containing a
If vk is a disjunction [a1a2...am], we have both tjk

= [b1b2...bl] and
{a1, .., am} ⊆ {b1, .., bl}

Example 1. ac is a sub-pattern of abcd. Similarly [ac] is a sub-pattern of [abcd],
bd is a sub-pattern of [ab]b[cd]de, b is a sub-pattern of [ab], and “ac” is a sub-
pattern of [ab][cd].

However, ab is not a sub-pattern of [ab], nor [ab] is a sub-pattern of ab.

We say a pattern p = t1t2...tn matches a sequence S = c1c2...cm

if t1 is an alphabet a1, there exist t1 = a1 = ci1 , 1 ≤ i1 ≤ m and the
sub-pattern t2...tn matches ci1+1...cm,
and if t1 is a disjunction [a1a2...am], there exists a permutation aj1 ...ajm

of a1, ..., am that matches c1...ci1 , and the subpattern t2...tn matches
ci1+1...cm.

Example 2. Assume S is aabbba. A pattern a matches S 3 times, ab 6 times
and [ab] 9 times. Note we can see more frequency by [ab].

Given a sequence S, a function MS from patterns to non-negative integers
satisfies Anti Monotonicity if for any patterns p, q such that q  p, we have
MS(q) ≥ MS(p). In the following, we assume some S and we say M for MS .

Given M and an integer m > 0 (called minimum support), A pattern p is
called frequent if M(p) ≥ m. If M satisfies anti-monotonicity, for any q such that
M(q) < m, there is no frequent p such that q  p. By using this property, we can
reduce search space to extract frequent patterns. In fact, this is the motivation
of APRIORI[1] and the algorithm is given as follows:

(1) Find frequent patterns of the minimum size
(2) Find one-size larger patterns p where all the sub patterns are fre-
quent. (The results are called candidate.) Stop if there is no pattern
obtained.
(3) Select all the frequent patterns from the candidates by scanning S
and goto (2).
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In this work, given a sequence S, we examine all the frequent patterns p.
However, it is not easy to obtain M satisfying anti-monotonicity. For example,
“the number of matching” is not suitable as M as shown in Example 2.

3 Anti-monotonic Counting

In this section, we discuss new counting methods for anti-monotonicity since
naive matching is not suitable.

The first idea is called head frequency. Given a sequence S = s1s2...sr and a
pattern p of t1t2...tn, we define a head frequency H(S, p) as follows:

H(S, p) = Σr
i=1V al(S, i, p)

where V al(S, i, p) is 1 if the followings hold, and 0 otherwise:

Let S(i) be a suffix of S from i-th position, i.e., S(i) = si...sr. If t1 is an
alphabet a, we have si = a and t2t3...tn matches S(i + 1). And if t1 is
a disjunction [a1a2...am], there exists j such that si = aj (for instance,
j = 1), and [a2a3...am]t2...tn matches S(i + 1).

Intuitively H(S, p) describes the number of matching of p from the heading of
S or its suffix.

Example 3. (1) Let S be a sequence bbba. If p = ba, we have H(S, p) = 3 while
p matches S 3 times. If p = a, we have H(S, p) = 1 and the number of matching
is 1. By the definition, we have a  ba but not H(S, a) > H(S, ba).
(2) Let S be aabbba. If p = ab, we have H(S, p) = 2 and the number of matching
is 6. If p = ba, we see H(S, p) = 3 and p matches S 3 times. If p = [ab], we get
H(S, p) = 5 and the pattern matches S 9 times. Finally if p = a, we have
H(S, p) = 3 and the number of matching is 3. By the definition, a  [ab] holds
but H(S, a) > H(S, [ab]) doesn’t.

As shown in this example, the head frequency H(S, p) doesn’t satisfy anti-
monotonicity. Note that this counting ignores matching appeared in the subse-
quent sequence. That’s why we introduce a new counting D(S, p), called
totalfrequency, which means the minimum H(S, q) for any q  p.

D(S, p) = MIN{H(S, q)|q  p}

Theorem 1. D(S, p) satisfies anti-monotonicity.

Proof. Given patterns p, q such that q  p, we must have D(S, p) = MIN{H(S, r)
|r  p} and D(S, q) = MIN{H(S, r)|r  q} by the definition. That means
D(S, q) ≥ D(S, p) since q  p. (Q.E.D.)

Example 4. (1) Let S be bbba. If p = ba, we have D(S, p) = 1. And if p = a,
we see D(S, p) = 1.

(2) Let S be aabbba. If p = ab we have, D(S, p) = 2Cif p = ba, we see
D(S, p) = 3, if p = [ab], we get D(S, p) = 3Cand if p = a, we have D(S, p) = 3.
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(3) Let S be caabbbc. If p = ab, we have H(S, p) = 2 and D(S, p) = 2. If
p = ac, we have H(S, p) = 2 and D(S, p) = 2. And if p = [ac], we see H(S, p) = 3
and D(S, p) = 2 while p matches S 4 times. In these cases, sub-patterns (i.e.,
a, c) of ac and [ac] appear more interspersed in S and this is why total frequency
is different from head frequency and the number of matching.

According to theorem 1, to obtain total frequency of p of length n, it is enough
to examine head frequency of all the sub-patterns. And, as the next theorem says,
it is enough to calculate the ones for all the suffixes of p in ascending order of
length. Note there are only n suffixes of p thus we can reduces search space
dramatically.

Theorem 2. For a sequence S and a pattern p, D(S, p) = MIN{H(S, p),
D(S, p(2))}.
Proof. Let S be a sequence s1s2...sm, p a pattern t1t2...tn and p(i) be a sub-
pattern (suffix) ti...tn. We show D(S, p) = MIN{H(S, p(i))|i = 1, .., n}.

Let q = u1u2...uk be any sub-pattern of p. By the assumption, there exist
1 ≤ j1 < ... < jk ≤ n such that ui  tjik, i = 1, ..., k.

We define the expansion q′ of q at a position i as follows (i > 0).

q′ is one of the followings
(i) u1u2...uivui+1...uk, that is, v is inserted just after ui.
(ii) u1u2...u

′
i...uk, that is, ui is replaced by u′

i such that ui  u′
i.

We show H(S, q) ≤ H(S, q′), that is, we show that V al(S, i, q′) = 1 means
V al(S, i, q) = 1. If q′ is an expansion of (i), we have V al(S, i, q) = 1 by ignoring
v at matching step. And, in the case of (ii), we have V al(S, i, q) = 1 by ignoring
u′

i − ui part at matching step.
Because tj1 can be obtained by expansions of q, we must have H(S, q) ≥

H(S, tj1). This means, for any sub-pattern q of p, there exists tj′ that has smaller
head frequency. (Q.E.D.)

4 Experimental Results

4.1 Experimental Data

As a test collection for our experiments, we discuss NTCIR-3 PATENT (IR
Test Collection). The collection contains several data but we discuss only PAJ
English Abstract (1995). Documents in JAPIO Japanese abstracts (1995-1999)
are translated into PAJ English Abstract of 4GB in total. In this experiment,
we select 1000 articles in 1995 abstracts that are kept in timestamp order. We
remove all the stop-words and do stemming[4] to each articles.

Here are some examples of the information (after stemming):

control adjust speed thresh depth regul grain culm state oper load

combin shape initi puls power high load devic regul control thresh

depth grain culm detect thresh depth sensor
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Table 1. Number of Frequent Patterns from Patent Data

n-pattern our method T − freq method

n = 1 207(0) 207
n = 2 121(76) 45
n = 3 3(1) 2
n = 4 0(0) 0

Fig. 1. Number of Frequent Patterns from Patent Data

4.2 Preliminaries

In this investigation we extract frequent patterns base on APRIORI algorithm
described previously[1]. To evaluate our results, we compare T − freq(S, p)
method [16] with us. The minimum support is 20 which is 2%. In this experiment
we manipulate disjunctive patterns of [ab], [ab]c, [abc]d, ..., that is, we discuss only
patterns where one disjunction appears, and we ignore patterns with multiple
disjunctions such as [ab]c[de].

4.3 Results

Here is the result shown in Table 1 and Figure 1. In the table, we show the
numbers of frequent patterns extracted by the two methods and the distribution
in the figure. Note that the number in “(...)” means the number of extracted
patterns by our method but not by T − freq method.

Here are some examples extracted by our method:

([medicin,patient]),([prepar,medicin]),([surfac, sheet])...

([prepar,medicin]patient)...
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And the next are obtained by T − freq method:
(medicin,prepar),(medicin,patient),(devic,capabl)...

(provid,capabl,devic)...

4.4 Discussion

By examing the table 1, we can extract more patterns in n = 2 and n = 3.
More important is that we can obtain 76 disjunctive patterns (n = 2) only by

our method. This is because disjunctive patterns match S more times thus we
can see more frequency. For example, we have [surfac, sheet] with the frequency
22 and [prepar, medicin]patient with the frequency 21, which are ignored by
T − freq method.

5 Related Works

There have been several approach to obtain sequence patterns[2, 15], mainly
based on APRIORI algorithm[1]. Their issue is to extract sequence patterns
that appear in many sequences, given a set of sequences that consist of lists
of itemsets. The problem is combinatorial but efficient algorithms have been
proposed by introducing specialied data structures such as FreeSpan [5] and
PrefixSpan [13], by means of lattice theory such as SPADE [17]. Some frameworks
for regular expression have been also proposed such as SPIRIT [3] and a kind of
Constraint Satisfaction Problem[7]. But in these approach the expression plays
as a constraint and not targeted patterns like us. More important is that all of
them discuss multiple sequences and that the frequency is defined in terms of
the number of sequences containing the pattern. We see this is not really useful
for text mining.

The problem of frequent patterns on single sequence is found in episode [8]
where sequence is defined as a list of events. The problem for text mining is
found in [16] but they don’t discuss disjunctive patterns.

6 Conclusion

In this investigation, we have proposed disjunctive patterns and total frequency
for the purpose of efficient pattern mining on single sequence data. The counting
method satisfies anti-monotonicity thus we can obtain efficient mining algorithm
based on APRIORI. By some experiments we have shown the effectiveness of the
proposed method compared to traditional approach, especially we have shown
more frequent patterns extracted. Now we extend our approach to more powerful
expression to get potential patterns.
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Abstract. We introduce an algorithm for mining expressive tempo-
ral relationships from complex data. Our algorithm, AprioriSetsAndSe-
quences (ASAS), extends the Apriori algorithm to data sets in which
a single data instance may consist of a combination of attribute values
that are nominal sequences, time series, sets, and traditional relational
values. Data sets of this type occur naturally in many domains including
health care, financial analysis, complex system diagnostics, and domains
in which multi-sensors are used. AprioriSetsAndSequences identifies pre-
defined events of interest in the sequential data attributes. It then mines
for association rules that make explicit all frequent temporal relation-
ships among the occurrences of those events and relationships of those
events and other data attributes. Our algorithm inherently handles dif-
ferent levels of time granularity in the same data set. We have imple-
mented AprioriSetsAndSequences within the Weka environment [1] and
have applied it to computer performance, stock market, and clinical sleep
disorder data. We show that AprioriSetsAndSequences produces rules
that express significant temporal relationships that describe patterns of
behavior observed in the data set.

1 Introduction

This paper extends the use of association rules [2] to complex temporal relation-
ships essential to many domains. Our association rule mining approach discovers
patterns in data sets whose instances consist of any combination of standard,
set-valued, and sequential attributes. These data sets occur naturally in several
scientific, engineering, and business domains, and are generally richer than the
transactional, the relational, and the sequence data sets to which association
rule mining has been applied. To date, our mining approach has been applied to
computer system performance, stock market analysis and clinical sleep disorder
data [3]. Complex system diagnostics, network intrusion detection, and medical
monitoring are some related domains to which this work can also be applied.

P. Perner and A. Imiya (Eds.): MLDM 2005, LNAI 3587, pp. 384–394, 2005.
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ID CPU % CPU (MHz) memory % algorithms

1 600
{neural net, back-
propagation}

2 40, 52, 67, 80, . . . 600 10, 26, 46, 69, 86, . . . {C4.5}
3 10, 39, 87, 96, . . . 300 19, 50, 82, 80, 70 . . . {naive Bayes}

. . . . . . . . . . . . . . .

Fig. 1. A sample of a data set containing complex instances. Here, sequential values
are represented in a graphical manner only for the first row to save space

A main motivation for mining these temporal rules from complex data comes
from our previous experience working on the performance analysis of a hardware
and software backup/restore product. The time it takes to complete a backup
can be of great importance. One of the most labor consuming tasks is to predict
this time. A rule based expert system was built as a way to disseminate the
performance knowledge used to predict backup time. This expert system quickly
grew to include over six hundred rules. The need for automating the discovery
of new rules was apparent.

Figure 1 depicts a small sample of the type of complex data set that our
mining approach applies to. In this computer performance data set, each instance
(row) corresponds to a single test in which a process was run until it completed
a task. The attributes describe the conditions under which the test was run
and state information collected during the test including standard attributes
such as processor speed and physical memory size; set-valued attributes such
as which algorithms the process ran; and sequential attributes such as the CPU
utilization percentage, memory usage, and the total number of processes running
over time. Other such numeric and nominal sequential attributes include CPU
and memory usage of all other processes, I/O activity on main storage devices,
memory paging, and process state (running, exit normally, exit without output).
All time sequence attributes in a single data instance share the same time line.

Events of interest in the sequential attributes in this data set include among
others increases and decreases in the utilization of a resource (CPU, memory),
going above/below a certain usage threshold, and whether or not a process ter-
minates normally. A sample interesting temporal pattern in this domain is: “Java
processes running a machine learning algorithm that are not given the -P option,
that exhibit an increase in its memory usage, and that during this increase its
memory paging also increases tend to, with likelihood 82%, exit prematurely”.
This temporal pattern is captured by our association rule:

process(java)-mem-usage-increase [t0,t2] & process(java)-page-increase [t1,t2] &
flag=-P-missing ⇒ process(java)-exit-without-output [t3,t4], conf=82%.

here, t0, t1, t2, t3, and t4 are relative time indices that are used to express the
relative order in which these events are observed.
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The algorithm presented here to mine these temporal relationships, Apri-
oriSetsAndSequences (ASAS), takes as input a complex temporal data set as
described, a set of predefined event types, and the standard Apriori minimum
support and minimum confidence parameters. An event type is a template of
a subsequence of interest in a time sequence attribute. Our mining algorithm
starts by identifying occurrences of these event types in the corresponding se-
quence attributes as described in Section 2. Then, it generates all the frequent
relationships among the temporal occurrences of these events and among these
and the other non-temporal attributes. Section 3 describes the algorithm. Since
there are 13 ways of sorting just two events in time (before, after, overlaps,
etc.) [4], and the number of possible orderings of a set of events grows expo-
nentially with the number of events in the set, central issues in the design and
implementation of our mining algorithm are the strategy used to prune unnec-
essary orderings from consideration, and the data structures used to effectively
handle potentially frequent orderings of events. We describe these in Section 3.
That section also describes our extensions of the basic notions of support and
confidence needed to handle multiple occurrences of an event or a pattern in a
complex data instance. Section 4 presents an evaluation of our mining algorithm
in the stock market domain. Section 5 surveys related work and contrasts our
approach to others. Section 6 summarizes the contributions of this paper and
discusses future work.

2 Identifying Events in Sequences

Events of interests are available in multiple domains. Examples of those are
head & shoulders reversal and ascending triangle in stock market analysis [5],
and increase in CPU utilization in the performance domain. An event can be
described by a Boolean condition or by a template of the event “shape”. Such a
template can be for example a 2–dimensional curve.

Given a collection of domain–specific events of interest, we identify occur-
rences of those events in the sequential attributes. Once the occurrences of an
event of interest have been identified in the values of a sequential attribute, they
are stored in a new event set attribute. We define an event set attribute as an
attribute whose values are sets of an event type occurrences. As an example,
consider an event attribute for the CPU time sequence attribute. The CPU time
sequence attribute is the percentage of CPU usage in the overall computer sys-
tem. This event attribute specifies when the CPU usage increases. Assume that
in a particular data set instance I, increases in CPU usage occur from time 2 to
8, 13 to 19, and 35 to 47. Then, the I’ value for the new attribute CPU-Increase is
{ [2,8], [13,19], [35,47] }. AprioriSetsAndSequences mines temporal associations
directly from events. This keeps intact the temporal information represented in
the data set while eliminating much of the work involved in scanning the actual
sequences during mining. The events are akin to indexes into the sequences.
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3 The ASAS Algorithm

Input. ASAS takes as input a data set consisting of instances, and minimum sup-
port and minimum confidence thresholds. Each instance has a set of attributes.
Attributes can be of type nominal, set, and event set. An event set is simply a
set whose elements are events.

Handling Set Attributes. We use the algorithm to mine association rules from
set valued data described in [6], which was implemented within Weka [7].

Handling Event Attributes. Since we are not interested in the occurrence of say
a CPU-Increase event at absolute time [13, 18], but rather on the fact that this
event occurred in a relative temporal position with respect to other events, ASAS
uses a relative time line t0, t1, t2, . . .. There are no units implied. Each point on
the relative time line corresponds to the begin times or end times of one or more
events in the item set. When an event is added to an item set the item set’s
relative time line must be updated. As an illustration, the real time instance
{Disk Increase [5,25], CPU Increase [10,40]} is represented by the relative time
item set {Disk Increase [t0,t2], CPU Increase [t1,t3]}. Adding the event Memory
Sustain with real times [2,35] to the item set results in {Disk Increase [t1,t3],
CPU Increase [t2,t5], Memory Sustain [t0,t4]}. Simply sorting the real time values
and numbering them starting from t0 yields the relative times.

Level 1 Candidate Generation. Our ASAS algorithm creates an item set of size
one for each of the regular (i.e. non–event) items appearing in the data set, as
Apriori does. For event items, it generates representative items. For instance,
the representative of Memory Sustain [2,35] is Memory Sustain [t0,t1], which
represents all the Memory Sustain events regarless of their real time occurrences.

Level 1 Counting Support. The support of an item set is the percentage of in-
stances in the data set that contain the item set. The weight of an item set is
the number of instances that contain it. For a regular item, we count its support
as the Apriori algorithm does. For an event item, say Memory Sustain [t0,t1], a
data instance contributes to its weight (and hence to its support) if the instance
contains an occurence of the item, say Memory Sustain [2,35].

Level 2 Candidate Generation. As Apriori, ASAS generates candidate item sets
of size two by combining each pair of frequent item sets of size one. However,
for each pair of event items there exist thirteen different item sets that represent
the possible temporal relationships [4] between the two event items.

Level 2 (and up) Counting Support. A data instance contributes to the weight of
an item set if it contains all the regular and the event items in the item set. If the
item set contains only one event item, checking if the instance contains it is done
as described above in Level 1 Counting Support. If the item set contains more
than one event item then a mapping must exist from event items in the item set
to event items in the instance. This mapping provides a match (or unification)
from the relative times in the item set to the real times in the data instance
that preserves the relative order of occurrence of the events. For example, a data
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instance that contains {Disk Increase [5,25], Disk Increase [40,55], CPU Increase
[50,60]} counts towards the weight (and hence the support) of the item set {Disk
Increase [t0,t2], CPU Increase [t1,t3]} with mapping t0 → 40, t1 → 50, t2 → 55,
t3 → 60. Our ASAS algorithm uses a specially designed data structure to make
the search for a valid such mapping very efficient.

Level 3 (and up) Candidate Generation. During the combination of item sets,
regular items are handled as Apriori does. Two item sets containing event items
can be combined if there exists a mapping from all the event items in the first
item set to all the event items in the second item set. This excludes event items
that are the last item in an item set (items in an item set are sorted using an
arbitrary but fixed order). As for level two candidate generation, it is possible for
more than one candidate item set to be generated for each pair of frequent item
sets that are combined. The algorithm for generating these possibilities is more
involved than the iteration of thirteen possible temporal relationships. Consider
combining the item sets A and B:

A: { Disk Increase [t0,t2], CPU Increase [t1,t3] }
B: { Disk Increase [t1,t2], Memory Sustain [t0,t3] }

These item sets can be combined since they have the same number of items,
a mapping exists between the Disk Increase event in item set A and the Disk
Increase event in item set B, and the event items listed last in A and B are
different. The temporal relationship between the CPU Increase event in A and
the Memory Sustain event in B is not known. Some of the possible relationships
can be eliminated by inferring information from the fact that the Disk Increase
event in both A and B is the same event. Combining the two item sets is done by
adding the last item from the first item set to the second item set. All possible
begin and end time pairs of the Memory Sustain event need to be determined
in relation to item set A’s existing relative time line. A candidate item set is
generated for each pair. In these candidate item sets the relative time line is
renumbered starting from t0.

{Disk Increase [t1,t3], CPU Increase [t2,t5], Memory Sustain [t0,t4]}
{Disk Increase [t1,t3], CPU Increase [t2,t4], Memory Sustain [t0,t4]}
{Disk Increase [t1,t3], CPU Increase [t2,t4], Memory Sustain [t0,t5]}

Algorithm.
1: given a data set of instances DS, and minimum weight minW
2: for all regular items i in DS do
3: create candidate item set c of size k = 1
4: add i to c and add c to candidate list C
5: for all event items e in data set do
6: if event type of e not present in event type list ET then
7: create candidate item set c of size k = 1
8: create a new event item ei with event type of e and begin time = 0 and end

time = 1
9: add ei to c, add c to C, and add e to ET
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10: for all instances I in DS do
11: for all c in C do
12: if I contains the item in c then
13: increment weight of c
14: for all c in C do
15: if weight of c ≥ minW then
16: add c to frequent item sets of size k list
17: remove all from C
18: while frequent item set of size k list is not empty do
19: k++
20: for all pairs of item sets f1 and f2 in the frequent item sets of size k-1 list do
21: if f1 and f2 contain event items then
22: generate 13 candidates, 1 for each possible temporal relationship between

the event items f1 and f2 do not have in common
23: else
24: generate 1 candidate by combining f1 and f2
25: add generated candidate(s) to C
26: for all instances I in DS do
27: for all c in C do
28: if all regular items i in c are included in I then
29: if mapping exists between all event items ei in c to event items in I such

that all temporal relationships are the same then
30: increment weight of c
31: for all c in C do
32: if weight of c ≥ minW then
33: add c to frequent item sets of size k list
34: remove all from C

Rule Construction and Confidence Calculation. The construction of rules from
frequent item sets is similar to that of the Apriori algorithm, with the exception
of the confidence calculation. Traditionally confidence is defined for a rule A
⇒ B as the percentage of instances that contain A that also contain B. That
is, support(AB)/support(A). Consider a data set that has one time sequence:
<a,b,a,a,a,a>. Since there is one instance in our data set and it contains the item
set {a[t0,t1], b[t2,t3]}, the support of each of the item sets {a[t0,t1]}, {b[t2,t3]},
and {a[t0,t1], b[t2,t3]} is 100%. If support were used to calculate the confidence
of the rule a[t0,t1] ⇒ b[t2,t3], it would be 100%. This implies that 100% of the
time a appears, b follows. Looking at the time sequence, only 20% of the time
is a followed by b. We define the confidence of a rule containing event items as
the percentage of mappings from the antecent of the rule to the data instances
that can be extended to mappings from the full set of items in the rule to the
same data instances. Note that there are 5 possible mappings from the antecent
a[t0,t1] of the rule to the data instance, but only one of them can be extended
to a mapping from {a[t0,t1], b[t2,t3]} to the instance. Hence, the confidence of
this rule is 1/5 or 20%.
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4 Empirical Evaluation

We have applied our ASAS algorithm to different domains including computer
system performance, stock market analysis, and clinical sleep disorder data. Due
to space limitations we include here only some results on Stock Market data
analysis. The data used [8] consists of ten years worth of closing prices from
7 technology companies from 1992 to 2002 obtained from Yahoo! Finance. Ad-
ditionally, events such as new product releases, awards received, negative press
releases, and expansions or mergers from each company were obtained from each
respective company’s web site. Each of the 24 instances in this data set repre-
sents a single quarter year. All 10 years are not represented because information
on the additional events listed above were not available for all years. Before min-
ing, the sequences of closing prices for a quarter for each company are filtered
for events. The financial events detected include rounded top, selling climax,
ascending triangle, broadening top, descending triangle, double bottom, double
top, head & shoulders, inverse head & shoulders, panic reversal, rounded bottom,
triple bottom, triple top, sustain, increase, and decrease [5].

Rules. Numerous interesting rules were found by our ASAS algorithm. Due to
space limitations we show here just the pair of rules below. They have the same
events in them but one has a predictive form (i.e., the events in the consequent
occur later in time than the events in the antecedent) and the other has a
diagnostic form (i.e., the events in the consequent occur before the events in the
antecedent).

CSCO Expand Merge [t4,t5] & AMD Ascending Triangle [t0,t1]
⇒ SUNW Sustain [t2,t3] [Conf: 0.91, Sup: 0.42, Event Weight: 10]

AMD Ascending Triangle [t0,t1] & SUNW Sustain [t2,t3]
⇒ CSCO Expand Merge [t4,t5] [Conf: 1.0, Sup: 0.42, Event Weight: 11]

CSCO Expand Merge 1-7 days, AMD Ascending Triangle 6-30 days, SUNW Sustain
6-13 days

Advanced Micro Devices Inc’s closing stock prices exhibits an ascending trian-
gle pattern for 6 to 30 days. Sometime after but during the same quarter Sun
Microsystems Inc’s closing stock price remains fairly constant for 6 to 13 days.
Sometime after in the same quarter Cisco goes through a period of expansion or
merger for 1 to 7 days. The predictive form of the rule has a 100% confidence.
In any quarter in the data set, every time AMD and Sun exhibit the behaviors
described, Cisco expands or merges.

ASAS Performance. Figure 2 shows the seconds used to mine rules per frequent
item set found and other metrics for slightly differing data sets from the stock
market domain. The total time it takes to mine appears to be insensitive to the
number of event attributes, the number of event occurrences, and the average
length of the time line. It seems only the number of frequent item sets found in
a data set greatly increases mining time. The time spent finding each frequent
item set seems related to the number of event occurrences and the number of
event attributes in the data set.
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Fig. 2. Various Metrics

Fig. 3. 49 Percent Support Fig. 4. 40 Percent Support

Figure 3 shows the results of varying the maximum number of events with the
same type that can appear in a rule. This was done with a support setting of 49%.
16 rules containing 2 events of the same type were found. Beyond a maximum
of 2 more time is spent per frequent item set with no additional rules found
to justify the cost. The lower the percentage of new rules found by increasing
the maximum number of events of the same type allowed, the more time per
frequent item set will be spent during mining. Figure 4 shows results using a
support of 40%. Although more rules are found due to the lower support, more
time is spent per frequent item set.

5 Related Work

There has been a great deal of interest in devising approaches to mine associ-
ations from sequential data. These approaches can be roughly divided into two
groups. The first group contains approaches that extend the Apriori algorithm
to sequences. These approaches assume data instances that are sequences of
commercial transactions. A commercial transaction is called an event . These ap-



392 K.A. Pray and C. Ruiz

proaches mine frequent patterns from those data instances. Among others, the
work by Srikant and Agrawal [9] and by Zaki [10] and collaborators belong to
this group. They use the notions of time window and max/min gaps to address
the complexity of the mining task. Zaki [10] considers item set constraints for
this same purpose. One difference between our work and the approaches in this
group is that our notion of event is a non–trivial time interval and theirs is a
point in time (instantaneous events). This has a profound impact on the expres-
siveness of our association rules and on the complexity of the mining process,
as in our case the possible orderings of two single events is 13 while for them
that number of orderings in only 3. Another important difference is that in our
approach we consider data instances that are combinations of several attribute
types, while their instances are sequences of transactions.

The second group of association rule approaches to sequential mining includes
the work by Mannila et al. [11, 12, 13]. They consider episodes of events, where
events are again points in time. Episodes are collections of partially ordered
events that occur close to each other in time. This constraint addresses the
complexity of the search in a way similar to the time window approach described
above. Our work extends theirs by allowing events that are time intervals. This
enhances the collection of partial orders that are applicable to a set of events
and thus the expressiveness of the mined patterns.

Roddick and Spiliopoulou [14] provide an excellent survey of temporal knowl-
edge discovery. Rainsford and Roddick [15] report efforts on extending associ-
ation rules with temporal information. Their work is similar to ours in that
they also consider the 13 possible ways in which two temporal events can be
ordered in time. However, the expressiveness of their association rules is very
restricted in comparison with ours. Bettini et al. [16] describe an approach to
mine temporal associations that allows the user to define a rule template, and
their algorithm finds valid instantiations of the rule template in the data set.
Our approach is more general than theirs in that the user is not restricted to
use just one temporal template for each mining task, as our algorithm considers
all possible temporal patterns that are frequent. Also, we can explore several
time–granularities during the same mining task, just by defining an event–based
attribute for each relevant time–granularity and letting them “intersect” with
other events of interest. Other approaches that employ user–defined temporal
templates are those described by Han and collaborators [17, 18]. Their multidi-
mensional intertransaction association rules are particular cases of our complex
temporal association rules.

6 Conclusions and Future Work

We introduce an algorithm for mining expressive temporal relationships from
complex data sets in which a single data instance may consist of a combination
of attribute values that are nominal sequences, time series, sets, and traditional
relational values. Our mining algorithm is close in spirit to the two-stage Apri-
ori algorithm. Our work contributes to the investigation of prune strategies and
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efficient data structures to effectively handle the added data complexity and
the added expressiveness of the temporal patterns. Furthermore, the work de-
scribed here provides a foundation for future investigation and comparison of
alternate measures of item set interestingness and alternate frequent item sets
search techniques as those discussed in the association rule mining literature but
in the context of complex data.
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Campus de Schoelcher, B.P. 7209, 97275 Schoelcher Cedex,

Martinique, France
{palaur, je.symphor, rnock}@martinique.univ-ag.fr

2 Lg2ip-Ecole des Mines d’Alès, Site EERIE,
parc scientifique Georges Besse, 30035 Nı̂mes Cedex, France

pascal.poncelet@ema.fr

Abstract. When we mine information for knowledge on a whole data
streams it’s necessary to cope with uncertainty as only a part of the
stream is available. We introduce a stastistical technique, independant
from the used algorithm, for estimating the frequent itemset on a stream.
This statistical support allows to maximize either the precision or the
recall as choosen by the user, while it doesn’t damage the other. Experi-
ments with various association rules databases demonstrate the potential
of such technique.

1 Introduction

A growing body of works arising from researchers in Databases and Data Mining
deals with data arriving in the form of continuous potentially infinite streams.
Many emerging and real applications generate data streams: trend analysis, fraud
detection, intrusion detection, click stream, among others. In fraud detection,
data miners try to detect suspicious changes in user behavior [5]. Trend analysis
is an important problem that commercial applications have to deal with [8]. Se-
curity of network systems is becoming increasingly important as more and more
sensitive informations are being stored. Intrusion detection has thus become a
critical approach to protect systems [7].

From now on, we consider items to be the unit information, and itemsets
to be sets of items. An itemset is θ-frequent if it occurs in at least a fraction
θ of the stream (called its support), where θ is a user-specified parameter. As
the item flow is fast and represent a huge amount of information, it prevents
its exact storage. Out of the uncertainty it generates, the problem becomes to
store the information so as to keep valid its most crucial contents. One example
of such a content is the list of the most frequent items of itemsets encountered,
a crucial issue in Data Mining that has recently attracted significant attention
[6, 10, 12, 7].
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When the database is subject to be updated regularly, maintaining frequent
itemsets has been successfully addressed by various incremental algorithms [2,
19]. But due to the high frequency and potentially huge information carried
out in a timely fashion by data streams, these incremental approaches cannot
easily handle them, unless they take the risk to make errors [18] and/or fail at
estimating supports, one of the two essential components of association rules
algorithms. This is where our paper takes place.

More precisely, we address the following questions:

(a) is it possible to set up a method which replaces the exact support by a
statistical support ensuring some desirable properties on support computa-
tions, and frequency estimations? Ideally, we would like the resulting sup-
port to hold regardless of the algorithm used to build or maintain frequent
items/itemsets (see e.g. [2, 19]), and rely on mild theoretical assumptions so
as to be reliably implementable.

(b) how good is this statistical support, both from the theoretical and experi-
mental standpoints?

The rest of this paper is organized as follows. Section 2 goes deeper into
presenting the problems of dealing with uncertainty in data streams, and gives
an extensive statement of our problem. Section 3 presents our solution to this
problem, and its properties. Section 4 presents experimental results, and Section
5 concludes the paper with future avenues for research.

2 Problem Statement

The huge size of data streams for real-world domains compared to the limited
amounts of resources to mine them makes it necessary to cope with uncertainty to
achieve reasonable processing time and/or space. A significant body of previous
works has addressed the accurate storing of the data stream history [1, 3, 10].

Our setting is a bit more downstream, as we question the forecasting on the
data stream future. Ideally, this information is sought to be accurate not only
on the data stored, but also on the whole data stream itself. For example, it’s
not enough to observe some item as frequent in the data stored; it is much more
important to predict if it is really frequent in the whole data stream. Similarly, it’s
not enough to observe that some itemsets doesn’t meet the observed frequency
requirements to argue that it is really not frequent on the whole data stream.

From the estimation standpoint, there are two sources of error:

1. it is possible that some itemsets observed as frequent might in fact not be
frequent anymore;

2. on the other hand, some itemsets observed as not frequent may well in fact
be frequent from a longer history of the data stream.

Should it rely on frequencies estimations, any loss due to the imperfection of
the information stored is incurred by at least one of these sources of error. The
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S∗Xθ

X,D (unknown)

sampling
stream (observed)

X∗
θ

Fig. 1. Problem statement

point is that it is statistically hard to nullify both of them [17]. It is also generally
impossible to capture the missing informations from the data stream to make
a fully accurate prediction. Our paper is aimed at obtaining a solution to the
following problem, which is a convenient relaxation of this unsatisfiable goal:

(a) the user chooses a source of error, and fixes some related parameters;
(b) the source of error chosen is nullified with high probability, while the other

one incurs a limited loss.

It turns out that in many domains [18, 16], the relative importance of the two
sources of error is not the same, and one may be much more important to control
than the other one. For these domains, our approach may be a very convenient
way to cope with uncertainty in finding frequent itemsets.

Now, let us skip to a slightly more formal presentation. The data stream
is supposed to be obtained from the repetitive sampling of a potentially huge
domain X which contains all possible itemsets, see Figure 1. Each itemset is
sampled independently through a distribution D for which we make absolutely
no assumption, except that it remains fixed (no drift). The reader may find
relevant empirical studies on concept drift for supervised mining in [5, 20]. The
user specifies a real θ, the theoretical support, and wishes to recover all the true
θ-frequent patterns of X. This set is called Xθ in Figure 1.

Definition 1.

∀0 ≤ θ ≤ 1, Xθ = {T ∈ X : ρX(T ) ≥ θ} , (1)

with ρX(T ) =
∑

T ′∈X:T≤tT ′ D(T ′), and T ≤t T ′ means that T generalizes T ′.

The recovery of Xθ faces two problems. Apart from our statistical estimation
problem, there is a combinatorial problem which comes from the fact that X
is typically huge, even when finite. The set of observed itemsets which we have
sampled from X, hereafter called S, has a size |S| = m (|S| << |X|). In our
framework, we usually reduce this difference with some algorithm returning a
superset S∗ of S, having size |S∗| = m∗ > m. Typically, S∗ contains additional
generalizations of the elements of S [13]. This is not the purpose of this paper
to cover this combinatorial problem; the key point is that S∗ is usually still not
large enough to cover Xθ, regardless of the way it is built (see Figure 1), so that
the pregnancy of our statistical estimation problem remains the same.
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Our statistical estimation problem can be formalized as follows:

• approximate as best as possible the following set:

X∗
θ = Xθ ∩ S∗ , (2)

for any S and S∗ (see Figures 1 and 2).

Remark that ∀T ∈ S∗, we cannot compute exactly ρX(T ), since we do not know
X and D. Rather, we have access to its best unbiased estimator ρS(T ):

∀T ∈ S∗, ρS(T ) =
∑

T ′∈S:T≤tT ′
w(T ′) , (3)

with w(T ′) the weight (observed frequency) of T ′ in S. We adopt the following
approach to solve our problem:

• find some 0 < θ′ < 1 and approximate the set X∗
θ by the set of observed

θ′-frequent of S∗, that is:

S∗
θ′ = {T ∈ S∗ : ρS(T ) ≥ θ′} . (4)

Before computing θ′, we first turn to the formal criteria appreciating the
goodness-of-fit of S∗

θ′ The two sources of error, committed with respect to X∗
θ ,

come from the two subsets of the symmetric difference with S∗
θ′ , as presented in

Figure 2. To quantify them, let us define:

TP =
∑

T∈S∗
θ′∩X∗

θ

D(T ) (5)

FP =
∑

T∈S∗
θ′\X∗

θ

D(T ) (6)

FN =
∑

T∈X∗
θ
\S∗

θ′

D(T ) (7)

TN =
∑

T∈S∗\(S∗
θ′∪X∗

θ
)

D(T ) (8)

The precision allows to quantify the proportion of estimated θ-frequent that
are in fact not true θ-frequents, out of S∗

θ′ :

P = TP/(TP + FP ) . (9)

S∗
θ′ FP

S∗

TP TN

FN

X∗
θ

Fig. 2. The error estimation
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Maximizing P leads to minimize our first source of error. Symmetrically, the
recall allows to quantify the proportion of true θ-frequent that are missed in S∗

θ′ :

R = TP/(TP + FN) . (10)

Maximizing R leads to minimize our second source of error. We also make use
of a quantity in information retrieval, which is a weighted harmonic average of
precision and recall, the Fβ-measure. Thus, we can adjust the importance of one
source of error against the other by adjusting the β value:

Fβ = (1 + β2)PR/(R + β2P) , (11)

A naive approach to approximate X∗
θ would typically be to fix θ′ = θ. Unfortu-

nately, the main and only interesting property of S∗
θ′ is that it converges with

probability 1 to X∗
θ as m → ∞ from the Borel-Cantelli Lemma [4]. Glivenko-

Cantelli’s Theorem gives a rate of convergence as a function of m, but this is
only useful to yield the maximization of P and R in the limit.

3 Choosing θ′

Informally, our approach boils down to picking a θ′ different from θ, so as to
maximize either P or R. Clearly, extremal values for θ′ would do the job, but
they would yield very poor values for Fβ , and also be completely useless for data
mining. For example, we could choose θ′ = 0, and would obtain S∗

0 = S∗, and
thus R = 1. However, in this case, we would also have P = |X∗

θ |/|S∗|, a too small
value for many domains and values of θ, and we would also keep all elements
of S∗ as true θ-frequents, a clearly huge drawback for mining issues. We could
also choose θ′ = 1, so as to be sure to maximize P this time; however, we would
also have R = 0, and would keep no element of S∗ as θ-frequent. These extremal
examples show the principle of our approach. Should we want to maximize the
precision, we would pick a θ′ larger than θ to guarantee with high probability
that P = 1, yet while keeping large enough values for R (or Fβ), and a set S∗

θ′

not too small to contain significant informations. There is obviously a statistical
barrier which prevents θ′ to be too close to θ to keep the constraint P = 1
(Cf Section 2, last §). The objective is to be the closest to this barrier, which
statistically guarantees the largest recall values under the constraint.The same
principle holds for the maximization of the recall.

The following Theorem states explicitly our bound for the maximal P. Its key
feature is that it holds regardless of the domain, the distribution of the itemsets,
the size of S∗, or the user-fixed parameters (support, statistical risk). It relies
only on a rather mild assumption for sampling the itemsets out of the stream.

Theorem 1. ∀X,∀D,∀m > 0,∀0 ≤ θ ≤ 1,∀0 < δ ≤ 1, we pick ε satisfying:

ε ≥
√

1
2m

ln
|S∗|
δ

.

If we fix θ′ = θ + ε in eq. (4), then P = 1 with probability at least 1 − δ.
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Theorem 2. ∀X,∀D,∀m > 0,∀0 ≤ θ ≤ 1,∀0 < δ ≤ 1, we pick ε satisfying:

ε ≥
√

1
2m

ln
|S∗|
δ

.

If we fix θ′ = θ − ε in eq. (4), then R = 1 with probability at least 1 − δ.

These Theorems are proven using standard tools on concentration inequalities
[14]; due to the lack of space, we skip their proofs. The main point is that the
values of θ′ seem to be very close to the statistical barriers [17, 11] that still
guarantee the maximal values for the precision or recall.

4 Experiments

We focus on evaluating how our statistical support can be helpful to mine fre-
quent itemsets on a data stream, given a fragment of this stream. For this pur-
pose, we use the previously defined measures: P (9), R (10) and Fβ (11).

We have chosen three real life databases from the Frequent itemsets Mining
Dataset Repository [9] and an association rule mining algorithm, kdci [15]. The
first dataset, named “Accidents” (34k transactions), holds form for each traffic
accident that occurs with injured or deadly wounded casualties on a public
road. The second data set, named “Retail” (88k transactions), holds customers
basket from a retail supermarket store. The last dataset, named “Kosarak” (990k
transactions), holds anonymized click-stream data of an on-line news portal.

To analyze the correctness of our statistical supports, we need to evaluate
as many situation as possible, that is, we need to use our method with a range
as large as possible for each of the free parameters. These parameters that vary
during our experiments are described in Fig. 3.

Better than using a real data stream, we have chosen to simulate data streams
assuming the complete knowledge of the domains, thus allowing to compute
exact values for the performance measurements. More precisely, we simulate
data streams by sampling each database into fragments. For example, we could
consider that data arrive in a timely manner from the “Accidents” database,
and that only 20% of the data is stored. So we pick 20% of the transactions of
this database, we consider that it is the data stored. We have chosen to sample
the database on a broad range of percentages using two scales. The first allows
a fine sampling of the database, for values ranging from 1% to 10% by steps of

Database θ sampling1 sampling2 δ

Accidents [.3, .9] / .05 [.01,.1] / .01 [.1, 1] /.03 [.01, .11] / .02
Retail [.05, .1] / .01 [.01,.1] / .01 [.1, 1] /.03 [.01, .11] / .02
Kosarak [.05,.1] / .01 [.01,.1] / .01 [.1, 1] /.03 [.01, .11] / .02

Fig. 3. Range of parameters for the experiments in the form [a, b]/c, where a is the
starting value, c is the increment, and b is the last value
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Fig. 4. Examples of plots with δ = .05 and three θ values. For theses values we give the
P (left plot) and R (right plot) for the three methods consisting in picking S∗

θ−ε, S
∗
θ , S∗

θ+ε

1% (“sampling1” in Fig. 3), and typically gives an idea of what may happens for
very large, fast data streams.We have completed this first range with a coarse
range of samplings, from 10% to 100% by steps of 3% (“sampling2”) which gives
an idea of the average and limit behaviors of our method.

Finally, δ has been chosen to range through an interval of values for common
statistical risks, i.e. from 1% to 11% by steps of 2% (see Fig. 3). Due to the very
large number of experiments and the lack of space to report them all, we have
put all resulting plots into web pages1.

Figure 4 shows result from experiments on the Accidents and Retail databases
with δ = .05. Each plot describes for one database and one support value, either
P or R of the three methods which consist in keeping S∗

θ−ε, S
∗
θ , and S∗

θ+ε.
A first glance at these plots reveals that their behavior is almost always the

same. Namely:

– the P increases with θ′ (eq. 4), while the R decreases with θ′,
– the P equals or approaches 1 for mostly storing sizes when θ′ = θ + ε,
– the R equals or approaches 1 for mostly storing sizes when θ′ = θ + ε.

1 http://www.univ-ag.fr/grimaag/statisticalsupports/
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These observations are in accordance with the theoretical results of Section 3.
There is another phenomenon we may observe: the R associated to θ′ = θ + ε
is not that far from the R of θ′ = θ. Similarly, the P associated to θ′ = θ − ε is
not that far from the P of θ′ = θ. This shows that the maximization of P or R is
obtained at a reduced degradation of the other parameter. We also remark that
the P plots tend to be better than the R plots. This is not really surprising, as
advocated in Section 3, since the range of values for P is smaller than that of R.

A close look at small storing sizes of the streams (before 10%) also reveals
a more erratic behavior without convergence to maximal P or R. This behavior
is not linked to the statistical support, but to the databases used. Indeed, small
databases lead to even smaller storing sizes, and frequent itemsets kept out of
small databases are in fact trickier to predict than for bigger ones. This point is
important as, from a real-world standpoint, we tend to store very large databases,
so we may expect this phenomenon to be reduced.

On the smallest databases, such as Retail and Kosarak, another phenomenon
seems to appear. First of all, because of the small values for θ, some tests have not
be performed because θ−ε was < 0. Furthermore, the greater difference observed
between the curves seems to stem out from the different sizes of databases.
For example, the Retail database is smaller than the Accidents database by a
factor 3. In addition, the number of frequent itemsets found in this database is
smaller than a hundred. For the sake of comparison, the Accidents database for
the smallest θ gives hundreds of thousands frequent itemsets. This, we think,
explains the greater differences between the curves: they are mostly a small
database phenomenon, and may not be expected from larger databases.

In Figure 5, two sets of two plots taken from the Accidents database plot the
Fβ measure, against the size of the stream used (in %). The values of β have
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Fig. 5. Two sets of plots of the Fβ value from the Accidents database, with β = .2 for
the left plots and β = 1.8 for the right plots
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been chosen different from 1 but not too small or too large to yield a reasonable
prominence of one criterion (.2 and 1.8, see Figure 5). In each plot, the Fβ

value displays the advantage of choosing θ′ = θ ± ε against the choice θ′ = θ.
Moreover, R that this is obtained while statistically guaranteeing the maximal
value for whichever of P or R criterion, as chosen by the user.

5 Conclusion

One very promising research direction would be to integrate our approach with
the approaches that consisting in somehow reducing the size of the data stored
out of the database, so as to keep the property that itemsets observed as fre-
quent still remain frequent with high probability [10]. In the framework of data
streams, where we feel that such approaches take all their importance, it would
be much more efficient from a statistical standpoint to keep the itemsets that are
truly frequent (better than simply observed as frequent). This would basically
boil down to mixing our approach with them, so as to keep maximal recall (this
can straightforwardly be replaced by the constraint to keep maximal precision).
Because of the technical machinery used in these papers (e.g. Blum filters [10]),
mixing the approaches into a global technique for reducing the error in maintain-
ing frequent itemsets from data streams may be more than simply interesting:
it seems to be very natural.
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Abstract. Steering an autonomous vehicle requires the permanent adaptation of 
behavior in relation to the various situations the vehicle is in. This paper 
describes a research which implements such adaptation and optimization based 
on Reinforcement Learning (RL) which in detail purely learns from evaluative 
feedback in contrast to instructive feedback. Convergence of the learning 
process has been achieved at various experimental results revealing the impact 
of the different RL parameters. While using RL for autonomous steering is in 
itself already a novelty, additional attention has been given to new proposals for 
post-processing and interpreting the experimental data.  

1   Introduction 

The study presented in this paper deals with the concept and the implementation of a 
system which, based on experience over a period of time, is able to autonomously 
learn to steer different vehicles and to optimise its behaviour to various possible road 
courses. This shall be done in a different way than researched in many other works 
before as described further below.  

Key element is the fact that any action (steering, acceleration) is dependent on the 
situation to which a vehicle is exposed. If a vehicle is exposed to a real environment, 
situations are subject to permanent changes and therefore any true autonomous system 
will have to continuously adapt its actions. 

Many research projects have been performed based on neural nets and have shown 
some results, but were always dependent on strong similarities between current 
environment and previous training pattern. A new situation always needs to be trained 
if deviating even slightly from previously trained situations. 

The model based approach proved better success and is still being pursued in many 
researches. Even though we also believe in its further success, the parameterisation 
becomes more and more complex when the number of different situations increases 
(e.g. when situations are being further examined). This remains the biggest challenge 
for some time. In this light, an interesting variation has been proposed by using a 
neural net for learning the parameters of the used model [13], [14].  

Altogether, however, both directions are dependent on instructive feedback – 
therefore they are based on a-priori knowledge resulting from parameters of teaching 
phases.  
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This paper therefore describes the research of a third method: Reinforcement 
Learning (RL). RL-Systems provide capabilities of self-optimising actions based on 
evaluative feedback. They explore the overall state-space by means of analysing the 
impact of previously issued actions, coping with delayed feedback as well as coping 
with disturbed feedback.  

Given the above aspects, it should also be noted that RL is not striving to compete 
with the established approaches like modelling. In lieu thereof, any progress of RL-
Systems might be used to enhance the advantages of modelling achieved so far. At the 
end, a combined system built on modelling and RL might provide better results than 
each approach alone. In this light, we strongly believe RL-system will play a 
significant role in the near future in autonomous driving systems. 

This paper, however, focuses purely on Reinforcement Learning in order to 
explore its benefits and limitations. 

All in all, the main targets of this research are: steering of an autonomous vehicle 
along any curvy road, autonomous exploration of new actions for familiar as well as 
for new situations, therefore autonomous optimization (self-tuning of the system to 
any combination of environment and vehicle), learning from evaluative feedback (in 
contrast to instructive feedback/ teaching), coping with delayed feedback (delayed 
rewarding) as well as non-linearity of true environment, and finally Real-time 
processing. 

2   Related Work 

Till now the visual control of systems for autonomous vehicle driving with learning 
components have been implemented in several ways. [2] describes a short direct 
connection between image processing and soft computing learning method using a 
neural network. This approach provides good results but only as long as input pictures 
of the scene are similar to the training patterns. This approach was being enhanced by 
a multiple neural network [3], but could not completely solve the dependency 
problem of the taught training patterns. Further developments then included a GPS 
system [4] to support orientation or enhanced the approach with object-oriented vision 
in order to distinguish between road following and obstacle detection [5], [6].  In all 
those variations, however, neural networks with their inherent dependency on training 
patterns are embedded. Also, as a major difference to the presented research, the 
established knowledge on vehicle driving is stored within the neural net but not 
explicitly available, e.g. for optimisation or for further learning processes. 

A completely different approach is being followed by using explicit modelling, 
therefore trying to rebuild a model of the environment as well as the vehicle and to 
derive proper actions from it. The basic idea of such a model is to try to understand 
interaction between vehicle and environment and to predict consequences of any 
behaviour thus allowing to determine a suitable behaviour in a given situation.  

The major challenge of this approach is to find a suitable model which 
approximates the true vehicle behaviour and environment in the best way. Any 
difference between the model and the real environment/vehicle results in a difference 
between the calculated behaviour and an optimum behaviour. Any model also needs 
to be shaped up and tuned with parameters. Usually there are no versatile models, so 
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any change of e.g. vehicle or environment requires a corresponding tuning, 
respectively adaptation of the model. In other words, any tuned model is valid only 
for a certain environment or vehicle and is more or less sensible to any change of 
these. [7] describes an early success with international attention of a vehicle system 
using a real-time vision system BVV2 [8]. Further developments in this area (e.g. [9]) 
are being pursued with significant progress, however always dependent on many 
parameters for the modelling process.  

3   General Structure 

Figure 1 shows the overall structure of our approach. According to Sutton/Barto [1], a 
RL-system consists of an RL-Agent and theRL-Environment. The RL-Agent receives 
input regarding the state (situation) st as well as a reward rt and determines an 
appropriate action at. This action will cause a reaction of the RL-Environment and 
consequently result in a change of state from st to st+1. Similarly, the RL-Environment 
will also issue a reward rt+1 corresponding to st+1.  
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Fig. 1. Structure of the System 

Since the determination of the state s and the reward r is required from the RL-
Environment and usually not being provided by an environment simulator, our system 
enhances the RL-Environment and provides methods of Image Processing, Pattern 
Matching and reward-generation being described more in detail in the next paragraph.  

4   Image Processing and Pattern Matching 

The proper pre-processing of the incoming data is key to any successful RL-System. 
One of the major novelties of this research is the determination of a suitable situation 
description in correspondence to the situation the vehicle is in. In this light, the 
classical RL-Environment (the lower part of figure 1) has been enhanced in order to 
provide the RL-agent with defined descriptions of each situation. Any incoming 
image, along with external information on any appropriate action, is being given to an 
image processing system, which extracts all relevant information in order to describe 
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the current situation. Such situation description is being referred to as Abstract 
Complete Situation Description (ACSD). Even though such technique is a significant 
part of the current research, it shall not be described at this point since public 
presentations (also available on the web) have been done and has been described in 
proceeding papers in detail (e.g. [10], [11], [12]). At this point it shall only be 
emphasized that it makes use of a self-created statistical database storing the 
conditional probabilities of road mark positions and additionally exploiting the 
information to extract the road marks faster and more reliable than with many other 
methods. Such ACSDs are then being stored along with the corresponding action a of 
the training phase in a database.  

When operating the system in driving mode, any incoming image is being 
converted into an ACSD. Given the ACSD of the current image and the ACSD’s in 
the database, a fast k-nearest neighbour algorithm locates the most similar ACSDs. 
Such way, the RL-Agent not only receives information regarding the current situation 
but also information which other similar (or identical) situations experienced before.  

In this context, the ACSD explained above is being used as the state s, the action a 
is basically the steering command (i.e. angle of the steering wheel). 

Additionally, a reward r is being determined, which can be a value representing the 
lateral deviation from the middle of the road if the agent has to learn to follow any 
road course – however, the reward can also be a timer value measuring the time 
needed for a road section if the agent is to learn to pass a road section in the shortest 
possible time. 

5   Reinforcement Learning  

The basic idea of RL is, that states st,, respectively actions issued at a certain state at, 
are being rated considering the reward rt+1 of the situation st+1. Such rating is being 
represented by Q(s,a) and is defined to be the sum of future rewards discounted by a 
discount factor γ. In the beginning only estimates of the q-values exist. Thus, the 
current Q-values deviate from the converged Q-values by an error TDerr.   
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The error TDerr is being used for updating the Q-values (also discounted by the 
learning rate parameter α) and will lead to a convergence of the Q-values, as long as 
the reward is deterministic. 
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The maximum Q-value of a state s across all possible actions shall be: 

),(maxmax a asQQ ia=−  (5) 

and in combination with the policy π, the system usually selects the action with the 
highest Q-value, resulting the system to operate in the mode called exploitation mode: 

)(:)( max−= ai Qaasπ  (6) 

An initial target, however, is to self-optimise behaviour over time. Consequently it is 
imperative to actively explore the state-action-space in order to search for the best action 
(and temporarily switching to exploration mode): 

ε≥= − ()for)( )max( randQaa ia  
:)( isπ { else()randa =  

(7) 

with ]1,0[],1,0[() ∈∈ εrand  

In this policy learning and exploitation are randomly mixed. Such way the RL-
system also adapts autonomously to a new or even changing environment without any 
explicit training phase. 

Notable, at this point, is also the capability of a RL-system to cope with non-
linearity’s (e.g. errand rewarding) of the environment. This notation also includes 
the ability of the system to cope with delayed rewards. Given is for example the 
state-action relationship as displayed in figure 2. At t=0 the system shall be in 
state si and has the option between two actions: ai j which will cause a transition 
to state sj and further-on to state sk or action ai i which will prevent any change of 
state. rj shall be errand and rk shall be much higher than ri. Therefore, the system 
should be able to learn to accept an errand (low) temporary reward at state sj but 
to finally reach sk and should not remain in state si.  

According to its policy, the system will choose the action with the highest Q-Values. 
Depending on the rewards and the discount factor, the maximum Q-value at state si is 
given in formula 8. Basically, the closer the discount value get towards “1”, the higher 
will be the preference on long-term-rewards instead of short-term rewards. 
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Fig. 2. State sequence of the RL-system while coping with disturbed reward rj(see flash) 
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6   Experimental Results and Findings 

6.1   Experimental Setup 

The experiments have been done with a closed-loop-system consisting of two 
connected computers. The System-PC, processes the video stream of a connected 
camera and calculates the steering commands for the vehicle. These steering 
commands are then being given to the Simulator-PC, which is responsible for the 
environment simulation. A converter box connects both interfaces. The output of the 
second computer is being given onto its monitor, which again is being read by the 
video camera – alternatively, the video output of the Simulator-PC is being connected 
directly to the framegrabber of the system-PC using a S-VHS-cable. Due to this set-
up a realistic amount of measurement noise is introduced into the system. 

The task of the following experiments has been, to learn the ideal vertical position, 
respectively, the driving angle of a vehicle driving along a road course. In this light, a 
simplified system with 11 possible steering commands (equally distributed from sharp 
left steering to sharp right steering) has been defined. The number of possible 
situations varies depending on the settings of the image processing part.  

Simulator-PC System-PCConverter-Box

Videocamera

 

Fig. 3. HW setup for this research using two interconnected computers 

At this point it should be noted that all further results have been achieved without 
any supervised teaching at all! Therefore, the system discovers the whole state space 
completely on its own – in detail: the appropriateness of every action of every 
situation. Such extreme exploration of the environment is only possible on a 
simulator, which is our main reason for choosing such a platform.  

6.2   Splining and Measurement of Convergence 

One of the major new and significant findings in this research was, that a criterion is 
needed as to how much the system converged. Even though the values of TDerr 
(formula 3) represent the convergence error and is therefore the basis for the update, 
the chart of TDerr(t) does not express the grade of state-space convergence. Fig. 4 
shows lateral converged state-space (optimal lateral position to be learned) after the 
issuance of approx. 170.000 actions and a chart of TDerr over time – the convergence 
is not really be recognizable. 

Regarding the state-space: the state “R1” is equivalent to being at the left edge of 
the road; the best action in this situation is the selection of the center situation. The 
state “R11” is equivalent to being at the right road edge; the best action in this 
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situation is again the selection of the center situation. The action “1” is equivalent to 
selecting the leftmost situation, the action “11”is equivalent to selecting the rightmost 
situation.  
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Fig. 4. Original state-space (approx 30.000 actions) and TDerr (t) 

Therefore the state-space of the Q-values is being approximated by calculating for 
all situations each one spline over all actions. The cumulated squared difference 
between all original Q-Values and it’s corresponding splined Q-Value results in the 
determination of a value “Smoothness”. The splined Q-Values as well as the 
development of the Smoothness Value during the same testseries as Fig. 4 is shown in 
Fig. 5 and a clear indication for convergence can be seen. A rising smoothness value 
indicates the adaptation of the system to its environment (major learning performed), 
because the action space has to be globally smooth for the chosen system. The 
smoothness value decreases while the system converges. A complete convergence 
(therefore smoothness-value equal to zero) will not be achieved since any true 
environment is also not absolutely deterministic. 
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Fig. 5. Splined state-space (approx 30.000 actions) and Smoothness(t) 

However, a disadvantage of the splining, is the distortion of the state-space if some 
actions did not get issued often enough – resulting in a less often update according to 
Reinforcement Learning. Fig. 6 shows the original Q-Values as well as the splined Q-



412 K.-D. Kuhnert and M. Krödel 

 

Values for a state-space, in which only the middle actions got issued often enough 
(resulting in a local convergence). As a solution to this dilemma, the number of 
updates for each Q-Value gets counted and can either be considered during the 
splining process or used to hide the associated Q-Values. 
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Fig. 6. Original state-space and splined state-space 

Fig. 6 also shows the impact of reduced exploration. At reduced exploration, some 
actions might nearly never get issued (since not any action can be issued from any 
situation, creating a situation-specific dependency). Partially, this can be overcome by 
longer test-cycles but still, the counted number of updates for each Q-Values needs to 
be considered for any further analysis. 

6.3   Impact of Learning Parameters 

Although some other publications deal with the combination of RL and autonomous 
driving, the impact of the RL parameters are not yet publicly documented. In 
consequence, quite some experiments have been spent on such topic and provide for 
the first time an overview of the impact of the basi RL-parameters. Regarding the 
learning rate parameter α on the learning process, Fig. 7 and Fig. 8 show two similar 
testseries which differ only in values of α. A small value for α results in slower, but 
more stable learning. It should be noted that for those and the further tests, the system 
had to learn the driving angle, ie. the optimal driving angle is dependant on the 
situation the vehicle is in resulting in a different position of the maximum Q-Value 
for each situation.  

An environment with a higher number of situations lead to a more complex state 
space. Fig. 9. show corresponding tests; again with different settings for the grade of 
exploration. All in all, the system performs the learning task quite well – especially, 
as mentioned above, without any teaching at all. The more complex the environment 
becomes (dimension of state-space increasing) the test duration needs to be enhanced 
accordingly. However, even extended test times might run into limitations when the 
environment gets more and more complex. In those cases, focused exploration (i.e. 
exploration of only some sub-areas of the whole state-space) are supposed to be a 
viable solution – further investigation on this matter is planned for the near future. 
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Fig. 7. Testseries (approx 7.000 actions) with α = 0.1; original state-space and Smoothness(t) 
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Fig. 8. Testseries (approx. 7.000 actions) with α = 0.5; original state-space and Smoothness(t) 
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Fig. 9. Impact of exploration:  = 0,1 (left) resp.  = 1,0 (right) 

7   Summary 

Pattern Matching provides capabilities of autonomous driving with knowledge being 
directly accessible (for further optimization). In addition, Reinforcement Learning 
allows autonomous optimization of behaviors based on self-created rewards, even if 
delayed or disturbed. Combining both techniques allows learning and optimizing of 
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visual steering of autonomous vehicles. The current research, will now be further used 
in more complex environments in order to explore the limiations of exploration in 
combination to test duration. Also, further aspects regarding coping with delayed 
rewards will still be focussed on within the current research. 

References 

[1] Richard Sutton, A. G. Barto, Reinforcement Learning: An introduction, MIT-Press, 
2000, Cambridge (USA) 

[2] D. A. Pommerleau, Efficient Training of Artificial Neural Networks for Autonomous 
Navigation, Neural Computation 3, 1991 

[3] T.M. Jochem, D.A. Pomerleau, C.E. Thorpe. MANIAC: A Next Generation Neurally 
Based Autonomous Road Follower, IAS-3, Int. Conference on Intelligent autonomous 
Systems, February 15-18, 1993, Pittsburgh/PA, USA, F.C.A. Groen, S.Hirose, 
C.E.Thorpe (eds), IOS Press, Washington, Oxford, Amsterdam, Tokyo, 1993 

[4] T.M.Jochem, D.A.Pomerleau, C.E.Thorpe, Vision Guided Lane Transition, Intelligent 
Vehicles ’95 Symposium, September 25-26, 1995, Detroit/MI, USA 

[5] S.Baluja, D.A.Pomerleau, Expectation-based selective attention for visual monitoring 
and control of a robot vehicle, Robotics and Autonomous System, Vol.22, No.3-4, 
December, 1997 

[6] Uwe Franke, Dariu Gavrilla, Steffen Görzig, Frank Lindner, Frank Paetzold, Christian 
Wöhler, Autonomous Driving Goes Downtown, IEEE Intelligent Vehicles Systems, v.13 
n.6, p.40-48, November 1998 

[7] E.D.Dickmanns, A.Zapp, Autonomous High Speed Road Vehicle Guidance by 
Computer Vision, Preprints of the 10th World Congress on Automatic Control, Vol.4, 
International Federation of Automatic Control, Munich, Germany, July 27-31, 1987 

[8] K.-D.-Kuhnert, A Vision System for Real Time Road and Object Recognition for 
Vehicle Guidance, Proc. Mobile Robots, Oct 30-31, 1986, Cambridge, Massachusetts, 
Society of Photo-Optical Instrumentation Engineers, SPIE Volume 727 

[9] E.D.Dickmanns, R.Behringer, D.Dickmanns, T.Hildebrandt, M.Maurer, F.Thomanek, 
J.Schiehlen, The Seeing Passenger Car ‘VaMoRs-P’, Intelligent Vehicles ’94 
Symposium, October 24-26, 1994, Paris, France 

[10] M. Krödel, K.-D. Kuhnert, Pattern Matching as the Nucleus for either Autonomous 
Driving or Drive Assistance Systems, IEEE Intelligent Vehicle Symposium, June 17-21, 
2002, Versailles, France 

[11] K.-D. Kuhnert, M. Krödel,  Reinforcement Learning to drive a car by pattern matching, 
Anual symposium of Pattern recognition of DAGM, September 16-18, 2002, Zurich 
(Switzerland) 

[12] K.-D. Kuhnert, M. Krödel, Autonomous Driving by Pattern Matching and 
Reinforcement Learning, International Colloquium on Autonomous and Mobile 
Systems, June 25-26, 2002, Magdeburg, Germany 

[13] K.-D. Kuhnert, W. Dong, Über die lernende Regelung autonomer Fahrzeuge mit 
neuronalen Netzen, 18. Fachgespräch Autonome Mobile Systeme (AMS), December 4-
5, Karlsruhe, Germany 

[14] W. Dong, K.-D. Kuhnert, Robust adaptive control of honholonomic mobile robot with 
parameter and non-parameter uncertainties, IEEE Transaction on Robotics and 
Automation, 2004 



Cost Integration in Multi-step Viewpoint Selection
for Object Recognition

Christian Derichs1,�, Frank Deinzer2, and Heinrich Niemann1

1 Chair for Pattern Recognition, Department of Computer Science,
Universität Erlangen-Nürnberg, Martensstr. 3, 91058 Erlangen

{derichs, niemann}@informatik.uni-erlangen.de
2 Siemens Medical Solutions, Siemensstr. 1, 91301 Forchheim

frank.deinzer@siemens.com

Abstract. During the last years, computer vision tasks like object recognition
and localization were rapidly expanded from passive solution approaches to ac-
tive ones, that is to execute a viewpoint selection algorithm in order to acquire
just the most significant views of an arbitrary object. Although fusion of multiple
views can already be done reliably, planning is still limited to gathering the next
best view, normally the one providing the highest immediate gain in information.

In this paper, we show how to perform a generally more intelligent, long-
run optimized sequence of actions by linking them with costs. Therefore it will
be introduced how to acquire the cost of an appropriate dimensionality in a non-
empirical way while still leaving the determination of the system’s basic behavior
to the user.

Since this planning process is accomplished by an underlying machine learn-
ing technique, we also point out the ease of adjusting these to the expanded task
and show why to use a multi-step approach for doing so.

Keywords: Viewpoint Selection, Active Vision, Reinforcement Learning.

1 Introduction

In the last few years, a lot of approaches have been made to add an active component to
the task of combined object recognition and localization, leading to algorithms teaching
an agent which views of an arbitrary object to take. Therefore, most of them apply quite
powerful machine learning techniques to this task, like Reinforcement Learning [7], but
still restrict themselves to just performing a single-step process, that is to always select
the immediate best view to be taken within the next step for increasing the classification
rate. Obviously this behavior might be suboptimal concerning the effort needed for
reaching a certain classification reliability, e.g. if the agent passes by a viewpoint in a
first step it has to take later on anyway.
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In light of this drawback, the work of this paper will show how to put a more fore-
sighted component to the viewpoint selection problem by integrating costs to the sys-
tem. While further cost-integrating approaches attempt to control the effort feasible for
improving the classification itself [5] or to teach the agent by introducing costs for
misclassification [4], we do explicitly not aspire at an enhancement in classification.
Moreover our goal is to gain similar results, but with possibly less effort. Therefore the
components of an agent’s possible action have to be weighted against each other by
introducing those actions’ costs, respectively cost relations, which in turn have to be
adjusted to the learning technique’s reward modeling. Unlike [6], where those costs are
determined empirically, our attention is towards acquiring them as a by-product of the
training performed anyway, namely by learning and directly applying them in parallel
manner to the agent-teaching, main learning process.

Thus section 2 will give a summary of the machine learning technique, namely
Reinforcement Learning, underlying the viewpoint selection task. It will be directly in-
troduced as a multi-step approach since our presented way of cost integration makes
fundamental use of this assumption. As the basics are defined then, section 3 provides
the method for establishing and integrating cost-factors to the already existing learning
algorithms, while section 4 will introduce methods for computing the new target val-
ues more reliably and preferably without extending the processing time of the global
learning process. Results concerning a cost-sensitive solution of the viewpoint selection
problem will finally be shown for a co-operative environment where classification itself
does not make up a critical task.

2 Viewpoint Selection Without Costs

Fig. 1. Principles of Reinforcement Learn-
ing applied to viewpoint selection

The goal of this work is to provide a solution
to the problem of optimal viewpoint selec-
tion for 3D object recognition without mak-
ing a priori assumptions about the objects and
the classifier. The problem is to determine
the next view of an object given a series of
previous decisions and observations and can
also be seen as the determination of a func-
tion which maps a history of observations to
a new viewpoint. This function should be es-
timated automatically during a training step
and should improve over time. Additionally,

the function should take uncertainty into account in the recognition process as well as
in the viewpoint selection, be classifier independent and be able to handle continuous
viewpoints.

A straightforward and intuitive way to formalizing the problem is given in fig.1. A
closed loop between sensing state st and performing action at can be seen. The chosen
actions at

at = (at,1, at,2, . . . , at,n)T (1)

correspond to the movement of the camera at time t.

Agent: Classifier,
Camera

Viewpoint
Selection

A
ct

io
n

a
t

St
at

e

R
ew

ar
d

r t

rt+1

st+1



Cost Integration in Multi-step Viewpoint Selection for Object Recognition 417

The sensed states st, actually probability densities (2), are estimated by the em-
ployed classifier. In this paper we use a classifier [2, 3] that is able to perform a fu-
sion of multiple acquired images. In active object recognition, a series of observed
images f t,f t−1, . . . ,f0 of an object are given together with the camera movements
at−1, . . . ,a0 between these images. Based on these observations of images and move-
ments one wants to draw conclusions for a non-observable state qt of the object. This
state of the object consists of its class and pose relative to the camera. In the context of a
Bayesian approach, the knowledge on the object’s state is given in form of the a poste-
riori density p(qt|f t,at−1,f t−1, . . . ,a0,f0) that is calculated by the classifier. In [2]
it is discussed how to represent and evaluate this density with particle filter approaches.
From the viewpoint selection’s perspective, this density contains all the necessary in-
formation, so that the following density definition meets the Reinforcement Learning
requirements:

st = p(qt|f t,at−1,f t−1, . . . ,a0,f0) (2)

Additionally, the classifier returns a so called reward rt, which measures the quality
of the chosen viewpoint. For a viewpoint that increases the information observed so
far, the reward should have a large value. A well-know measure for expressing the
informational content that fits our requirements is the entropy

rt = −H(st) = −H (p(qt|f t,at−1,f t−1, . . . ,a0,f0)) . (3)

It is important to notice that the reward should also include costs for the camera move-
ment and object classification. This topic will be discussed in section 3.

At time t during the decision process, i.e. the selection of a sequence of viewpoints,
the goal will be to maximize the accumulated and weighted future rewards, called the
return

Rt =
∞∑

n=0

γnrt+n+1 = −
∞∑

n=0

γnH(st+n+1) with γ ∈ [0; 1] . (4)

The weight γ defines how much influence a future reward at time t + n + 1 will have
on the overall return Rt. So, to meet the demands of this paper, a γ > 0 is required
since we make use of a multi-step approach. Of course, the future rewards cannot be
observed at time step t. Thus, the following function, called the action-value function
Q(s,a)

Q(s,a) = E {Rt|st = s,at = a} (5)

is defined, which describes the expected return when starting at time step t in state s
with action a. In other words, the function Q(s,a) models the expected quality of the
chosen camera movement a for the future, if the classifier has returned s before.

Viewpoint selection can now be defined as a two step approach: First, estimate the
function Q(s,a) during training. Second, if at any time the classifier returns s as result,
select that camera movement which maximizes the expected accumulated and weighted
rewards. This function is called the policy

π(s) = argmax
a

Q(s,a) . (6)

The key issue of course is the estimation of the function Q(s,a), which is the basis
for the decision process in (6). One of our demands is that the selection of the most
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promising view should be learned without user interaction. Reinforcement Learning
provides many different algorithms to estimate the action value function based on a
trial and error method [8]. Trial and error means that the system itself is responsible for
trying certain actions in a certain state. The result of such a trial is then used to update
Q(·, ·) and to improve its policy π.

In Reinforcement Learning, a series of episodes are performed: Each episode k
consists of a sequence of state/action pairs (sk

t ,ak
t ), t ∈ {0, 1, . . . , T}, with T steps

at most. Each performed action at in state st results in a new state st+1. During the
episode, new returns R

(k)
t are collected for those state/action pairs (sk

t ,ak
t ) which have

been visited at time t during the episode k. At the end of the episode the action-value
function is updated. In our case, so called Monte Carlo Learning [8] is applied and the
function Q(·, ·) is estimated by the mean of all collected returns R

(i)
t for the state/action

pair (s,a) for all episodes.
As a result for the next episode one gets a new decision rule πk+1, which is now

computed by maximizing the updated action value function. This procedure is repeated
until πk+1 converges to the optimal policy. The reader is referred to a detailed introduc-
tion to Reinforcement Learning [8] for a description of other ways for estimating the
function Q(·, ·). Convergence proofs for several algorithms can be found in [1].

Since most of the algorithms in Reinforcement Learning treat the states and ac-
tions as discrete variables, a way to extend the algorithms to continuous Reinforcement
Learning is to approximate the action-value function Q̂(s,a) which can be evaluated
for any continuous state/action pair (s,a). Basically, this approximation is a weighted
sum of the action-values Q(s′,a′) of all previously collected state/action pairs. All the
collected action-values Q(s′,a′) are referred as Q-base throughout this paper. For the
exact calculation of Q̂(s,a) please refer to [3].

Viewpoint selection, i.e. the computation of the policy π, can now be written, ac-
cording to (6), as the optimization problem

π(s) = argmax
a

Q̂(s,a) . (7)

This problem (7) can be solved by global optimization techniques. In this work we use
the Adaptive Random Search algorithm (ARS) [9] combined with a local simplex.

3 Integration of Costs

Referring to the previous sections we first have to integrate the costs of an action into
the reward of Reinforcement Learning. This is done by adding a cost term C(at) to the
reward in (3) yielding

rt+1 = −H(st+1) − C(at) (8)

It is now necessary to take a closer look at the detailed modeling of those costs to be
able to understand its influence on the system-determining reward and its interaction
with H(st+1). In general, the description is

C(at) =
∑

i
κi · xt,i = κ · xt with xt,i =

at,i

aiu

(9)
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where index i provides a handle to the ith element of an action a an agent is actually
able to perform within a given environment. Next to this, every action component at,i

can be split into an amount of xt,i unit actions aiu
for every time step. Latter ones have

to be linked with a specific cost-factor κi in order to determine (9).
While now aiu as well as κi can take influence on the cost of an action we decided

to let the user choose all aiu
in a meaningful way beforehand, whereas κi will be the

crucial, variable parameter for affecting the system behavior via C(at). Here the user
is asked for i values of absolute type which might be difficult to acquire in a real world
environment since they might be influenced by various conditions. But what is essential
to be provided is at least a constant relation κi

κj
between all involved cost-factors, which

are likely to be achieved appropriately, as they might compare intuitive aspects like
the time two different unit action components will use to execute or the energy use of
moving compared to that of zooming, for example. Doing so, (9) is no longer dependent
on κ, but just on a single κi, typically κ1, and the given relations mi.

C(at) = κ1 ·
∑

i
mi · xt,i ; mi =

κi

κ1
(10)

The problem occurring here is the theoretically unlimited range of κ1 combined
with its independency of H(st+1) in general. So just choosing the first cost-factor ran-
domly or by sense of proportion would mostly lead to an imbalance between the terms
of the sum in (8), that is the system is either almost exclusively influenced by the curve
of −H(st+1) or just trying to reduce added costs without regarding the entropy based
reward. While the user might be able to choose a sufficient value for κ1 in a simple
environment beforehand, he will surely fail when actions and rewards become more
complex. So the only way, apart from gaining it empirically, is to learn a cost-factor
fitting the entropy based reward’s order of magnitude and then integrate it into the Re-
inforcement Learning process.

Consequently, we have to introduce a criterion for rating different κ1 while naturally
not integrating κ1 into this criterion directly. Regarding our demands we are eager for a
cost-factor leading the agent to acquire an entropy based reward as high as possible on
the one hand, while causing as little cost as possible on the other. To be more precise,
we do not seek to reduce the costs themselves but the mixed and weighted amount of
the various cost generating unit actions aiu . Doing so, the κ1 under testing has no direct
influence on its own rating. It just affects the decision process of the Reinforcement
Learning regarding (10), resulting in eventually different actions to be taken. So using
a rating function

f(κ1) =
−H(st+1)∑

i xt,i · mi
=

−H(st+1)
C(at)

κ1

(11)

such a change in behavior will affect the denominator directly and usually also the
nominator, leading to a different rating for the appropriate κ1.

While (11) is laid out for a single-step task, the intention of this paper requires ex-
panding it to work with multi-step problems up to episode length T . Therefore using the
information content’s difference of consecutive views Δ(−H(st+1)) = −H(st+1) +
H(st), the equation is changed to
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f̃(κ1) =

T−1∑
t=0

Δ(−H(st+1))

T−1∑
t=0

n∑
i=1

xt,i · mi

=

T−1∑
t=0

Δ(−H(st+1))

T−1∑
t=0

C(at)
κ1

= CBR . (12)

At this point, it becomes obvious why to use a multi-step approach. Instead of cal-
culating a conjoint, single sum of the nominator and denominator in (12) for each time
step this is done separately since we would like to find one κ1 that maximizes the nom-
inator over an entire episode while minimizing the denominator over an entire episode
at the same time. So actually we do not care about the ratings of every single time step,
what a combined sum would imply. Furthermore, matching this demand we need to pro-
vide a multi-step approach for Reinforcement Learning with γ > 0, because otherwise
calculating such a conjoint sum would always result in the same rating as in (12).

When finally applying each κ1 to be tested to several episodes within the training
phase of Reinforcement Learning, the one resulting in the highest values for (12) on
average is regarded to be the optimal one. A further assumption made in our approach
is the permanent existence of an action component at,n in (1) related to taking views.
This turns out to be quite useful since our demand always is to solve the task with the
minimal amount of views if additional costs allow to do so. Moreover (12) will be called
the CBR for cost-benefit ratio in the following due to its appearance.

4 Learning an Appropriate Cost-Factor

So far, the two main issues of our viewpoint selection approach were described. On the
one hand, it is necessary to learn a cost-factor κ1, and on the other hand a regular im-
provement of the Q-base, influenced by the costs, is needed. Therefore, a consequential
first thought is to just perform a whole training phase with a fixed κ1 and to repeat this
for all cost-factors one would like to examine. Then comparison could simply be done
by using (12) in a global way, i.e. by calculating the average of all episodes’ CBR. As
this process would result in a maximal CBR for a certain κ1, it is just a question of
iterations to get closer to the global maximum. Although this would work for sure, the
drawback is obvious since we would have to perform a multiple of training episodes,
which becomes unbearable soon. For this reason, the following three subchapters will
introduce mainly independent approaches for keeping the amount of necessary episodes
within the training phase as small as possible.

4.1 Expanding the Q-Base

So, a mostly parallel procedure for κ- and Reinforcement Learning had to be found
while handling the occurring interdependencies at the same time. Regarding this, the
main problem turned out to be the fact that a Q(s′,a′) learned with κ1x usually does
not provide a good strategy when using κ1y . Thus already executed episodes might store
information in the Q-base that is completely useless or even harmful for later evaluation
if κ1 is completely different. This consequently results in a lot of episodes executed for
nothing and finally missing for providing a more reliable set of reference values.
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To reduce this drawback in a first instance an expansion was added to all the Q(s′,a′)
in the Q-base. While so far just storing state st, action at and Q(s′,a′) itself, addition-
ally all actions at+n temporally following time t, all afflicted single-step entropy based
rewards −H(st+n) and the κ1 those steps were performed with earlier, will now be
linked to and stored with their Q(s′,a′). Those elements L′ at n time steps after fol-
lowing a′

t in s′t are then accessible via

L′(Q(s′t,a
′
t), t + n) = L′

t+n with L′ ∈ {a,−H(s), κ1}. (13)

Please note that regarding the convergence criterion of Reinforcement Learning,
episodes’ steps are performed randomly (ε = 0) at the beginning of the training phase
and get an increasingly higher probability ε of being performed greedily by applying (7)
when training lasts. If now a time step is only followed by random actions, we can find
out the stored, but actually not agent-influencing history information L′

t+n and replace
it with the currently valid parameters, e.g. the current κ1. Thus, random episodes, which
mainly appear at the beginning of a training phase, can be used as a common database
for all κ1 to be tested. Of course, even greedy steps or whole episodes of an earlier
evaluated κ1x can serve as such a random base for each κ1y .

4.2 Demands on Parallel Learning

Having a commonly usable base of random actions and ratings this way, the actual
search for κ1 can begin. To do so, an optimized search within a theoretically unlim-
ited, but actually generously chosen, range of κ1 is performed via an Adaptive Random
Search algorithm [9]. But an enormous problem occurring here again refers to the inter-
dependencies in κ- and Reinforcement Learning since the latter needs to have greedy
steps as well as random steps within one episode. On the other hand κ-learning would
prefer to rate only episodes performed completely greedily in order to achieve the true
CBR. Since the demand is to parallelize the learning algorithms, a compromise has to
be found. So what is done is that each first step in an episode is performed greedily,
while each following step might be either greedy or random. This proceeding turns
out to be acceptable, because first steps should be evaluated well enough within the
preceding, all-random training phase, resulting in no drawback for the Reinforcement
Learning.

If then an episode’s ith step is eventually random we apply an originally Reinforce-
ment Learning sub-strategy to the κ-learning, namely the Q-Learning [10], which is
called an off-policy strategy but has been shown to converge to the results of the com-
mon on-policy calculation. The method is to just replace the rewards and costs that
would have been gained if finishing the episode greedily, by those that are stored in
the one Q(s′,a′) providing the most influential component when calculating Q̂(s,a),
if continuing greedily. This Q(s′,a′) will be called Q̃(s′,a′) from now on. Since each
Q(s′,a′) stores an array of experienced rewards and actions over time (see section 4.1),
these rewards can now be accessed with the help of (13), leading to (14, 15) where the
approximative calculations of the components in (12) are shown. Doing so forces the al-
gorithm to calculate one extra action finding optimization step even though proceeding
in a random way actually, but assures we do not lose the whole episode, i.e. not having
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performed all the episode’s eventually preceeding optimization iterations for nothing
and also gaining an at least approximative CBR.

T−1∑
t=p

Δ(−H(st+1)) =
T−1∑
t=p

(Δ(−H(s)))(Q̃(s′p, π(s′p), t + 1) ; ap ∈ random (14)

T−1∑
t=p

C(at)
κ1

=
T−1∑
t=p

C(a)
κ1

(Q̃(s′p, π(s′p), t) ; ap ∈ random (15)

Obviously a rating for κ1 becomes more reliable when step number p becomes
higher since the approximation is over less steps, but it also depends on the quality of
the Q-base growing continuously within a training phase.

4.3 Providing Comparability

Given the Q-base learning supporting feature of complete randomness in choosing each
episode’s starting position, this constitutes another problem when trying to learn κ1

simultaneously. So because of having to compare CBRs of episodes with generally
different starting points, κ1x might be disadvantaged to κ1y right from the start if the
initial position is worse in a global manner, i.e. if reaching best view points at a greater
distance on average. Thus an objectively better κ1 might be rated worse just because
of the awkward initial position of its associated episode. Since we need to provide
comparability, the character of an initial position has to influence κ-learning as well,
leading to the definition of a state quality Z(st) (16) and its integration to the calculation
of CBR (17).

Z(st) =

∫
at

ψ(st) dat

maxat
ψ(st)

; ψ(st) =

T−1∑
t=p

(Δ(−H(s)))(Q̃(s′p,a
′
p), t + 1)

T−1∑
t=p

C(a)
κ1

(Q̃(s′p,a′
p), t)

(16)

CBRnew = CBR · Z(s0)−1 (17)

By integrating over the expected long-run rating of all possible immediate actions
at in current state st in (16) one calculates a state dependent rating, while the normal-
ization in the denominator of Z(st) assures we are able to compare even κ1 learned
with different object classes or between episodes occurring at larger distances in the
training phase. Integration into the CBR then has to be done inversely since each κ1

rated by an episode with a convenient starting position should be devaluated adequately
and vice versa. It is worth annotating that there is no need or benefit in applying Z(st)
to any other states st>0 reached within an episode as those are not acquired randomly
but are already part of the strategy followed with the actual κ1.

Recalling section 2, fortunately most of the above mentioned work has already be
done. This is because during the ARS-simplex optimization process (7) for finding the
next best action concerning the Q-base, a huge amount of actions has to be evaluated
anyway. Noticing that there is a global optimization first in the ARS-simplex, we can
just take these global actions’ results for calculating Z(s0) since the range of actions is
sufficiently and almost equally covered, approximately representing the prior integral.
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5 Experimental Results

For showing the resulting effect of cost integration, a comprehensible viewpoint se-
lection task was chosen, having to differentiate four kinds of similar cups with either
letter A or B on the one side and numeral 1 or 2 at the opposing point (fig.2). The
agent is just able to move on a circular line around the cup while each view within
the range of ± 60 degrees from a character’s center (90◦ resp.270◦) could be reason-
ably taken for classification, but with decreasing reliability. When applying the intro-
duced algorithms to this problem there is just one cost-factor ratio κ2

κ1
to be considered,

where κ1 is set to be the cost of moving the agent by one degree and κ2 represents
the cost of taking another view. The Reinforcement Learning technique was chosen to
be Monte Carlo Learning with γ = 0.2 and a maximal episode length of five steps.

Fig. 2. Arrangement of the evaluated viewpoint selec-
tion task

Learning was then done with 800
training episodes for each cost-
factor relation in tab.1, whereas
the initial 200 episodes were per-
formed exclusively at random for
acquiring a reliable database. Dur-
ing the following 600 episodes the
probability of greediness was cho-
sen to increase in a linear way
up to ε = 1. Taking different ra-
tios m−1

2 , tab.1 shows the actually
learned κ1, the averaged resulting
classification rate, the resulting av-
eraged amount of additionally taken views and the averaged performed move length
within an episode. Concerning the classification rate, it has to be noticed that this envi-
ronment was chosen to be very accommodating for keeping the side-effects small in or-
der to bring out the decisive results more clearly. A pre-limitation of κ1 ∈ [0.0001; 0.1]
was arranged.

Regarding tab. 1, it becomes obvious that the system is able to change its behavior
decisively when applying costs to the agent’s actions. The results show that for this
special environment we enabled the agent to save up to more than 50 degrees (∼ 25%)
of its rotational movement, compared to a former cost-insensitive learning, without re-
ducing the classification rate. This benefit is due to the fact that the agent now does
not reach for the absolute best view on each side of the cup any more, but founds its
classification on a less reliable, but obviously still satisfying viewpoint if a gain in cost
reduction is available this way. Since doing so is always afflicted with the risk of taking
a needless view, this earning increasingly declines when taking views becomes more
expensive.

Furthermore we even got the chance of influencing the system by small m2 in a
way that mostly prevents correct classification if this becomes too expensive, which
also appears to be intuitive and meaningful. And without losing any prior abilities we
can still simulate a cost-insensitive system by just taking extremely large values for
m2, as the first lines of tab.1 prove. This is due to reserving a cost component for taking
views in combination with initiating a multi-step approach.

−H(st+1) −H(st+1)

Agent90

180

270

0
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Table 1. Resulting behavior for different cost-factor ratios

m−1
2 learned κ1 ∗ 104 classification rate [%] views/episode move[◦]/episode

without costs - 100 2.47 197.12
1:100000 692.83 100 2.47 198.02
1:10000 937.29 100 2.47 197.33
1:1000 350.23 100 2.48 195.49
1:100 17.23 100 2.51 190.80
1:80 3.30 100 2.55 181.37
1:60 9.46 100 2.59 165.67
1:50 4.71 100 2.66 141.88
1:40 24.13 89 3.02 112.82
1:30 24.76 41 5.17 30.55
1:10 28.39 39 5.60 7.96

6 Summary and Future Work

In this paper it was shown how to expand an already existing Reinforcement Learn-
ing based viewpoint selection problem to a more foresighted version. Since the task of
object classification could already be solved in an optimal way by taking a minimal
amount of views, attention was towards also considering any kind of costs appearing at
the same time, e.g. the agent’s movement. Integration of those costs to the learning pro-
cess was revealed, where costs need to be settled in an appropriate range in dependency
of the environment’s entropy based reward. To do so, a rating function was introduced
for learning an appropriate single cost-factor the problem could be reduced to.

Therefore, the main attention was on not increasing the effort of pure, cost-insensi-
tive learning, e.g. the amount of episodes, in a significant manner. So parallel strategies
of the basic Reinforcement Learning and the newly introduced cost-factor learning were
developed, regarding the reusability of already obtained values as well as coordinating
the various differing demands of both techniques at steps within a training phase.

Upcoming work should now tend towards approaches for rating arbitrary cost-factors
even by episodes performed with completely different cost-factors, and for eventually
making use of completely random episodes for rating. The ability to provide a rating as
often as possible is essential, since tasks with broadly higher dimensional action spaces
call for a more founded and more reliable evaluation of the cost-factor in order to still
find the optimum, while furthermore the cost-factor’s reasonable range should become
barely pre-limitable beforehand, leading to a larger search space.
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Abstract. Support Vector Machines have received considerable attention from
the pattern recognition community in recent years. They have been applied to
various classical recognition problems achieving comparable or even superior
results to classifiers such as neural networks. We investigate the application of
Support Vector Machines (SVMs) to the problem of road recognition from re-
motely sensed images using edge-based features. We present very encouraging
results from our experiments, which are comparable to decision tree and neural
network classifiers.

1 Introduction

Road extraction from remotely sensed images is an important process in the acquisi-
tion and updating of Geographical Information Systems. Automatic and semi-automatic
road recognition is an active area of research [7]. RAIL is a road recognition system that
has been under development by our group for a number of years. It serves as a frame-
work to research new directions in applying machine learning to image understanding
[4, 10].

Support Vector Machines (SVMs) provide a relatively new classification technique
that has grown from the field of statistical learning theory [11]. SVMs construct a hy-
per plane in the feature space that separates the positive and negative training samples.
SVMs have been applied to many classic pattern recognition problems with great suc-
cess including face recognition, hand-written character recognition and speech recog-
nition [1]. In the domain of remote sensing, SVMs have been applied mostly to land
cover classification. Camps-Valls et al. [2] use hyper spectral data of 128 bands to clas-
sify 6 types of crops. SVM yielded better outcome than neural networks. SVMs also
performed reasonably well in situations where feature selection was not used. Pal and
Mather [8] report that SVMs performed better than maximum likelihood, univariate
decision tree and back-propagation neural network classifier, even with small training
data sets. Both groups used pixel-based features.

There are two main motivations to incorporate SVMs into RAIL. First of all, SVMs
have been successful in other application domains. However, there have been no re-

P. Perner and A. Imiya (Eds.): MLDM 2005, LNAI 3587, pp. 426–436, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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sults (prior to [13]) published on applying SVMs to the problem of road recognition.
Therefore, our experiment will be of interest to pattern recognition communities as
well as remote sensing researchers. Secondly, RAIL uses a meta-learning framework
that facilitates model selection for classifiers, amongst other types of learning. Incor-
porating SVMs into RAIL expands the base algorithm sets to promote meta-learning
research.

This paper is organised as follows. Section 2 describes implementation improve-
ments on RAIL. Section 3 describes the experiment and the results are presented in
Section 4. We summarise our results in Section 5.

2 RAIL

RAIL is an adaptive and trainable multi-level edge-based road extraction system which
has been developed within our group for a number of years [10]. Starting with low-
level objects (edges), RAIL incrementally builds higher-level objects (road network).
The levels of classification are

1. Road Edge Pairs - pairs of edges that enclose a segment of road
2. Linked Road Edge Pairs - adjacent road edge pairs that form continuous roads
3. Intersections - road edge pairs that meet to form intersections
4. Road Network - linked roads and intersections.

SVM was applied to the preprocessing stage (edge extraction) and Level 1 of RAIL
with encouraging results [13]. This paper extends the use of SVM to Level 2 while
removing SVM use in the preprocessing stage. Several implementation improvements
have been made to RAIL that affected the previous SVM experimentation. These in-
clude the image processing stage, the reference model, feature extraction and feature
selection stages.

Image Processing: The parameters used in Vista’s Canny edge-detector were tuned to
produce outputs with less noise. This was accomplished by adding noise to the original
image prior to a Gaussian smoothing function with a large standard deviation. Adding
artificial noise to our images before blurring removes very small features such as noise
that are present in high resolution images. The improvement was a dramatic decrease
in the number of extracted edges, up to 90% less in several images, which meant that
SVM could be used to learn Level 1 data without an additional SVM preprocessing.
Removing this preprocessing stage gives results that can be compared to other algo-
rithms in RAIL which also do not use any additional preprocessing stage. Another
advantage is the reduction in misclassification during the SVM preprocessing stage
(approximately 14%) so that a more complete road network can be recovered at higher
levels.

Reference Model: RAIL has recently adopted a centreline reference model based on
Wiedemann et al. [12] which can assess the learned outputs more correctly by checking
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Table 1. Extracted Features

Level 1 Level 2
Width (mean) Width (mean)
Enclosed Intensity (mean) Width (var)
Enclosed Intensity (var) Width Difference
Pair Length (centreline) Enclosed Intensity (mean)
Length Difference Enclosed Intensity (var)
Bearing Difference Enclosed Intensity Difference
Intensity Gradient Difference Gap Intensity (mean)
Projection Gap Intensity (var)

Length Combined
Length Difference
Minimum Gap Separation
Maximum Gap Separation
Gap Separation (mean)
Bearing Difference
Intensity Gradient Difference (left)
Intensity Gradient Difference (right)

that the extracted pairs have edges that do in fact lie opposite each other near the refer-
ence model. Previously we used an edge based model which produced a slightly more
modest value in assessing the correctness of the outputs.

Feature Extraction: Additional features have been added to Level 1 and Level 2 (see
Table 1) and a relevant subset from each level was selected by using feature sub-
set selection (FSS) methods, which is described in section 3.4. The highlighted en-
tries are the feature subsets that were discovered. Descriptions of the features may be
found in [6].

Selected Level 1 Features: Pair width, enclosed intensity (mean), bearing and projection
form an intuitive feature subset that describes road segments, i.e. roads have similar
width and intensity and their opposite sides are almost parallel. Pair length is a good
feature because in our preprocessing stage we have set a maximum length for edges.
Generally road sides are long and continuous and get split into smaller segments after
preprocessing. When road pairs are formed their lengths do not vary too much. This is
because non-road edges are usually of shorter length.

Enclosed intensity variance did not prove to be a good feature since the area en-
closed by an edge pair is small and the intensity is fairly similar. Length difference
between edges was also discarded by FSS. We expect road pairs to have similar edge
length but non-road pairs maybe also have similar edge lengths, thus it does not convey
much information. Intensity gradient difference between the two edges do not show
consistencies between road pairs and non-road pairs. The assumption that the intensity
levels are the same on both the external sides of the road is invalid.

Selected Level 2 Features: At Level 2, linked road pairs should have similar enclosed
intensity with little difference. Ideally linked pairs should be minimally separated and



SVM Experiments for Road Recognition in High Resolution Images 429

have no gap, thus gap intensity and gap separation are excellent features to distinguish
between linked road pairs and other linked edge pairs. Roads generally have smooth
curves except at an intersection, therefore the bearing difference between linked road
pairs should not be very large.

Width features are not good attributes for Level 2 because Level 1 outputs all have
similar widths. The same argument applies to length attributes. Enclosed intensity vari-
ance and gap intensity variance are not very good features for the same reason discussed
earlier, i.e. intensity level do not change much in enclosed edge pair or in a road gap.
Again, intensity levels across edges cannot be assumed to be the same on both sides of
the linked edge pairs.

Feature Subset Selection: The goal of FSS is to choose the most relevant features for
classification, in other words, removing irrelevant attributes that may distract a machine
learning algorithm. We compiled 9 sets of data from our images. 7 were from individual
images and 2 were random selections from all the images. The sample size ranges from
130 to 360 examples in each set. We did not use one large test set since we had different
road types and having one set of data might cause the result to be biased towards the
most frequent road type.

The Weka data mining suite (version 3.4) 1 was used to conduct the FSS exper-
iments. The FSS algorithms are grouped into Type I, consisting of correlation-based,
classifier and wrapper algorithms, and Type 2, consisting of Chi squared, Relief, In-
formation Gain, Gain Ratio and Symmetrical uncertainty algorithms. Type I algorithms
select the ‘best’ subset of features. The frequency of each attribute was recorded and av-
eraged. Type II algorithms rank the individual attributes by assigning them a weighting.
These were normalised and averaged.

We wanted to select a subset of features which have a high frequency score in Type
I and a high weighting in Type II. We ranked the Type I and Type II results and picked
the smallest subset where the features are the same in each type. For example, if the top
4 attributes in Type I and Type II are the same disregarding their relative ranking posi-
tion, then we would have a subset of 4 features. This has produced good classification
results.

Features Versus Heuristic Preprocessing: Although we are using new image pro-
cessing parameters to produce less noisy outputs, we are still dealing with fairly large
datasets for Level 1 (Cn

2 ), as each edge can be paired up with every other edge and the
ordering is irrelevant). Thus we use heuristic preprocessing to reduce the data size so
that it becomes more manageable. We do not use heuristic rules for Level 2 since the
data size is comparatively smaller than Level 1.

The heuristic rules throw away cases where an expert would agree that a positive
classification is impossible. For example, in Level 1 we used the heuristic that if edges
in an edge pair do not project onto each other, then they cannot be classified as an edge
pair, since they are not opposite each other. Because this feature has a binary output,
by using this attribute as a heuristic filter we have effectively removed projection from
the feature space, since the heuristic rule outputs only those edge pairs that do project

1 Software available at http://www.cs.waikato.ac.nz/ml/weka
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on to each other. We also have a heuristic rule that leaves out any edge pairs that are
wider than twice the maximum road width in the images. We have effectively reduced
the feature space that SVM would need to learn from.

Theoretically this should not make any difference to machine learning algorithms
because the data we are leaving out have no influence on how the classes are separated.
For SVMs, the data points discarded are distant from the class separation region and
the support vectors, thus the construction of the separation hyper plane is independent
of them.

Dataset: Seven high resolution aerial images were used in the experiment. Image A and
B are from a rural area in France.These images have a ground resolution of 0.45m/pixel.
The other 5 images are from a rural area in Morpeth in Australia. These images have a
ground resolution of 0.6m/pixel. The image properties are given in Table 2.

Table 2. Image Properties

Image Dimensions No. of Edges
A 776*289 1530
B 757*821 3055
C 1500*848 2912
D 1700*1300 3290
E 1400*1300 1858
F 1400*1200 3893
G 1600*1100 3204

A total of 333 and 227 positive and negative examples were selected from the im-
ages (some images contain more examples) for Level 1 and Level 2 respectively. The
heuristic preprocessing outputs serve as inputs data for Level 1, and the Level 1 outputs
feed into Level 2. The size of the test data ranges from 2400 to 11200 instances for
Level 1 and between 1500 to 18200 instances for Level 2.

Since we only had seven images to experiment with, we used 7-fold cross validation
technique (leave-one-out) for evaluating the learned output, i.e. we train using six im-
ages and test on the unseen image. Note however that at the edge pair and twin linked
edge pair level where the learning takes place, we have thousands of instances in each
image.

3 Experimental Design

SVM experiments have been conducted on Level 1 and Level 2 of RAIL (the level ref-
erences are different to those in [13]). The SVM implementation used was changed to
LIBSVM 2 (version 2.4) which offers more in terms of tools and programming inter-
faces.

2 Software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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The training data and test data were scaled to [-1,1] to avoid attributes in greater
numeric ranges dominating those in smaller numeric ranges. Another advantage is to
avoid numerical difficulties during SVM calculations [3].

We used five different kernels for training SVMs for Support Vector Classifica-
tion (C-SVC). They can be separated into two categories: Polynomial and Radial Basis
Function (RBF). The polynomial kernels are of the first, second and third degree (with
default C=1). The RBF kernels are standard (RBFs, C=1, γ=1) and optimised (RBFo,
C, γ picked by a grid search function provided by LIBSVM). C is the penalty parameter
that controls the margin and hence the over fitting of data, and γ is an internal variable
for RBF.

The SVM kernels are compared to two well known classifiers within Weka, namely
decision tree (DT) and neural network (NN), with default settings.

4 Experimental Results

The metrics used to evaluate the results are taken from Wiedemann et al. [12]. They
address two questions: 1. How complete is the extracted road network, and 2. How
correct is the classification. They are calculated to percentage values, given by:

completeness =
lengthTP

lengthreference
(1)

correctness =
lengthTP

lengthclassifed
(2)

Completeness measures the percentage of the road reference as detected by SVM.
Correctness measures the percentage of the SVM classification that are actual road
pairs. A high completeness means that SVM has extracted most of the road network,
whereas high correctness implies that SVM has not classified too many incorrect road
pairs.

We combine the two measures above into a more general measure of the quality. We
call this cxc which is expressed as:

cxc = completeness2 ∗ correctness (3)

Clearly, this measure is biased towards completeness. RAIL uses the output of Level
1 as the input of Level 2, so it is more important to have high completeness at the lower
levels for input to higher levels. For example, Level 2 will only be as complete as its
input (Level 1 output). Higher correctness value will result as higher levels discard non-
road pairs.

Tables 3 shows the classification results (rounded to nearest percent) for Level 1 and
Level 2. The completeness (cmp), correctness (cor) and cxc are shown for each classifier
on each image. The entry with the highest cxc for each image in Level 1 is used as input
to Level 2. The highest cxc obtained by SVM classifier has been highlighted for each
image. Fig. 1 to Fig. 4 shows the SVM results visually for Image F. The images consist
of the road reference, the low-level edges as inputs and the best Level 1 and Level 2
outputs.
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Some of the completeness values are a little over 100%, this is because the centreline
reference model uses a buffer zone both to the left and to the right of the road reference.
Although the buffer width is only set to 3 pixels on either side, on some noisy road
sections, two or more edges maybe measured as true positives for that same section.
However, this is only true in a few cases. In all images with completeness greater than
100%, detailed analysis show that more than 98% of the reference road network is
recognised.

Level 1 SVM classifiers have an average of 97% completeness and 35% correctness.
Level 2 SVM classifiers have an average of 90% completeness and 49% correctness.
These results are very encouraging because high completeness values are obtained.
Clearly, the polynomial kernel of degree 3 and the optimized RBF kernel outperform
the other kernels except for Image E. Additionally, the SVM classifiers compare well
to DT and NN classifiers. In most cases, the results are very similar, though on images

Fig. 1. Image F - Road Reference

Fig. 2. Image F - Input
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Fig. 3. Image F - Level 1 output

Fig. 4. Image F - Level 2 output

containing dirt roads in Level 1 (Image E and F), SVM classifiers appear to outperform
both DT and NN, see Table 3.

The low correctness value in Level 1 does not worry us. One of the major causes of
the large number of false positives is that SVM classified road pairs have similar road
properties, but only a fraction of them are represented by the centreline road reference.
The others appear to be driveways and crop separations (perhaps for tractors) which
are non-roads, but picked up well by the classifiers. The other main reason is that road
properties may vary slightly between different images. SVMs learn these variations to
a certain degree and thus the classified output may contain a range of road properties,
some of which might be non-roads depending on the images.

Some images had lower completeness in Level 2, particularly Images C, E and F.
The main causes of this are 1) because the road is very similar to its surroundings (es-
pecially roads with lower intensity), which means edges are not extracted well, and
2) dirt roads have been misclassified in Level 2 since the edge pairs are not closely
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Table 3. Classification Results

Classifier L1 L1 L1 L2 L2 L2
Cmp Cor cxc Cmp Cor cxc

A Poly. 1 101 32 34 98 53 50
A Poly. 2 100 32 33 98 54 51
A Poly. 3 101 37 38 98 53 51
A RBFs 101 35 36 98 54 51
A RBFo 101 35 36 98 54 52
A DT 100 31 31 98 54 51
A NN 101 36 37 98 54 51
B Poly. 1 107 34 39 105 51 57
B Poly. 2 96 18 17 105 51 58
B Poly. 3 94 39 34 105 54 60
B RBFs 103 36 38 105 52 57
B RBFo 108 36 42 105 53 59
B DT 102 29 30 105 52 57
B NN 107 39 44 105 51 56
C Poly. 1 92 26 23 81 41 27
C Poly. 2 89 21 17 81 41 27
C Poly. 3 87 33 25 81 41 27
C RBFs 94 29 25 81 41 27
C RBFo 94 30 27 81 42 27
C DT 92 29 25 81 41 27
C NN 92 31 26 81 41 27
D Poly. 1 100 22 21 98 30 28
D Poly. 2 98 23 23 98 30 29
D Poly. 3 97 23 22 98 30 29
D RBFs 99 23 22 98 30 28
D RBFo 99 24 24 98 30 29
D DT 97 27 26 98 30 29
D NN 98 26 25 98 30 28
E Poly. 1 85 47 34 84 70 49
E Poly. 2 80 43 28 84 69 48
E Poly. 3 81 56 37 84 66 46
E RBFs 91 56 46 84 70 49
E RBFo 87 57 43 84 70 49
E DT 37 41 6 84 70 49
E NN 51 55 15 84 70 49
F Poly. 1 83 32 22 68 54 25
F Poly. 2 91 27 22 68 55 25
F Poly. 3 88 37 29 68 55 25
F RBFs 88 35 27 68 55 25
F RBFo 84 33 24 67 55 25
F DT 70 36 18 67 55 25
F NN 73 43 23 68 54 25
G Poly. 1 98 35 34 99 42 40
G Poly. 2 97 30 28 98 43 40
G Poly. 3 96 39 36 99 43 41
G RBFs 100 38 38 99 42 40
G RBFo 100 38 37 99 42 41
G DT 92 31 27 96 42 39
G NN 95 34 30 99 42 41
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linked. Fig. 4 is a good example where narrower roads with high intensity have been
detected while wider and lower intensity roads have been missed. This problem can
be fixed by applying a further preprocessing stage before edge extraction, e.g. multi-
level thresholding/segmentation or by using an ensemble of SVMs and combining the
results.

5 Conclusions

In this paper we have experimented with SVM and road extraction using edge-based
features, which is significantly different from other SVM experiments in the remote
sensing domain. The results for Level 1 and Level 2 are very encouraging and com-
parable to decision trees and neural networks. We plan to extend SVM to level 3 of
RAIL which currently uses a relational learning algorithm to recognise the attributes of
junctions [9].

The current experiments also show that it is feasible to select a suitable kernel that
is best for the data. In the future we plan to experiment with other kernel functions
and apply meta-learning techniques to find the best kernel and the parameters that are
associated with them (Gold and Sollich, 2003).
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Abstract. Face recognition is a challenging visual classification task,
especially when the lighting conditions can not be controlled. In this
paper, we present an automatic face recognition system in the near in-
frared (IR) spectrum instead of the visible band. By making use of the
near infrared band, it is possible for the system to work under very dark
visual illumination conditions. A simple hardware enables efficient eye
localization, thus the face can be easily detected based on the position
of the eyes. This system exploits the feature extraction capabilities of
the Discrete Cosine Transform (DCT) which can be calculated very fast.
Support Vector Machines (SVMs) are used for classification. The effec-
tiveness of our system is verified by experimental results.

1 Introduction

Face recognition has a wide variety of applications in commercial and law en-
forcement. Due to its nonintrusive characteristics, it emerges as a vivid research
field in biometrics. Illumination is one of the challenges for face recognition.
Most face recognition algorithms are associated with visible spectrum imagery,
thus they are subject to changeable lighting conditions. For systems that have
to work in the daytime and at night, infrared is a solution. However, thermal
infrared is not desirable because of the higher cost of thermal sensors and poorer
quality of the thermal images. Therefore near infrared is preferable and common
silicon sensors can be used, since they are sensitive from the visible band to near
infrared band (up to 1100 nm).

An automatic face recognition system must detect the face first. It requires
either face detection as the first module, or localization eyes without face detec-
tion and cropping the face region accordingly. Since alignment is very significant
for face recognition, it is advantageous to detect eyes first. When the eyes are
localized, the face region can be segmented and aligned in accordance with the
reference faces, in which case good recognition performance can be expected. On
the other hand, precise face detection is a very tough task, so if recognition relies
on the uncorrect face region, the system performance will be degraded. More-
over, when the lighting source is placed close to the camera axis oriented toward
the face, the interior of the eyes reflects the light and pupils appear very bright.
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This is the well-known “bright pupil”(red-eye) effect [1] and can be exploited to
detect eyes.

Chellappa [2] and Zhao et al. [3] presented nice surveys of face recogni-
tion algorithms. Face recognition technology falls into three main categories:
feature-based methods, holistic methods as well as hybrid methods. Feature-
based approaches depend on the individual facial features, such as the eyes, nose
and mouth, and the geometrical relationships among them. A representative of
feature-based methods is Elastic Bunch Graph Matching [4]. Holistic methods
take the entire face into account. Among global algorithms, the appearance-
based methods are the most popular, for example, Eigenface [5], Fisherface [6],
and Independent Component Analysis (ICA) [7]. Hybrid methods combine the
feature-based and holistic methods, for instance, the algorithm presented in [8]
is a combination of Eigenface and Eigenmodule. Recently, Huang et al. [9] pro-
posed a hybrid method, which incorporated the component-based recognition
with 3D morphable models.

In this paper, we propose a face recognition system for access control in the
near infrared spectrum. A simple and low cost hardware has been built up and
used for data collection, which is presented in the next section. In Section 3, the
algorithms for automatic face recognition are introduced. ”Bright pupil” effect is
utilized to localize the eyes, based on which the face is detected. DCT coefficients
are then selected as features, Support Vector Machines (SVM) are employed to
identify faces. Experimental results are shown in Section 4. In the last section
conclusions are drawn and an outlook is given.

2 Hardware Configuration and Data Collection

2.1 Hardware

In order to make use of the “bright pupil” effect, a lighting source along the
camera axis is necessary. In the literature [10] [1], the camera was equipped
with two lighting sources, one along the camera axis and the other far from
the camera axis. When the on-axis illuminator is switched on, the bright pupil
image is generated; when the off-axis illuminator is on, the dark pupil image is
produced. The difference of the two images gives clues about the position of the
eyes. However, such a system needs a switch control which has to be synchronized
with the frame rate so that the even and odd frames correspond to the bright
and dark images respectively.

In our system a simplified hardware is used. An illuminating ring, consist-
ing of 12 IR-LEDs, is placed along the axis of an inexpensive CCD camera.
Thus only bright images can be generated by our system. The dark image will
be constructed by using software rather than hardware. In order to obtain sta-
ble illumination conditions, an IR filter is used to block the visible light. The
hardware is shown in Fig. 1.
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Fig. 1. The IR-LED ring and the IR filter

Fig. 2. Some examples of test data

Fig. 3. Some examples of training data

2.2 Data Collection

There are a couple of available face databases, but as far as we know, all of them
contain face images taken under day light conditions. Therefore it is necessary
for us to collect data ourselves in order to develop algorithms for face recognition
in the near IR spectrum.

Reference data and test data were collected respectively. Our motivation is to
realize access control in the situation where a camera is set above the door under
protection. Therefore video sequences were captured under such a condition as
test data, examples can be found in Fig. 2. Still images of frontal faces were
taken as reference data, see Fig. 3.

In order to include variations of facial expressions, the subjects were requested
to speak vowels a, e, i, o, and u. The resolution of all the images is 320 × 240.
Images of 10 subjects from Europe, Asia and Africa have been collected so far.

3 The Automatic Face Recognition System

In the automatic face recognition system, the first step is eye localization. Based
on the eye positions, the face region will be segmented and then normalized
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to a standard size. In the normalized face image, two eyes are located at the
predefined positions. DCT features are then extracted, finally SVM is employed
to recognize the face.

3.1 Eye Localization

The algorithm for eye localization is shown in Fig. 4. The morphological operator,
opening, is at first applied to the original image. This operation removes the
bright pupils. Then a difference image is obtained by subtracting the dark image
from the original (bright) image, which contains only the bright areas. This
difference image is then binarized. The connected components in the binary
image are considered as pupil candidates that will be further verified.

The iris of the eye has a circular boundary, which can be detected due to the
contrast between the iris and the area around it. Edges of the original image are
detected using Canny’s algorithm [11]. In the edge image, a window surround-
ing each pupil candidate is chosen, then Hough transform [11] is exploited to
detect circles inside the window. Those candidates without a circular boundary
are noise. Finally pair check is performed, and the two eyes are localized. The
stepwise results are illustrated in Fig. 5.

Fig. 4. The procedure of eye localization

3.2 Face Recognition

Discrete Cosine Transform shares a closely related mathematical background
with Eigenfaces. However, its merits over Eigenface are: it needs less training
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(a) The Original im-
age

(b) After opening op-
erator

(c) The difference
image

(d) The binary image
and pupil candidates

(e) The edge image (f) The localized eyes

Fig. 5. Stepwise results of eye localization

time; it is deterministic and does not require the specification of the data set.
It seems more desirable when new faces are added into the database frequently.
Besides, fast algorithms are available to calculate DCT.

2-dimensional DCT is performed on the normalized face. Only a subset of
the DCT coefficients at the lowest frequencies is selected as a feature vector.
These DCT coefficients have the highest variance and are sufficient to represent
a face. To further reduce variations of illumination, these DCT coefficients are
normalized to the DC component. SVMs [12] are used as the classifier.

4 Experiments

Three experiments are carried out. The first two experiments test the perfor-
mance of eye localization and face recognition independently, and the third ex-
periment tests the performance of the complete system.

Eye Localization. 300 images are chosen to evaluate the eye localization perfor-
mance. The criterion for correct localization is that any estimated eye position
within a circle of radius 3 pixels from the true position is counted as a correct
detection. In our test, 87.7% (263/300) accuracy is obtained, some results are
shown in Fig. 6. The algorithm works when the horizontal distance of two eyes
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Fig. 6. Results of eye localization

(a) The detected eyes (b) The eye candidates

Fig. 7. A false acceptance

is larger than 30 pixels, and the in-plane rotation of the face is less than 25◦. If
the noise is too close to the true eye, the algorithm may fail, see Fig. 7.

Face Recognition. In this experiment, only the performance of face recognition
is taken into account, thus the centers of the eyes are manually marked. 250 face
images (25 images per subject) are selected from our reference data set, collected
in Section 2, to evaluate the algorithm. These images were captured at different
photo sessions so that they display different illumination and facial expressions,
even slight pose variations, see Fig. 8. Among them 120 images (12 images per
subject) are randomly chosen for training and the left images for testing.

All the faces are scaled to the size 48 × 48, aligned according to the eye
positions, and histogram equalized. 64 (8 × 8) DCT coefficients are extracted
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Fig. 8. Examples used to test the performance of face recognition

as features. LIBSVM [12], a library for Support Vector Machines, was used to
performance recognition, where RBF kernel was employed. Recognition accuracy
of 96.15% (125/130) has been achieved.

Automatic Face Recognition. The same face recognition algorithm as the last
experiment is used. By integrating with the eye localization module, the auto-
matic face recognition system is tested. 500 images selected from the test data
set collected in Section 2 are used for evaluation. These images demonstrate a lot
of difference from the training data, because they were captured in different ses-
sions and by a camera mounted above the door, as shown in Fig. 2. Although it
is assumed that the subjects are cooperative, pose variations are not impossible.
398 faces are correctly recognized, corresponding to 79.6% accuracy. The reasons
for the degraded performance are: 1) The imprecise eye localization results in
uncorrect alignment; 2) perspective distortion exits because of the position of
the camera, i. e. above the door.

5 Conclusion and Future Work

We present a robust and low cost system for automatic face recognition in the
near infrared spectrum. By using the near infrared band, a stable illumination
condition is obtained. Face images in the near infrared spectrum have been
collected in our laboratory. The system utilizes the ”bright pupil” effect to detect
eyes. Relying on a series of simple image processing operations, eye localization is
efficient. The face region is segmented and aligned according to the position of the
eyes. DCT coefficients are selected as features, and the powerful machine learning
algorithm Support Vector Machines is used for classification. The experimental
results show that good performance is achieved by using our system.

Future Work. Pose variation is the toughest problem for face recognition. In
the near future, the functionality of the system will be extended to be able to
recognize faces with pose variations.
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Abstract. Increasing of multimedia applications in commerce, biometrics, sci-
ence, entertainments etc. leads to a great need of processing of digital visual 
content stored in very large databases. Many systems combine visual features 
and metadata analysis to solve the semantic gap between low-level visual fea-
tures and high-level human concept, i.e. there arises a great interest in content-
based image retrieval (CBIR) systems. As retrieval is computationally expen-
sive, one of the most challenging moments in CBIR is minimizing of the re-
trieval process time. Widespread clustering techniques allow to group similar 
images in terms of their features proximity. The number of matches can be 
greatly reduced, but there is no guarantee that the global optimum solution is 
obtained. We propose a novel hierarchical clustering of image collections with 
objective function encompassing goals to number of matches at a search stage. 
Offered method enables construction of image retrieval systems with minimal 
query time. 

1   Introduction 

Short retrieval time independent of the database size is a fundamental requirement of 
any user friendly content-based image retrieval (CBIR) system. Visual contents of an 
image such as color, shape, texture, region relations play dominating role in propagation 
of features selection, indexing, user query and interaction, database management tech-
niques. To search images in a large-scale image database traditionally queries ‘ad ex-
emplum’ are used. Characteristics of different CBIR schemes, similarities or distances 
between the feature vectors of the query by example or sketch and those of the images 
collection are sufficiently full explored [1–7]. Essential efforts are devoted to synthesis 
and analysis of image content descriptors, namely color moments, histograms, coher-
ence vectors, correlograms, invariant color features [8,9]; texture statistical and struc-



446 D. Kinoshenko et al. 

 

tural properties, determining by methods based on Fourier power spectra, Markov ran-
dom fields, Gabor and wavelet transforms, fractal models, principal component analysis 
[10–13]; region-based and boundary-based features of shape, salient points in images 
[14–16]; syntax and semantic representations [17,18]. They form feature spaces with 
reduced dimensions, however, when very large image collections are in use, matching 
methods are computationally expensive. One of the widespread approaches to minimize 
time outlay consists in application of various techniques of image database preliminary 
processing including clustering methods [7,10,18–20]. Thus a hierarchical mechanism 
of the query processing can be formed: one can seek suitable clusters in nested partitions 
with an arbitrary indexing scheme. This way the amount of matches can be greatly 
reduced, but traditional clustering methods do not guarantee the optimal result. 

To optimize this CBIR scheme it is necessary to minimize a total number of 
matches at the retrieval stage. We propose a new hierarchical clustering which allows 
to construct images partitions into disjoint subsets so that firstly one can seek suitable 
class, then the most similar to the query subclass is chosen and so on. The exhaustive 
search is fulfilled only on the lower level of hierarchy. In the second section formal-
ization of clustering problems is offered. In the third section clustering which guaran-
tees the search for the minimal number of matching is discussed. Thus our contribu-
tion consists in development and theoretical ground of novel hierarchical partition 
construction for the fast content-based image retrieval in video databases. 

2   Hierarchical Partitions Formalization for Fast Retrieval 

In large databases an efficiency of image retrieval procedures with search 'ad exem-
plum' is determined in general by two characteristics: by reliability (in terms of pre-
cise identification of the required images) and computational complexity (generally, 
in sense of a matching operations amount) of algorithms used to pick up.  

Usually first problem solution is coupled with the choice of features space which is 
adequate to application area. Image retrieval by example methods require that an 
index of proximity, or likeness, or affinity, or association has to be established be-
tween pairs of any images and such proximity functions can be expressed qualita-
tively and quantitatively, it can be represented by arbitrary metric or similarity (dis-
similarity) measure. Further without loss of generality, let us suppose a metric is suf-
ficient form of proximity function representation and we shall use notation ρ( , ), 
where arguments symbolize images in signal or feature space.  

At second case, to avoid the combinatorial explosion a large collection of prelimi-
nary processing algorithms is available to reduce the search. Often clustering algo-
rithms are used for computing complexity depreciation. Most of them are based on 
the two popular approaches: agglomerative hierarchical clustering and iterative parti-
tional clustering. Hierarchical techniques organize data in a nested sequence of groups 
and partition techniques provide obtaining of one-level similar images classes.  

Various heuristics are used to reduce a search complexity, but still there is no guar-
antee of optimal results. As a rule, to guarantee that a global optimum solution has 
been obtained, one has to examine all possible partitions, which is not computation-
ally feasible. In this connexion let us consider original schemes with the best guaran-
teed results (with reference to a matches amount) in worst-case conditions. 
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Let ∈= VX { }v vx  be a set of features representing images in the database (specifi-
cally it is possible to consider signal space also), hereinafter Γ ΑV, ,  are index sets. 
Generally speaking, each feature vector belongs to Cartesian product ∈ ×1Zx  
× × ×2Z … Zr  of arbitrary nature elements permitting to take into account properties of 
color distribution, shapes, texture, image semantic etc. Let γ γ∈Γ=Y { }y  be a feature 
set of an arbitrary query image. 

The problem is in that under given query ∈ Yy  one needs to find the most similar 

image (or images) ∈ Xvx . In other words, it is necessary to provide ∈V ( , )v vmin y x  

during minimum possible warranted time. If ⊆Y X , the exact match retrieve is re-
quired. Such problems are typical for professional applications on industrial automa-
tion, biomedicine, crime prevention, medical diagnosis and prevention, social secu-
rity, and other multi-spectral computer vision applications. 

We shall name elements [ ]X , α∈ Α  of power set X2  as clusters, if they corre-
spond to the partition of set X . Let us consider such partitions that any elements of 
one cluster do not differ from each other more than on ε , i.e. ∀ ≠x' x''  we have 

=[ ] [ ]x' x'' , if ≤ ε( , )x' x''  and = ∅[ ] [ ]x' x''  otherwise. The given or obtained 

value ε  used at a clustering stage is connected with required accuracy of retrieval δ , 
if it is specified, as follows. There arise two cases:  

δ > ε  – any representative of the cluster nearest to the query y  can be used as the 

image retrieval result, i.e. minimal number of matching operations is defined by the 
number of clusters; in other words it is necessary to provide 

= →1 [ ]{ X }N card min ; (1) 

δ ≤ ε  – the element of more detailed partition will be the result of the image re-
trieval. In simplest situations it is necessary to fulfill a single-stage clustering, i.e. to 
optimize retrieval under worst-case conditions we have to ensure 

= + →2 [ ] [ ]X X{ } ( )N card max card min . (2) 

At the multilevel clustering the repeated clusters search inside of already retrieved 
clusters is fulfilled and only on the last step required image is searched by complete 

enumeration. Let us assume that the cluster  − )( 1[X ]i
p   is selected on  −( 1)i   level of 

hierarchy from a condition − →)( 1( , [X ] )i
qy min , −= )( 11, [X ]{ }iq card , i.e. 

− α=) ) ) )( ( ( (1
1 2[X ] [X ] [X ] … [X ] p

i i i i
p , where for any k  and l  the equality 

= ∅) )( ([X ] [X ]i i
k l  holds. Then the minimization of matches amount is reduced to the 

clustering with the goal function  

−
−

− − −= ∈= + →( )
( )

( ) ( )
1( ) ( )

1

1 1
3 11 [X ] [ ][X ] X{ } ( )i

p, i
m i m

p, i ,p mi xN card max card min , (3) 

where m  is a number of hierarchy levels, =( )0
( )01,[X ] X . It should be noted, that a 

new metric to retrieve can be used on every stratum of nested clusters.  
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3   Hierarchical Partitions with Minimal Matches Amount 

To find the multivalued map → [ ]: X X{ }M  providing the minimization of (3) let 

us introduce an iterative procedure → X
)( : X 2k xk , = 1, Kk , where  

− − + == = = ∅ = ∅ =1 1 0 K 1 0 1( ) ( ) ( ), ( ) X, ( ) ( ) kl *k k k k iix x x x x , x , ( x) x .  

Here kl  is such that + = ∅1kl
k , where  

+
∈= = ⊕ ε = ⊕ ε11 , { } { }, { }i

k

i r r* * *k i i i ixk k x x x arg max card x . 

Notation ⊕  designates the Minkowski sum, r  is a unit ball in r . The attracting 

points *ix  actually give required multivalued map εM  in the form of  

== K
1 kiM . (4) 

Recall, the value ε  is the proximity measure within clusters. Also note that prob-
lem (2) is a special case of (3). We proved [21] that union (4) provides the solution of 
(1), i.e. the map M  produces partitions (rather, maximal on inclusion posets) 

[ ]X{ } . Therefore these results can be exploited as initial clusters to get more de-

tailed data partitioning. Finally minimizing (3) is reduced to the search of clusters 
cardinalities on each hierarchy level.  

Let us suppose clusters [ ]X{ }  have cardinalities and multiplicities respectively 

≤ < < < ≤1 1 1 2(M , ), , (M , ),1 M M ... M Xt t ts ... s card , and the nesting hierarchy number 

is given (the optimum of hierarchy levels amount will be found further) and it equals m .  
Objective function (3) can be rewritten −∀τ ∈1 1[M , M ]n n  ( =0M 1 ) as 

−
− − − −= =τ τ = + + τ τ + + τ τ +τ1

1 1 21 2 1 11( , ..., ) M … ,n t
m j j j j m m mj j nf s / s s / /  (5) 

where values τ > τ > > τ =1 2 1m...  correspond to coefficients of sequential clusters 
partitioning,  denotes a ceiling function.  

Points −τ τ τ1 2 1, ,..., ** * m , at which the global minimum of function −τ τ τ1 2 1( , ,..., )mf  
is obtained on the set [1, M ]t , represent required parameters for hierarchical parti-
tions. Local minimum of this function we shall search in the partial segments −1[M , M ]n n  

=( 1, )n t  and global minimum we shall get by search among the obtained values. 
For discrete function minimum search we shall first carry out continuous minority 

function minimizing 

−
− − − −= =ϕ = + + + + +1

1 2 1 1 21 3 2 11( , , , ) Mt n
m j j j m m mj n ju u ... u s u s u u ... u u u . (6) 

Errors of transfer to minority functions are defined by the expression 

−
− − =− ϕ ≤ Δ = + −1

1 2 1 21 1 1( , , , ) ( , , , ) 2n
m m n jjf u u ... u u u ... u s m . (7) 
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Consider the function (6) minimizing problem for −∈1 1[M , M ]n nu . Let us empha-
size that it has additive form, all items are positive and each item of type +1j ju u  

= −( 2, 2)j m , evidently, sequentially depends on two variables only. Taking into 
account these properties, first we can fix −1 2 2, , , mu u ... u , then we have to find 

− − −
−

+ →2 1 1
1

m m m um
u u u min ,  

whence it follows that − −=1 2
*m mu u . Substituting this value into (7) we get 

−
− − − −= =ϕ = + + + + +1

1 2 2 1 1 2 3 2 21( , , , ) M 2t n
k j j j m m mj n ju u ... u s u s u u ... u u u . 

Let us find then 

− − − −
+ →3 2 2

2
m m m um

u u u min ,  

i.e. −− = 2 3
32 m

*
mu u . Continuing this process we come to the relations  

− −− −= = =1 2 ( 2) ( 1)
1 2 2 11, ( ) ,…, ( )* m m** *m m mu u u u u . 

(8) 

Thus we finally arrive at 

−
− −ϕ = ϕ = + − +1 ( 1)

1 1 2 3 1 1 11( ) ( , , , , ) A ( 1) Bk* ** k n nu u u u ... u u k u , 
 

where ==A Mt
n j jj n s , −

− == 1
1 1B n

n jj s . 
Let us analyze this function. First notice that ϕ 1( )u  is an unimodal function. Indeed, 

− −′ϕ = − + =( 2) ( 1)2
1 11( ) A 1 0m m

nu / u / u , therefore, −
== ( 1)

1 M( )t m m*
j jj nu s . Further 

since −′ϕ = − + ( 1)
1 1( ) ( A ),m m

nsign u sign u  function ϕ 1( )u  decreases on 1]0, [*u  and 

increases on ∞1] , [*u . Consequently, minorant (6) reaches its minimum value either at 
the point 1*u  if −∈1 1[M , M ]*

n nu , or at boundary points of this interval. Thereby,  

−∈
ϕ = ϕ ϕ ϕ

1 1
1 -1 1 -1

[M , M ]
( ) { (M ), (M ), ( ( , M ), M )))}.

n n

*n n n n
u

min u min max( min u  

Let 1**u  be a point at which the minimum is achieved 

−
−= ϕ ∈

1
1 1 1 1 -1

[M , M ]
( ) {M , M , ( ( , M ), M )}

n n

** *n n n nu arg min u max min u , 

then from (8) we get 

− − − − −−= = = =( 2) ( 1) ( 3) ( 1) 1 (m 1)
2 1 3 1 1 1( ) ; ( ) ,…, ( ) , 1m m m m* * * * * * ** * *m mu u u u u u u . 

Let us find the ranges of definition of −1 2 1, , , mu u ... u  at the return to the discrete 

goal function. Denote − −ψ = 1
1 1

( ( )( ) ( ) m i ) m
i u u  then obviously −ϕ ≥1 2 1( , , , )mu u ... u  

−≥ ϕ ψ ψ ψ1 2 1 3 1 11, ( ), ( ), , ( )( )mu u u ... u . In the result of minorant minimization we get 

−ϕ =1 2 1
*.( , ,..., ) B** * mu u u  If we choose some value ≤ Δ ≤ Δ0 n  from (7) we have to 
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solve inequality −ϕ ≤ + Δ1 2 1 *( , , , ) Bmu u ... u . Denote a solution set as ΔP( ) . It is easy 
to prove that −Δ ⊂ Δ ×ψ Δ × ×ψ Δ1 2 1 11P( ) P ( ) P ( ) P ( )( ) ( )m... .  

In that way, finding variables changing intervals −τ τ τ1 2 1, ,..., m  should be started 

from search of Δ1P ( ) . From (7) we find 

−−
= =+ Δ − − − ≥1 11

1 11
( )*(B ( 1) ) M/ mn t

j j jj j nu s m u s . 
(9) 

Under ≥ 4m  inequality (9) can be solved only with numerical methods. Taking 
into consideration integer-valued character of the search −τ τ τ1 2 1, ,..., m  and relation 
(7) we shall find the interval ′ ′′Δ = τ τ1 11[ , ] , for example, by dichotomy of intervals 

−1 1[M , ]*
n u  and 1[ , M ]*

nu , (  denotes a floor function) or 

−1[M , M ]n n  if −∈1 1{M , M }*
n nu . So we finally get 

′ ′′∀ ∈ − Δ = ψ τ ψ τ ]1 1{2,3,..., 1} [ ( ) , ( )j m mj m .  

It follows from the above that minimization of retrieval operations number  

−
−

τ τ τ →1 2 1
1[M , M ]

( , ,..., )m
n n

f min  (10) 

can be done on the intervals − −τ ∈ Δ τ ∈ Δ τ ∈ Δ1 1 2 2 1 1, , , m m . 

Let us introduce the hierarchical clusters τi -decomposition cortege concept: it is 

an arbitrary set of integer values + −τ τ τ1 1{ , ,..., }i i m  satisfying conditions 

∀ ∈ − τ ∈ Δ{1,2,... , 1} i ii m , +∀ ∈ − ≥ τ > τ 1, {1,2,..., 1}: j ji j m j i .  

Thus, the problem is reduced to the search among all hierarchical clusters τi -
decomposition vectors such, that the requirement (3) (or (10) what is the same) is met. 
To solve this problem we shall first draw a backward recurrence of function (5). 

The hierarchical clusters τi -decomposition cortege we name optimal if under fixed 
value τi  the function 

+ − + + + − − −τ τ = τ τ + τ τ + + τ τ + τ1 1 1 1 2 2 1 1F( ,..., )i m i i i i m m m...  (11) 

has a global optimum on the considered set + −τ τ τ1 1( , ,... , )mii .  

On the base of dynamic programming paradigm it is easy to show that the hierar-
chical clusters τj -decomposition cortege belonging to the τi -decomposition optimal 

cortege (j < i) is also optimal. Thus we can formulate hierarchical clustering method 
on the base of backward recurrence, i.e. starting with parameter of −τ 1m -
decomposition and finishing with τ1 -decomposition cortege. At each step the con-
catenation of τi -decomposition optimal cortege with an element of higher hierarchi-
cal level is carried out. Let us consider this procedure closely. 

Under given number of hierarchy levels the input data is a set of integer intervals 
−Δ Δ Δ1 2 1{ , ,... , }m . Starting from the lowest level of hierarchy we assume that all the 

parameters of −τ 1m -decomposition are optimal. On the same level we form an initial 
set −Τ 1m − −− ∈Δ= τ 1 1 1{ } m mm  of potential optimal decomposition corteges. Then on the 
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−( 2)m  level we consider sets − −τ τ2 1{ , }m m , choosing such − −τ τ2 1{ , }m m  which pro-
vides the minimum of function (11). When we find optimal −τ 2m -decomposition 
corteges, we shall modify the set of potential optimal decomposition corteges 

−Τ 2m − −
− −

− − τ ∈Δ
τ ∈Τ

= τ τ2 1 2 2
1 1

{ , } m m
m m

m m . Continuing this procedure we obtain  

+ + − +
+ − + + −τ τ τ ∈Τ

τ τ τ = τ τ τ τ
1 2 1 1

1 1 1 2 1{ , ,..., }
{ , ,..., } { , ,..., }{ }

i i m i

j j
i m i i mi iarg min , 

where  denotes a concatenation operation; + −Τ = τ τ τ1 1{ , ,..., }j
i i mi . 

The selection of the optimal cortege −τ τ τ 11 2{ , ,..., }* * *m  i.e. the set of function (10) 

arguments is carried out on the last step of the backward recurrence by searching  

−
− −

∈Τ
τ τ τ = τ τ τ

1 2 1 1
1 21 11 2

{ , ,..., }
{ , ,..., } ( , ,..., )*

m

* *m marg min f , (12) 

where the number of operations is within the value Δ1[ ]card . 
Thus problem (3) solution is obtained in the form (12) on the partial interval 

−1[M , M ]n n  = =0( 1, ; M 1).n t  The global optimum on the whole domain of cluster-
ing parameters 1[M , M ]t  is chosen among the partial records. So, we have found 
parameters of clusters partitions at each level of hierarchy. Now there is a need only 
to divide clusters separately one from other.  

It should be emphasized that offered approach enables to use one-parameter se-
quential optimization on the Cartesian product of multivalued maps → [ ]: X X{ }M  

preimages to search the initial (maximal relative to inclusions) clusters, the degree of 
objects similarity in these clusters and the stratification coefficient. It can be ex-
plained by an independence of the indicated parameters and an absence of principal 
restrictions to time outlays at preliminary processing of data in CBIR systems. 

4   Results and Outlook 

Till now we considered clustering with given parameters, namely at known maximum 
diameter of clusters at solution (1) and amount of strata at solution (3). It is clear that 
for the reliability growth it is expedient to use sufficiently small values ε , but then a 
number of matches is increased. Matches number decreasing requires optimization of 
clusters powers, that is reached by increase of ε . In other words, at ε → a , where 

′ ′′ ′ ′′= λ ≥ ⊕ λ ⊕ λ ≠ ∅ ∀ ∈{ 0 : ( ) ( ) , X}r ra min x x x x , 
 

the problem is reduced to the exhaustive search. At the same time at ε → b , where 

= λ ≥ ⊆ ⊕ λ ∀ ∈{ 0 : X X}rb min x x , 
 

the number of matches also tends to Xcard . The conflict between two criteria (com-

binatorial complexity of matches and its reliability) is eliminated for each images 
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Fig. 1. Clusters merging examples under  changing 

configuration at a stage of preliminary processing when there are no key constraints to 
time outlay. Furthermore to reach desired degree of accuracy and reliability, it is necessary 
to solve a multiextremal problem. Indeed, fig. 1 illustrates changes ε  from 1d  to 2d  for 
problem (2): three cases of clusters amount decreasing are shown (immersed sets are indi-
cated by arrows), but matches number can be increased (a), fixed (b), decreased (c). 

Hence the questions concerning rational choice of clustering parameters with re-
spect to CBIR effectiveness are of great significance. A search of optimal ε  is subject 
of further inquiry. Here let us find the optimal number of hierarchy levels. By analogy 
with (6), let us introduce minority function for [1, M ]t  

− − − −=ϕ = + + + +1 2 1 1 21 3 2 1( , , , ) Mt
g m j j m m mj nu u ... u s u u u ... u u u . 

Then from (7) we have −− ∈=ϕ = →1 2 1( , , , ) ( M )t m
m j j mj nu u ... u m s min , i.e. 

, =∈ } = 1{ L , L L ( M )t
j jjm ln s . 

Thus to find optimal number of hierarchy levels it is sufficiently to check only these 
two values. 

The experimental researches of image clustering were carried out in a 29-
dimensional feature space. Five groups of features characterizing properties of gray-
level functions, their planar peculiarities, objects shapes, invariance to one-parameter 
geometric transformations and also to Euclidean group of similarities were chosen [21]. 

As a database a set of images of 108 cars was selected (see fig. 2). Different acquisi-
tion conditions were modeled for each image, namely, additive Gaussian and uniform 
noise, adding the point sources of lighting, discordance of horizontal and vertical 
scanning, image blurring, image motion modeling, brightness, contrast, lighting inten-
sity variations, linear histogram transformations (see fig. 3). As a result the base set of 
images was expanded up to 1080 frames. Besides for the image analysis conditioned 
by variations of a mutual location and/or orientation of object and videosensor, groups 
of geometric transformations such as rotation, skewing, scaling, perspective distor-
tions, Euclidean similarities (shift, scaling and rotation are acting simultaneously) 
were used. Thus, the number of the images varied from 1080 up to 6480. 

Before clustering all features were normalized to segment [0,1] then they were at-
tributed by weight coefficients. Mentioned above feature families were used either in 
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Fig. 2. Basic set of images 

total, or separately, or selective by elements. As an example, in fig. 4 the fragment of 
retrieval via (3) with Hausdorff metric is shown. The analysis of results allows to 
draw the conclusion that at the correct features selection (namely choice of neces-
sary and sufficient feature set, which has adequate information efficiency) under 
conditions mentioned number of query matching reduces in 25–110 times as com-
pared to the exhaustive search virtually with idem reliability. In comparison with the 
most popular hierarchical clustering techniques (nearest and furthest neighbor, me-
dian and centroid algorithms, Ward’s minimum variance) matches number is dimin-
ished by factor of = 6 17N . It should be emphasized that our approach guarantees 
minimal number of matches for arbitrary features configuration while traditional 
clustering methods do it on average. From the practical standpoint the solution of 
problem (4) often is the most convenient by the virtue of large-scale database process-
ing simplicity. We have ascertained that under minimization (2) the number of 

matches aspires to λ Xcard  at essential growth Xcard  (in ideal case λ = 2 ).  

To provide fast access to an image in database with queries ‘ad exemplum’ a novel 
method of hierarchical clustering has been offered and investigated. Proposed method 
ensures minimal number of matches at CBIR stage for arbitrary images collection in 
feature or signal space. 

In addition we shall indicate that the offered stratified clustering enables to take 
into account a minimum of clusters diameters, maxima of intercluster or interlevel 
distances. Moreover we have proposed the clustering method guaranteeing the best  
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             Fig. 3. Variants of image acquisition                     Fig. 4. Fragment of image retrieval 

result in a worst-case condition, i.e. often spared hardware-software resource can be 
used with the purpose of reliability CBIR systems increase. Obeying a key criterion 
(minimum combinatorial complexity of CBIR), it is also possible to search desired 
nested clusters by modifications of well-known clustering techniques keeping their 
advantages. 
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Abstract. Colour appears to gradually play more and more significant
role in the modern digital world. However, about eight percent of the
population are protanopic and deuteranopic viewers who have difficul-
ties in seeing red and green respectively. In this paper, we identify a
correspondence between the 256 standard colours and their dichromatic
versions so that the perceived difference between any pair of colours seen
by people with normal vision and dichromats is minimised. Colour dis-
similarity is measured using the Euclidean metric in the Lab colour space.
The optimisation is performed using a randomised approach based on a
greedy algorithm. A database comprising 12000 high quality images is
employed for calculating frequencies of joint colour appearance used for
weighting colour dissimilarity matrices.

1 Introduction

Data mining is an active field of research with significant effort being devoted
in the recent years into the problem of content-based image retrieval. A large
number of such approaches rely on using the colour content of an image as a
cue for similarity with a query image [1]. Although colour is not the single most
important characteristic which allows one to describe a scene or an object, colour
is often being used to attract attention of the viewer to something, to stress
something, or even to entice the viewer to a certain product. Colour appears
to gradually play more and more significant role in the modern world, and to
become a significant part of modern technology, being vital in applications like e-
commerce and the digital entertainment industry. And yet, 8% of the population
see colours in a totally different way from the rest [2], [3], [4]. These are the
people who suffer from some sort of colour blindness, and they usually can
distinguish only two hues. They are the protanopic and deuteranopic viewers who
have difficulties in seeing red and green respectively. Such people are collectively
known as dichromats. A small fraction of people can only see a single hue, and
these are the truly colour-blind people [2].

An important issue then arises, concerning the colour world as seen by these
viewers, the way it appears to them, and whether the use of colour conveys to
them the same information it conveys to normal viewers [5], [3]. Several studies
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have been done to answer this question, and indeed we know with pretty high
confidence the way the world looks like through the eyes of such viewers (eg [4]).
Further, studies have been made in the way colour coded information should be
displayed (eg the Paris underground map [5]) so that it is equally useful to all
viewers. However, the issue of database search for dichromats using colour as a
cue has received much less attention [6]. “An image is a thousand words”, and
an image conveys information by the relative colours and contrasts it contains. If
a person does not see these contrasts caused by the use of different colours, the
person may miss a significant part of the information conveyed by the image.
One approach would have been to map all colours in such a way that they
will appear as distinct as possible to a dichromat. This, however, might destroy
the overall appearance of a picture, as it may create strong contrasts at places
where the originator of the picture did not intent them to be. In this paper,
we take the view that the perceived difference between the various colours in an
image should be preserved by any colour transformation scheme aimed at dealing
with the problem of dichromacy. So, we are trying to identify a correspondence
between the 256 colours of the standard palette [5], [4], and the 256 colours to
which each one of them is transformed by the vision system of the dichromat,
so that the perceived difference between any pair of them by a normal viewer
and a dichromat viewer is preserved as much as possible. In this work we do not
deal with the totally colour blind people who form a very small fraction of the
population. Blue-blind people (known as tritanopes), are also extremely rare [2].

At first sight it may seem impossible to map a 3D space to a 2D one and pre-
serve all distances at the same time: The colour space of a normal viewer is 3-
dimensional, while the colour space of a dichromat is 2-dimensional, having lost
one of the hues. However, one may exploit the differences in perceived saturation to
achieve an approximate invariance in perceived difference, and obtain an optimal
solution given the constraints of operation. Further, one may consider a weighted
approach, where colours that are encountered more often are given more impor-
tance than colours that are less frequent. To identify which colours are more fre-
quent we created the normalised 3D colour histogram of each image in a database
of natural scenes, and used it as the probability density function for each colour
in the standard palette appearing in the image. A cost function was defined, mea-
suring the difference in perceived difference between all possible pairs of colours
of the 256 standard colour palette as seen by normals and as seen by dichromats.
The perceived difference between any pair of colours was measured using the Eu-
clidean metric in the Lab space of normals, and in the Lab space of the dichromats
[7]. Each term in this cost function was multiplied with a weight which was the
minimum value of the probability density function for the two colours as mea-
sured from the colour histogram of the corresponding image. This cost function
was minimised by using a randomised approach based on a greedy algorithm. This
of course does not guarantee the optimal solution, but good sub-optimal solutions
could be found. In section 2 we present details of the cost function, the optimisa-
tion method, and the image database we used. In section 3 we report the results
of our study. Finally, in section 4 we draw our conclusions.
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2 Materials and Methods

2.1 Colours Used in This Study

In this study we limit ourselves to the 256 colours considered in [5], [4] to-
gether with their dichromatic versions as seen by protanopes and deuteranopes
(Figure 1). Construction of dichromatic versions of the colours is based on the
LMS specification (the longwave, middlewave and the shortwave sensitive cones)
of the primaries of a standard video monitor [8], [9]. The palette of 256 colours
we use includes the 216 standard colours that are common for the majority
of recent computer applications and computing environments. Conversion from
trichromatic to dichromatic colors is done using the dichromat package imple-
mented by Thomas Lumley within the R, a language and software environment
for statistical computing and graphics [10]-[11].

Fig. 1. Palette of 256 colours used in this study as seen by people with normal vision
(left column), protanopes (middle column), and deuteranopes (right column)

Note that everywhere in this work colours that differ from those represented
in the palette are mapped onto the perceptually closest colours of the palette
using the nearest neighbour rule.
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2.2 Image Database

The image database we use comprises twelve thousand color RGB images (com-
puter wallpaper photographs) of wide semantic diversity. By convention they
are subdivided into 41 categories such as animals, art, aviation, birds, cars,
history, food, fantasy, gifts, insects, money, machines, mountains, people, sea,
patterns, trains, etc. The original image size of 1024×768 pixels has been re-
duced by a factor of two to 512×384 for convenience. This database was also
used in work [6] concerned with the problem of content-based image retrieval for
colour-blind people.

2.3 The Cost Function

The basic idea for improving colour replacement for dichromats is to optimise
the mapping of normal colours to their dichromatic versions so that perceived
difference between any pair of normal colours is preserved in colour-blind space as
much as possible. Let dNR

ij and dCB
ij be the perceived difference between colours

ci and cj in the normal and the colour-blind space respectively. Then the cost
function formalising the requirement of a best mapping can be written as:

U =
Nc∑
i=1

Nc∑
j=1

∣∣dNR
ij − dCB

ij

∣∣,
where Nc is the number of colours (dimensionality of colour space), Nc = 256.
For measuring colour dissimilarity dij we use the CIE Lab colour space [7]. In this
space the L component represents the luminance while a and b are the red/blue
and yellow/blue chrominances respectively. In the Lab space the dissimilarity
between the two colours ci and cj is computed as the Euclidean distance:

dij =
√

(Li − Lj)
2 + (ai − aj)

2 + (bi − bj)
2

The cost function U defined above represents the requirement of a minimal
deviation of colour dissimilarity observed by dichromats from the colour dissimi-
larity in subjects with normal vision. However, the colour confusion characteristic
for dichromats (see Figure 1) reduces the effective number of distinctive colours,
which can be potentially used. Thus, it is worth considering a weighting scheme
that gives certain emphasis to the colours which appear frequently conjointly in
real-world situations:

Uw =
Nc∑
i=1

Nc∑
j=1

∣∣dNR
ij − dCB

ij

∣∣ωij ,

where ωij denotes the frequency of joint appearance of colours ci and cj .
Note that in both weighted Uw and non-weighted U versions of the cost

function we measure the deviation of colour dissimilarities in dichromats from
those in subjects with normal vision simply as the sum of absolute values (ie the
L1 norm) but not as the Euclidean or any other distance metric. This is because
the L1 norm has been demonstrated to have more consistent behaviour in other
similar studies (eg [6], [12], [13]).
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2.4 Calculating the Joint Colour Appearance Matrix

Calculating the weighted cost function Uw assumes availability of the frequen-
cies of joint appearance ωij of all possible pairs of colours ci and cj . Clearly,
a precise calculation of weighting frequencies ωij is not possible because it re-
quires analysing a universe of images of real-world scenes. However, since the
image database we use is reasonably large and of great content variability, it
could provide an acceptable estimate of the frequencies of joint colour appear-
ance. Thus, the estimated frequencies ωij were calculated in the form of a joint
colour appearance matrix, ω, the elements of which represent the frequency of
joint appearance of all possible pairs of colours in the images of the database:

ωij =
NIMG∑
k=1

min{A(ck
i ), A(ck

j )},

where A(ck
i ) and A(ck

j ) are the values of the normalised 3D colour histogram of
the k−th image for colours ci and cj respectively, and NIMG is the total number
of images.

Fig. 2. Matrix of the frequency of joint colour appearance calculated by using the
database of twelve thousands images. The matrix element values ωij are represented
by using the non-linear colour scale provided on the right. The high values along the
diagonal have been suppressed to show the details in the rest of the matrix

Figure 2 shows the joint colour appearance matrix calculated using the
database. The matrix element values are colour-coded using the colour scale
provided on the right. For illustrative purposes, the large values along the ma-
trix leading diagonal were mapped to the maximum of the remaining values in
order to allow the details of the rest of the matrix to be visible.

2.5 Optimisation Method

The cost functions U and Uw were minimised by using a randomised approach
based on a greedy algorithm. At each iteration step we choose at random an
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arbitrary colour cCB
m from the colour-blind palette and replace it by another

arbitrary colour cCB
n . The replacement is accepted if it reduces the cost function

value. No limitations are applied to the new colour cCB
n except n �= m. This

means that colour duplication, colour removal, and transitive restitution of cer-
tain colours are possible. The latter operation adds some stochastisity to the
algorithm, allowing it to retrace its steps and thus increases its chance to escape
from local minima. In general, this algorithm does not guarantee the optimal
solution, but good sub-optimal solutions could be found.

The method is implemented using the R language, a free version of S [10] on
a P4 3.2GHz PC machine with 2Gb RAM. Depending on the input data, the
optimisation procedure takes approximately from 3 to 5 hours to converge.

3 Results

3.1 Optimising Dichromatic Colours Without Weighting

At this stage optimisation was performed without considering the frequency of
joint colour appearance. The optimisation procedure was run for protanopes and
deuteranopes separately.

Fig. 3. Optimising protanopic colours without weighting. (a) Changes of the cost func-
tion with the iteration steps. (b) Colour-coded representation of the colour dissimilarity
matrix for normal vision. (c-d) Colour dissimilarity matrix for protanopia before and
after the optimisation. The matrix element values are represented using the linear scale
provided on the right
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Fig. 4. Optimising deuteranopic colours without weighting. (a) Changes of the cost
function with the iteration steps. (b) Colour-coded representation of the colour dis-
similarity matrix for normal vision. (c-d) Colour dissimilarity matrix for deuteranopia
before and after the optimisation. Matrix element values are represented using the
linear scale provided on the right

In case of protanopia (see Figure 3), the initial cost function value U = 30.49
dropped down to U = 14.04 during the first quarter of the optimisation process
(N = 1.35 × 105 iterations) and finally converged to the value U = 13.89 in
N = 5.4 × 105 iterations (Figure 3a). These led to substantial changes of the
original colour dissimilarity matrix (Figure 3c,d), which became similar to the
colour dissimilarity for normal vision (Figure 3b). An iteration in this case is a
proposed change of the mapping of colours either it reduces the cost function
and so it is accepted, or it does not and so it is rejected.

Optimisation process for the deuteranopic colours (Figure 4) went in a very
similar way with slightly slower convergence. As a result, the initial cost function
value U = 20.37 was reduced almost twice down to U = 11.92. In spite of certain
differences that can be noticed in the structure of the original colour dissimilarity
matrices for protanopia and deuteranopia (see Figure 3c and Figure 4c), the
optimised versions were very similar (Figure 3d and Figure 4d).

It should be pointed out that in both occasions the final cost function value
remained noticeably different from zero. This is because reduction of the cost
function value is proportional to the reduction of the colour gamut in dichromats
relatively to normal vision. Thus, converging to zero is not possible in that case.
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3.2 Optimising Dichromatic Colours with Weighting

Finally, the optimisation of dichromatic colours was conducted with consider-
ation of the frequencies of joint colour appearance illustrated in Figure 2. The
matrix elements ωij were treated as weights for colour dissimilarities depicted in
figures 3c and 4c and the cost function Uw was minimised for both protanopia
and deuteranopia.

Fig. 5. Colour dissimilarity matrices for protanopia (left) and deuteranopia (right) after
colour optimisation with weighting using the frequencies of joint colour appearance ωij

As a result of the optimisation, the initial cost function value Uw = 2.38
was reduced down to Uw = 1.42 for protanopic colours and from Uw = 1.70
down to Uw = 1.10 in case of deuteranopia. During the optimisation process
the cost functions behaved similarly to the non-weighted optimisation reported
above. Resultant colour dissimilarity matrices for protanopia and deuteranopia
are shown in Figure 5. As it can be seen, the optimised dissimilarity matrices
depicted in figures 5a and 5b are clearly distinguishable from their non-weighted
versions presented in figures 3d and 4d respectively.

The results of colour optimisation using all the ways explored in this study
are summarised in Figure 6, where higher colour dissimilarities are evident, after
the proposed method is applied.

4 Conclusions

Results reported with this study allow one to draw the following conclusions:

1. The method of optimising the choice of colours of an image database for
dichromats suggested in this paper is computationally efficient and able to deal
with colour space distortions caused by different kinds of colour deficiency.
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Fig. 6. Results of colour optimisation for all ways explored in this study. Colour palettes
which show how much more colours can be distinguishable by colour-blind people after
they have been remapped by the proposed methodology
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2. Any a priori knowledge like statistical information about the frequencies
of different colours, and other preferences can be incorporated into the cost
function in the form of a weighting matrix.

3. A further study is necessary to investigate the role of an additional opti-
misation constraint reflecting the (possible) requirement of matching the dichro-
matic colours with the ones in normal vision in order to minimise psycho-
physiological and emotional differences in the perception of real-world scenes.
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Abstract. The task of extracting knowledge from text is an important research 
problem for information processing and document understanding. Approaches 
to capture the semantics of picture objects in documents constitute subjects of 
great interest in the domain of document mining recently. In this paper, we pre-
sent an approach to extracting information about picture objects in a document 
using cues from the text written about them. The goal of this work is to mine a 
document and understand the content of picture objects in the document based 
on meaning inferred from the texts written about such objects. We apply some 
Natural Language Processing techniques to extract semantic information about 
picture objects in a document and process texts written about them. The mining 
algorithms were developed and implemented as a working system and gone 
through testing and experimentations. Results and future extensions of the work 
are discussed in this paper. 

1   Introduction 

The number of electronic documents that contain rich picture objects (PO) has grown 
enormously in all kinds of information repository, e.g. the World Wide Web (WWW). 
This growth can be attributed to the increasing use of scanners, digital cameras, and 
camera-phones in this modern era. Most of these documents contain pictures and 
texts. Often times, these texts have some cues regarding the contents of the pictures in 
the document. In the context of this paper, the definition of a PO includes images of 
different kinds, such as; figures, tables, diagrams, charts, pictures, and graphics. 
These kinds of picture objects are found in documents databases of medical images, 
satellite images and digital photographs [1]. Consequently, the option of manually 
seeking information about POs in a document is highly tedious, particularly when one 
is dealing with large databases. Thus, there is a need for an efficient mining system 
that can automatically extract semantically meaningful information about the picture 
objects from these large document repositories.  
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There has been some research work focused on either documents mining or image 
mining separately, in order to extract information from documents [2-5]. The problem 
addressed in this paper is that of being able to extract information about PO in a 
document without necessarily carrying out a detailed low-level pixel image mining 
processes on the PO. The output of this mining system is in form of statements about 
the PO that are indicative of their contents. 

Dixon in [6], has defined document mining as the process of finding interesting or 
useful patterns in a corpus of textual information. However, image mining deals 
mainly with the extraction of implicit knowledge, image data relationship, and/or 
other patterns not directly obvious in the image. Despite the development of many al-
gorithms in these individual research fields, research in image mining is still evolving 
and at an experimental state [2]. 

The proposed approach in this paper is to mine the contents of images without per-
forming any low-level pixel/vector based processing. Rather we take advantage of 
text in the document that reveals some useful information about them. 

2   Related Works 

There are few related research works that are concerned with the type of problems we 
are dealing with. 

2.1   Mining Multimedia Data 

Zaiane et al. [7-9], have implemented a prototype for mining high-level multimedia 
information and knowledge from large multimedia databases. For each image col-
lected, the database would have some descriptive information composed of feature 
and layout descriptors. The original image is not directly stored in the database; only 
its feature descriptors are. The descriptive information encompasses fields such as: 
image file name, image URL, image and video type (i.e. gif, jpeg, bmp, avi, mpeg,), a 
list of all known web pages referring to the image (i.e. parent URLs), a list of key-
words, and a thumbnail used by the user interface for image and video browsing. The 
image information extractor uses image contextual information, like HTML tags in 
web pages, to derive keywords. The set of all keywords collected this way, is reduced 
by eliminating stop-words (e.g., the, a, this) or common verbs (e.g., is, do, have, was), 
or aggregating words from the same canonical form (e.g., clearing, cleared, clears, 
clear) as presented in [10].  

A drawback of this method is the fact that it is structure-dependent. It relies only 
on the HTML tags to locate the images in a document. For input files with plain texts 
without HTML tags, it will be difficult to successfully apply this method. 

2.2   Summarization of Diagrams in Documents 

Futrelle [11], presented a research work on summarization that attempts to mine  
information from many diagrams and generates a representative figure that captures 
all diagrams. The research focused on diagrams, which are line drawings such as 
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data plots or block diagrams. The overall process is to analysis and to develop 
structural descriptions. These descriptions are aggregated to produce an all-
encompassing structure that summary diagram. One major constraint in this work is 
the fact that the diagram of interest must be vector-based, as contrasted with normal 
images, which requires detailed image processing and segmentation in order to ana-
lyze them. 

Moreover, lexical resources or text accompanying figures were not exploited to 
guide summarization processes, rather the diagram itself was analyzed by visual pars-
ing. The visual parsing is the only phase that has been reported to be achieved. 

3   Text-Based PO Mining 

In the following sub-section, we describe the steps involved in mining the contents of 
PO using the text written about them. 

3.1   Systems Procedure and Description 

The strategy of information extraction utilized in this project focuses on the PO in a 
document. Our mining algorithm can be summarized into the  following steps:  

Step 1: Identify and locate the captions/labels or image tags for each of the PO,taking 
into consideration the structure  of the document. For example, image file name, ALT 
field in the IMG tag for HTML files can be used to pick the label for any PO. 
Step 2:  Use the labels or tags obtained in step 1 to derive keywords to search through 
the document to identify where they appear again in the whole document. 
Step 3: Capture the relevant sentences in which the captions/labels already located in 
step 2 are utilized to further describe or explain the PO. 
Step 4: Combine all the sentences captured in step 3 for each PO. 
Step 5: Output the statements for each PO.  

To better illustrate how these implementation steps were achieved in this project, 
figure 1 shows a further breakdown of specific processes carried out on each input 
file. Each of these modules are further explained below: 

Input File: The input file to our mining system is the text. The actual PO are not 
included in the input file, only their captions/labels/image tags and all the text in the 
document are included.  

Pre-processing: The pre-processing tasks done here is tokenization and Part-Of-
Speech tagging. The tokenization converts the input file to tokens or units of 
alphabetic, numeric, punctuation, and white-space charaters. Part-Of-
Speech(POS) tagging is done according to the grammatical context of the words 
in the sentences. 

Syntactic Analysis: The purpose of syntactic analysis is to determine the structure of 
the input text. Here, a tree structure is formed with one node for each phrase. This 
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structure consists of a hierarchy of phrases, the smallest of which are the basic sym-
bols and the largest of which is the sentence.  

Semantic Analysis: This is the method for extracting and representing the contex-
tual-usage meaning of words by statistical computations applied to a large corpus 
of text. The underlying idea is that the aggregation of all the word contexts in 
which a given word does and does not appear provides a set of mutual constraints 
that largely determines the similarity of meaning of words and sets of words to 
each other.  

Information Extraction: Our contribution to this research area is in the strategy  
utilized at the stage of information extraction. Mining contents of PO is carried out by  
 

Fig. 1. Text-Based PO Mining 

using captions, labels, image file name and ALT tags to search for relevant infor 
mation about the PO. Sub-section 3.2 gives summarized algorithmic steps of the  
implementation.  

Output File: The output of our system is in form of statements about each PO. 

3.2   Mining Algorithmic Steps 

Let X = {x1, x2,…xn} denote a set of PO in a document D = {s1,s2…sm}, where s1…sm 
are sentences in the document. 

Let Y = {y1, y2,…yn} denote the caption of the PO and is a subset of D, where yi = 
(li, fi, ci) and li = ALT<label>, fi = image file name and ci = label or title. 

Let Z = {zy1,zy2...zyn} denote set of relevant sentences that contain captions (y1, 
y2…yn) of each PO. 

 

1

Input file: 
Document with  
various POs 

Output file: 
Statements about the POs

Pre-processing 

   Syntactic Analysis 

   Semantic Analysis 

  Information Extraction 
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Algorithm 1: Extraction of Information from text about PO 

1:  Input D  New Document 
2:     Extract PO tags, captions to X 
3: for each xi∈X in D do  
4:   yi  extract the caption   
5:    Add yi to Y (List of image-file name and captions for PO) 
6: Z Empty List (List of relevant  
7:                sentences about each PO) 
8:     for each yi in Y do 
8:  search for sentences si∈D that 

contain yi 
9:  If yi is a word or phrase in si∈D , then 
10:    Add si to zyi∈Z  
11: else 
12:     Discard si (irrelevant sentence to PO) 
13: end if 
14:       end for 
15:    end for 
16:    Output the content of Y and Z  

3.3   Systems Architecture 

The multi-pass architecture used to implement the proposed algorithm in Visual Text1 
is illustrated in Figure 2.  

 

 

Fig. 2. Text Analyzer Multi-Pass Architecture 

Visual Text is an Integrated Development Environment (IDE) that was developed 
with NLP++ programming language. The passes of the multi-pass architecture are 
constrained to share a single parse tree. Each pass receives the cumulative parse tree, 
elaborates it further, and then hands it to a subsequent pass. In addition to managing a 
unique parse tree, the passes may also update and access a knowledge base, as well as 

                                                           
1 Visual Text is a trademark of Text Analysis International. 
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general program data structures. The Visual-Text IDE [14] uses a hierarchical knowl-
edge base management system (KBMS), for mapping knowledge in a more natural 
fashion than a relational database. The structure of the programming language is a key 
component of the architecture; that enables the NLP to manage the passes, parse tree 
and associated knowledge base. By splitting the NLP system into multiple passes, 
each pass can be constrained to operate on particular contexts. Passes within the ar-
chitecture can also dynamically create and execute new passes in the processes of tun-
ing the system to get an optimal result. 

3.4   Utilized NLP Techniques 

In the following sub-sections, we discuss the details of the NLP techniques used in the 
implementation of this work. 

3.4.1   Syntactic Analysis - Parsing 
Parsing is the process of linking the part-of-speech tags into a tree structure that indi-
cates the grammatical structure of the sentence. The interior nodes representing 
phrases, links represent the application of grammatical rules and leaf nodes represent 
words [13]. Two major types of parsing that are relevant to our system are discussed 
below:  

3.4.1.1 Parsing PCFG 
A Probabilistic Context-Free Grammar (PCFG) is a context-free grammar which has a 
probability associated with each rule normalized so that the probabilities of the rules 
associated with a particular non-terminal sum to 1. Disambiguation is achieved by se-
lecting the parse tree with the highest probability. The probability of a parse tree,π  
for a sentence S is given by 
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n

SP ∏
∈

=
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π  

where p(r(n)) is probability of the rule r, that has been applied to expand non-terminal 
n in the parse tree. 

3.4.1.2   Lexicalized Parsing 
Lexicalized parsers collect two sorts of statistics. Firstly, the probability P(r|h), of which 
rule r, should be applied given the head h, of the phrase c to be expanded.  Secondly, the 
probability that a sub-phrase q, has head h, given the head of the phrase being expanded 
m (for “mother”). The total probability for a parseπ , of a sentence S is then 
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One way of thinking about lexicalized parsers is to imagine them as CFGs (Context-
Free Grammar) with a profusion of rules, one for each word in the vocabulary. 

3.5   Level of Outputs 

We built a multi-pass text analyzer. The analyzer is tuned in terms of number of 
passes in order to achieve a better result. We identified and established four different 



472 A.I. Adegorite et al. 

 

levels of Output. Figure 3 depicts as: Text level, Caption Level, Description level and 
the Semantic level. The details of these levels are explained as follows:  

Fig. 3. Levels of Output 

• Text Level:  
This is the state of the input text file at the early part of entry into the Text ana-
lyzer. Various passes that have worked on the input file has processed the files 
into paragraphs and paragraphs into sentences. 

• Caption Level:   
Here, the system has identified and captured the captions and/or labels of the 
PO. 

• Description level:  
At this stage the mining system has passed through the input file many times, 
identified the locations of where the figures were referred to in the document 
and then captured the sentences written about the MMO. 

• Semantic level:  
This is the highest and final level of output. The semantic passes utilize the parse 
tree and data schemas within the knowledge base. It builds concepts in the 
knowledge base for sentences, events, and objects in the text that it is processing. 

The four information levels can be further generalized to three layers: the text level is 
the lowest level, while the caption and description level forms the intermediate level and 
the semantic level is the highest level of output. Figure 4.6 shows these levels.  

4   Experimental Results 

As indicated in the earlier sub-sections, we built a multi-pass text analyzer. The ana-
lyzer is tuned in terms of number of passes in order to achieve an optimal result. After 
building the text analyzer, many samples of documents were presented to the ana-
lyzer. All these documents can be generally categorized into two types. There are 
some documents with PO that has captions with them, while some documents do not 
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have captions clearly written with the PO. In the following sub-sections, we present 
representatives of these two categories and also discuss their results. 

4.1   Sample Type 1 – Documents Containing PO with Captions 

This is a general case of documents with PO that has captions or labels directly writ-
ten with the PO. In this case, the text analyzer can easily pick the labels and use this 
to search through the document to extract sentences that contains these labels. One 
sample of such documents is shown in figure 4. This document contains many PO, 
but we have only shown page one, which has four POs. The POs that have captions 
are written below their corresponding objects. For instance, “Fig 3: Staff of LWF” is 
shown under the particular PO concerned. 

The result obtained from this example is as shown in figure 5 with the respective 
levels of output. 

 

     Fig. 4. Sample Document with labeled POs              Fig. 5. Levels of Output 

4.2   Sample Type 2 – Documents Containing PO Without Captions 

This is a general case of documents in which the captions or labels are not found di-
rectly written with the PO. In this case, the text analyzer relies on the ALT<label> tab 
or image file name to pick the labels and use this to search through the document to 

Caption Level  

Description Level 

Semantic Level 
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extract sentences that contains this labels. A sample document and output is as shown 
in figure 6 and Figure 7 respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

    Fig. 6. Sample Document without Labeled POs     Fig. 7.  Level of Outputs 

5 Conclusion and Future Works 

This paper presents a research focused on text-based image mining. It is text-based in 
the sense that, information is extracted from text in the document regardless of the  
position of the actual wordings in the whole structure.  The main advantage of this 
system is eliminating the detailed image processing that is often suggested by other  
techniques. 

We also established four-level hierarchical structure of output for describing the 
PO.  

The major contribution of this work is the mining algorithm formulated and im-
plemented to produce a text analyzer that can take in an input file in form of text and 
output statements about the contents of the PO in the document concerned.  Compar-
ing our work with some of the related work in the literature [7, 8, 9], the approach we 
presented is not structure dependent. Another advantage comes in the fact that our ap-
proach does not depend on the HTML tags to identify the location of the images. 
Also, unlike the work done in [11], where diagrams alone are the major focus, our 
definition of PO is not limited to diagrams, but includes images such as tables, fig-
ures, pictures and graphics. Some application areas of this research approach include: 
Digital library, manuals and indexing. The algorithms developed can also be applied 
to learning object mining, knowledge representation and knowledge sharing.  

Caption Level 

  Description Level 

  Semantic Level 
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The definition of our PO, which encompasses representations in documents such as 
diagrams, tables, pictures, charts and graphics, implies a constraint boundary, which 
invariably has limited us to considering only images that falls under these categories. 
An extension of this research for future work would be to investigate ways of adapt-
ing our strategy to capture other types of images in a document, such as video clips, 
audio clips, flash animated objects, dynamic web-contents and other multimedia ob-
jects that may be in any document. 
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Abstract. We estimate the speed of texture change by measuring the spread of 
texture vectors in their feature space. This method allows us to robustly detect 
even very slow moving objects. By learning a normal amount of texture change 
over time, we are also able to detect increased activities in videos. We illustrate 
the performance of the proposed techniques on videos from PETS repository 
and the Temple University Police department. 

1   Introduction 

Motion detection algorithms are important research area of computer vision and com-
prise building blocks of various high-level techniques in video analysis that include 
tracking and classification of trajectories. It is an obvious and biologically motivated 
observation that the main clue for detection of moving objects is the changing texture 
in parts of the view field. All optical flow computation algorithms use derivative com-
putation to estimate the speed of texture change. However, derivative computation may 
be very unstable in finite domains of images. Therefore, in this paper we introduce a 
method that does not require any derivative computation. We propose an approach to 
motion and activity detection based on statistical properties of texture vectors. 

Let us focus on a fixed position in a video plane and observe the sequence of tex-
ture vectors representing a patch around this position over time. Each texture vector 
describes the texture of the patch in a single video frame. We assume a stationary 
camera. If we observe the patch that corresponds to part of the background image, the 
texture vectors will not be constant due to various factors (e.g., illumination changes, 
errors of the video capture device), but combined effect is merely a small spread of 
texture vectors over time. Also a repetitive background motion like tree branches 
waving in the wind yields a relatively small spread of texture vectors. Since similar 
texture repeats frequently, the texture vectors in this case are highly correlated. 

On the other hand, if a moving object is passing through the observed location, it is 
very likely that object will have a different texture from the background patch. There-
fore, the texture vectors are very likely to have a large spread. Even if different parts 
of the moving object have the same texture that is the same as the background texture, 
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the texture vectors will have large spread at the observed location, since different 
texture parts will appear in the patch. This holds under the assumption that the texture 
is not completely uniform, since then different texture parts have different texture 
vectors. To summarize, the proposed approach can identify moving objects even if 
their texture is identical with the background texture, due to the fact that our classifi-
cation is based on measuring the amount of texture change and texture structure is 
extremely unlikely to be perfectly uniform. 

Observe that we measure the spread of texture vectors in the texture space. Be-
cause of this, we are not able to compute the optical flow directly, i.e., to estimate the 
directions and speed of moving objects. However, we are able to perform robust de-
tection of moving objects. In comparison to the existing motion detection algorithms 
[6,7,14], we do not compute any model of the background. We measure the amount of 
texture change and classify it into two categories: moving and stationary objects. The 
aforementioned situation in which the background texture and the texture of moving 
object are similar illustrates a typical situation in which the proposed approach out-
performs any background modeling method. In such cases, in the background model-
ing approaches the texture of a moving object can be easily misclassified as back-
ground texture. A detailed explanation follows in Section 3. 

Instead of color, gray level, or infrared values at pixel locations, we consider the 
values of all pixels in spatiotemporal regions represented as 3D blocks. These 3D 
blocks are represented through compact spatiotemporal texture vectors to reduce the 
influence of noise and decrease computational demands. In [11] we have shown that 
the use of such texture vectors in the framework of Stauffer and Grimson [14] can 
improve the detection of moving objects while potentially cutting back the processing 
time due to the reduction of the number of input vectors per frame. Thus, we go away 
from the standard input of pixel values for motion detection that are known to be 
noisy and the main cause of instability of video analysis algorithms. We stress that the 
proposed motion detection technique is independent of any particular texture repre-
sentation used. 

To represent texture, we consider the values of all pixels within spatiotemporal re-
gions represented as 3D blocks. A 3D block (e.g., 8x8x3 block) consists of a few 
successive frames (e.g., 3) at the same quadratic patch (8x8) of a scene. To compactly 
represent these values and to reduce the influence of noise, we apply a dimensionality 
reduction technique by using principal components projection (PCA). As the result, 
texture is represented by a vector containing only the most significant projected com-
ponents of texture, while less significant components and noise are filtered out 
through the process of feature extraction. The most significant projected components 
represent a small subset of all the projections. The obtained texture vectors provide a 
compact low-dimensional joint representation of texture and motion patterns in videos 
and are used as primary inputs to a motion detection technique. As we mentioned 
above, texture at a given location in video plane is very likely to considerably vary 
while a moving object is passing through this location. To measure this variance, we 
estimate covariance matrix of the texture vectors from the same location within a 
window of a small number of successive frames, and determine the texture spread as 
the largest eigenvalue of the covariance matrix. This way, we indirectly determine the 
magnitude of texture variability in the direction of its maximal change. Finally, the 
decision whether a moving object or a stationary background is identified at a given 
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spatiotemporal location is made by dynamic distribution learning of the obtained 
largest eigenvalue. 

The proposed technique can use a variety of video sequences as input, ranging 
from monochromatic gray scale or infra-red (IR) videos to multispectral videos in 
visible or IR spectral domain. In this paper, we demonstrate the usefulness of the 
proposed method on several benchmark videos from PETS workshop. The robust 
performance of the proposed motion detection method, allows us to base our in-
creased activity detection on it. We define motion amount as a sum of motion acti-
vates of all blocks in a given frame (Section 4). By applying a simple statistical learn-
ing of the motion amount we are able to detect increased activities. We learn the dis-
tribution of the total motion amount in all previous frames, under the assumption that 
mostly normal activities are present. An increased activity is detected as outlier of the 
learned distribution. 

Our approach to increased activity detection does not include any specific domain 
knowledge about the monitored objects. Such knowledge can be incorporated in our 
framework, e.g., we can focus on monitoring only human or vehicle activities. By 
adding a classifier that is able to label moving object categories, we can restrict our 
attention to particular object categories, e.g., see [18]. 

A good overview of the existing approaches to motion detection can be found in 
the collection of papers edited by Remagnino et al. [13] and in the special section on 
video surveillance in IEEE PAMI edited by Collins et al. [2]. A common feature of 
the existing approaches for moving objects detection is the fact that they are pixel 
based. Some of the approaches rely on comparison of color or intensities of pixels in 
the incoming video frame to a reference image. Jain et al. [7] use simple intensity 
comparison to reference images so that the values above a given threshold identify the 
pixels of moving objects. A large class of approaches is based on appropriate statistics 
of color or gray values over time at each pixel location. (e.g., the segmentation by 
background subtraction in W4 [6], eigenbackground subtraction [10], etc). Wren et al. 
[16] were the first who used a statistical model of the background instead of a refer-
ence image. 

One of the most successful approaches for motion detection was introduced by 
Stauffer and Grimson [14]. It is based on adaptive Gaussian mixture model of the 
color values distribution over time at each pixel location. Each Gaussian function in 
the mixture is defined by its prior probability, mean and a covariance matrix.  

The usefulness of dimensionality reduction techniques to compactly represent 3D 
blocks has already been recognized in video compression. There, 3D discrete cosine 
and 3D wavelet transforms are employed to reduce the color or gray level values of a 
large number of pixels in a given block to a few quantized vector components, e.g., 
[15]. However, these techniques are not particularly suitable for detecting moving 
objects, since the obtained components do not necessarily provide good means to 
differentiate the texture of the blocks. Namely, these transformations are context free 
and intrinsic in that their output depends only on a given input 3D block. In contrast, 
we propose to use a technique that allows us to obtain an optimal differentiation for a 
given set of 3D blocks. To reach this goal, we need an extrinsic and context sensitive 
transformation such that a representation of the given block depends on its context—
the set of other 3D blocks in a given video. The Principal Component Analysis (PCA) 
[8] satisfies these requirements. Namely, for a given set of 3D blocks PCA assigns to 
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each block a vector of the components that maximize the differences among the 
blocks. Consequently, PCA components are very suitable to detect changes in 3D 
blocks.  

2   Proposed Methodology 

2.1   Video Representation with Spatiotemporal (sp) Texture Vectors 

We represent videos as three-dimensional (3D) arrays of gray level or monochromatic 
infrared pixel values gi,j,t at a time instant t and a pixel location i,j. We divide each 
image in a video sequence into disjoint NBLOCK×NBLOCK squares (e.g., 8x8 squares) 
that cover the whole image. Spatiotemporal (3D) blocks are obtained by combining 
squares in consecutive frames at the same video plane location. In our experiments, 
we used 8x8x3 blocks that are disjoint in space but overlap in time, i.e., two blocks at 
the same spatial location at times t and t+1 have two squares in common. The fact 
that the 3D blocks overlap in time allows us to perform successful motion detection in 
videos with very low frame rate, e.g., in our experimental results, videos with 2 fps 
(frames per second) are included.  

The blocks are represented by N-dimensional vectors bI,J,t, (e.g., N=8x8x3) speci-
fied by spatial indexes (I,J) and time instant t. Vectors bI,J,t contain all values gi,j,t of 
pixels in the corresponding 3D block. To reduce dimensionality of bI,J,t while preserv-
ing information to the maximal possible extent, we compute a projection of the nor-
malized block vector to a vector of a significantly lower length K<<N using a PCA 
projection matrix PK

I,J computed for all bI,J,t at video plane location (I,J). The resulting 

sp texture vectors *
,, tJIb = PK

I,J · bI,J,t provide a joint representation of texture and 

motion patterns in videos and are used as input of algorithms for detection of moving 
objects. We used K=10 in our experiments. To compute PK

I,J we employ the principal 
values decomposition following [4,5]. A matrix of all normalized block vectors bI,J,t at 
video plane location (I,J) is used to compute the N×N dimensional covariance matrix 
SI,J. The PCA projection matrix PI,J for spatial location (I,J) is computed from the SI,J 
covariance matrix. The projection matrix PI,J of size N×N represents N principal com-
ponents. By taking only the principal components that corresponds to the K largest 
eigenvalues, we obtain PK

I,J. 

2.2   Detection of Moving Objects by Measuring Texture Spread 

The spread of texture vectors over time indicates whether the corresponding object 
texture is stationary or moving. Recall that each sp vector represents texture of the 
corresponding block. Hence, by observing the characteristics of sp vectors change 
over time, we are able to detect whether a particular block belongs to a moving object 
or to a background. Consider a single block position in a video plane. We can observe 
the trajectory of its sp vectors, i.e., the loci of sp vectors in successive time frames. If 
during an observed time interval there is no moving object in the block, the sp vectors 
will be close to each other. Hence the variance of sp vectors during the time interval 
will be small. In contrast, if there is a moving object passing through this block, the sp 
texture vectors will change fast, i.e., the sp vectors will be spread in the space of their 
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coordinates. Therefore, the variance of sp vectors within an observation time window 
will be fairly large. In Fig. 2(a), we show the trajectory of sp vectors corresponding to 
block location (24,28) in Campus 1 video. To make this visualization possible, we use 
only first three PCA components for each sp vector. It can be observed that frames 
when only stationary objects are visible in the observed block location correspond to 
regions where sp vectors are clustered into fairly spherical shapes (black dots) with 
small spread. In contrary, when moving objects are passing through this block loca-
tion, the trajectory of sp vectors (blue-gray dots) is typically elongated and the vari-
ance is relatively large. 

A simple way to determine the speed of sp vector change would be to compute the 
norms of their first derivatives. However, computing finite differences of consecutive 
sp vectors may be unreliable. In order to determine whether the consecutive vectors 
belong to elongated trajectories, we need to observe whether they are making a con-
sistent progress in one particular direction within a certain time interval. We propose 
to assess the sp vector spread in the direction of maximal variance. To measure the 
variance of sp vectors, we compute the covariance matrix of sp vectors corresponding 
to the same block location for a pre-specified number of consecutive frames. We use 
the maximal eigenvalue as the measure of trajectory elongation. 

More formally, for each location (x,y), and temporal instant t, we consider vectors 

WtyxtyxWtyxWtyx bbbb ++−− ,,
*

,,
*

1,,
*

,,
* ,...,,,,  . (1) 

corresponding to a symmetric window of size 2W+1 around the instant t. For these 
vectors, we compute the covariance matrix Cx,y,t. We assign the largest eigenvalue of 
Cx,y,t, denoted as x,y,t, to a given spatiotemporal video position to define a local vari-
ance measure, which we will also refer to as motion measure 

tyxtyxmm ,,),,( Λ=  (2) 

The larger the motion measure mm(x,y,t), the more likely is the presence of a mov-
ing object at position (x,y,t). An example graph of mm is shown in Fig. 1.  

The large values (spikes) correspond to time intervals when moving objects where 
observed at this particular video location. As this graph suggest, we can label video 
position (x,y,t) based on the history of mm(x,y,t) values over time (frames 1, …, t-1) 
as moving by applying an outlier detection method to mm values, i.e., a position is 
labeled as moving if motion measure value at a given time is classified as outlier.  
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Fig. 1. The graph of local variance mm over time for the block (24,28) of the Campus 1 video 
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2.3   Dynamic Distribution Learning and Outlier Detection 

In the proposed approach for activity detection we apply outlier detection algorithms 
two times: for labeling of moving blocks and to detect increased activities. Now we 
describe outlier detection in more detail. Consider labeling each video position as 
moving or stationary based on whether the motion measure mm is larger or smaller 
than a suitably defined threshold. We use a dynamic distribution learning to determine 
the threshold value at position (x,y,t) based on the history of mm(x,y,t) values over 
time (at frames 1, …, t-1). Since mm(x,y,t) is a function of one variable t for a fixed 
position (x,y) (see Fig. 1), the task reduces to dynamic estimation of the mean and 
standard deviation of mm. Given a function f of one variable, we compute initial val-
ues of mean mean(t0) and variance 2(t0)  of all values f(t) in some initial interval 
t=1..t0. An outlier is detected at time t>t0 if the standardized feature value is suffi-
ciently large, i.e., when 

1)1(

)1()(
C

tstd

tmeantf >
−

−−
 , where C1 is a constant 

(3) 

Once an outlier is detected at time t1, all values f(t) are labeled as outliers for t1<t 
until we switch to a nominal state. We switch to the nominal state at time t, t1<t, if the 
standardized feature value drops below a threshold C2 < C1, i.e., 

2)1(

)1()(
C

tstd

tmeantf <
−

−−
 

(4) 

We update the estimates of mean and standard deviation only when the outliers are 
not detected (nominal state), i.e., at the beginning of the execution of the algorithm 
and when (4) holds, mean and std are updated using running average (an algorithm for 
incremental estimation of parameters of distributions, that is commonly applied in the 
case of Gaussian distribution): 

)()1()1()( tfutmeanutmean ⋅−+−⋅=  and )()( 2 ttstd σ=  (5) 

222 ))1()(()1()1()( −−⋅−+−⋅= tmeantfutut σσ  (6) 

For example, we use C1=9, C2=3, and u=0.99 in the case of the detection of mov-
ing blocks for f=mm. The only assumption that we make about the distribution of 
values of function f is that it has a significant right tail. This assumption clearly ap-
plies to the Gaussian distribution, but is significantly more general. 

3   Motion Orbits in Texture Space 

The most common method to evaluate the performance of motion detection is simply 
to view the videos with moving objects marked by the applied algorithm as we dis-
cuss in Section 2. However, in our framework a more objective method of perform-
ance evaluation is also possible. In this section we introduce and use such a method to 
compare the proposed spread measure of texture vectors to the Gaussian mixture 
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model introduced in [14]. To make the comparison more realistic, we apply the Gaus-
sian mixture model to texture vectors. Hence, both compared techniques are based on 
the same spatiotemporal blocks that represent texture and motion patterns. We also 
show that the Gaussian mixture model on texture vectors significantly outperforms 
the original representation used in [14] (RGB color values on a pixel level). 

We define a motion orbit as path that the texture representation at the fixed video 
plane location traverses over time. Recall that we use texture vectors composed of the 
first 3 PCA components of each spatiotemporal block vector. Hence, the motion orbit 
at video plane location (x,y) is a sequence of points in the 3D Euclidean space 

Tyxyxyx ,,2,,1,, ,,, vvv , where *
,,,, tJItJI bv =  and T is the total number of frames. 

For instance, in Fig. 2(a), we see the orbit for the block (24,28) of the Campus 1 
PETS video [19]. Frames identified as moving using our local variation method are 
marked with blue-gray dots while stationary frames are marked with black dots. The 
distribution of black dots is multimodal globally. We observe two main modes that 
represent the background blocks. They are identified as two 3D blobs that correspond 
to two different background textures that appeared in the course of this video at block 
position (24,28): a part of parking lot and a parked car. Around these blobs we see 1D 
orbits marked with blue-gray dots corresponding to moving objects. We can view the 
proposed local variance method as orbit classification algorithm. The reason is that 
elongated 1D orbits that identify motion have higher spread than the stationary back-
ground objects. 

We stress that the dot labeling as shown was computed by the proposed method for 
detection moving objects. Observe that the blue-gray dots perfectly correspond to the 
1D motion orbits that identify moving blocks. Thus, our algorithm correctly detected 
moving objects. In contrast, for the same Campus 1 video the incremental EM method 
[14] failed to identify the motion orbit containing frames 633—663.In comparison to 
any pixel-based approaches (e.g., as originally proposed in [14]), motion detection 
based on 3D blocks performs better since it reduces noise in background and can 
extract information about temporal change of texture (since it is based on spatiotem- 
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Fig. 2. (a) Orbits of block (24,28) vectors with blue-gray dots corresponding to the frames in 
Campus 1 where the block was identified as moving by the proposed method; (b) Orbits of 
block (24,28) vectors marked with dots: black as background, blue and green as moving—using 
‘reset’ and ‘hold’ mechanisms, correspondingly, identified by the EM algorithm 
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Fig. 3. Standardized PCA components of RGB pixel values for Campus 1 at pixel location 
(185,217) that is inside block (24,28); allowS a direct comparison to Fig. 2(a) 

poral texture representation of 3D blocks instead of pixels). We demonstrate how 
noisy RGB color values of a single pixel can be in Fig. 3, where we plot an orbit over 
time of RGB color values that occur at the pixel (185,217) which is one of the pixels 
in the block (24,28) of Campus 1 video. For better visualization, in Fig. 3 we show 
the linearly transformed space of PCA projections of the original RGB color values 
(the trajectory in the space of original RGB colors is similar). To allow us a proper 
comparison to the results in Fig. 2(a) (computed by our local variance technique), we 
carried over the dot labels from Fig. 2(a). 

By comparison of Fig. 3 to Fig. 2(a), one can conclude that in both representations 
there are two distribution components corresponding to the background. However, 
using the block-based approach, the background variance is much smaller, since using 
block vectors that contain texture information results in effective noise reduction in 
comparison to using “raw” pixels. Hence, any technique to detect moving objects as 
outliers will perform much better using spatiotemporal blocks than when using the 
raw pixels. As it can be seen in Fig. 3, the method from [14] have difficulties in prop-
erly detecting frames 611, 695, 1477 belonging to the second and fourth moving ob-
jects that appear at the observed pixel. The blue-gray dots incorrectly become parts of 
two background components, which imply that a pixel-based method [14] would 
classify the corresponding blue-gray dots as belonging to a background distribution. 
The proposed local variation based technique can also be applied on pixel level. 
However, due to problems with large uniform texture regions as well as noise inher-
ent to pixel values (shown above), our preferred technique is to apply local variance 
method on sp block texture vectors. 

4   Detection of Increased Activities 

Due to the fact that we robustly compute the motion measure mm, we can also relia-
bly estimate the motion amount in each video frame. Motion amount can be defined 
as the sum of motion measures of all blocks: 

=
yx

tyxmmtma
,

),,()(  (7) 
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The proposed method of detecting increased activities is again based on outlier de-
tection (see Section 2.3) but this time of the motion amount over time. Thus, we first 
learn the distribution of motion amount over time when the recorded video activity 
was considered usual/nominal. Then time intervals with increased activity are de-
tected as outliers of the learned distribution. The proposed approach works under the 
assumption that there exists an upper bound on the size of moving objects whose 
motion we want to detect (measured in the number of moving blocks), and that the 
genuine moving objects do not appear rapidly in the frame. These assumptions hold 
for most surveillance videos. Let us consider an example video, called Temple 1, that 
satisfies the assumptions. Indeed, this video is recorded by a roof mounted, stationary 
camera, so that a certain minimal distance to moving objects is guaranteed. Typical 
moving objects there, humans and vehicles, cannot get arbitrarily large. Hence, the 
fraction of the scene occupied by a moving object is limited. Observe that the actual 
value of the upper bound on the size of moving objects needs not to be known, since 
our algorithm learns it automatically. Similarly, the number of humans and vehicles 
cannot rapidly increase, since the regions of entry into the camera view field are lim-
ited in size.  

In Fig. 4(a), we see the graphs of function ma for Temple 1 video and correctly de-
tect alarm situations as shown in Fig. 4(b). For example, a significant increase in the 
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Fig. 4. Activity Detection. (a) Motion amount of Temple 1 video; (b) Increased activity blocks 
marked with red boundaries 
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Fig. 5. Temple 1 video (a) showing no activity and (b) showing increased activity due to street 
fight (ACTIVITY label is shown next to the frame number) 
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number of motion blocks around frame 300 indicates an alarm situation. This is a 
correct prediction, since a street fight is recorded on the video around frame 300, see 
Fig. 5 and the Temple 1 video [12]. 

5   Performance Evaluation on Test Videos 

A set of several test videos showing our motion detection results and our results on 
detecting increased activity can be viewed on [12]. Our test set of videos includes 
several videos from the Performance Evaluation of Tracking and Surveillance (PETS) 
repository. In particular, the results include the above discussed Campus 1 video from 
PETS2001, videos obtained from the Police Dept. of Temple Univ., Philadelphia, and 
infrared videos, for which the same settings of parameters as for visual light videos 
were used. 

6   Conclusions 

In this paper we propose a local variation based method for motion detection. Our 
preliminary results on surveillance and on PETS repository videos show that the pro-
posed method applied to spatiotemporal blocks results in better detection of moving 
objects in comparison to standard pixel-based techniques and to the incremental EM 
algorithm technique. 

We show that the proposed local variation algorithm can significantly reduce the 
processing time in comparison to the Gaussian mixture model, due to smaller com-
plexity of the local variation computation, thus making the real time processing of 
high-resolution videos as well as efficient analysis of large-scale video data viable. 
Moreover, the local-variation based algorithm remains stable with higher dimensions 
of input data, which is not necessarily the case for an Gaussian model estimation 
algorithm. This makes the proposed technique potentially appealing for moving detec-
tion in higher dimensional domains, such as multispectral remote sensing imagery. 

Our approach to increased activity detection does not include any specific domain 
knowledge about the monitored objects. Such knowledge can be incorporated in our 
framework, e.g., we can focus on monitoring only human or vehicle activities if we 
can restrict our attention to particular object categories.  
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Abstract. Human motion sequence-oriented spatio-temporal pattern
analysis is a new problem in pattern recognition. This paper proposes
an approach to human motion sequence recognition based on 2D spatio-
temporal shape analysis, which is used to identify diving actions. The
approach consists of the following main steps. For each image sequence
involving human in diving, a simple exemplar-based contour tracking
approach is first used to obtain a 2D contour sequence, which is fur-
ther converted to an associated temporal sequence of shape features.
The shape features are the eigenspace-transformed shape contexts and
the curvature information. Then, the dissimilarity between two contour
sequences is evaluated by fusing (1) the dissimilarity between the as-
sociated feature sequences, which is calculated by the Dynamic Time
Warping (DTW), and (2) the difference between the pairwise global mo-
tion characteristics. Finally, sequence recognition is performed according
to a minimum-distance criterion. Experimental results show that high
correct recognition ratio can be achieved.

1 Introduction

The recent years have seen a surge of interest in video-based human action
recognition [1][2][3][4] . However, due to the non-rigidity of human body, human
motion classification is a challenging problem. The key difficulty of classification
is how to derive the time-varying information from image sequences for action
segmentation [4] and motion sequence recognition [3]. Most works [2][4][5] have
been done on partitioning an image sequence involving human into key frames,
meta-actions, or meta-gestures for video content analysis, human computer in-
teraction, virtual reality, behavior understanding, or sign language recognition.
Instead of aiming at analyzing the details within a single image sequence, com-
paring between different image sequences is desired for intelligent surveillance,
content-based video retrieval, video-assisted analysis in athletic training and
heath-care arenas, and entertainment, etc..
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To obtain the motion information from an image sequence, the motion detec-
tion and human tracking methods [1][2] can be employed to obtain a sequence
of binary silhouettes or a sequence of pose parameters. Since this sequence is
associated with the human body, it can reflect the spatio-temporal motion in-
formation. We can then derive time-varying feature sequences [3][6] or calculate
some important motion properties, such as speed, period, amplitude, number of
somersaults in diving, etc.. For example, gait recognition [3] aims to signify the
identification of individuals in the image sequences by their gait styles. How-
ever, in many applications, identifying who is in an image sequence may be
unnecessary. Instead, identifying the motion type to which the motion belongs
is desired.

Since gait is a biometric feature, the methods [6] to be used to extract gait
feature sequences may not be directly applied to other motions, such as jumping,
diving, etc.. Sequence feature analysis for these situations is a new problem.

This paper aims to identify the action group to which the dive belongs. To this
end, each image sequence is converted to a 2D contour sequence by our exemplar-
based tracking approach. The reasons we analyze 2D contour sequences are: (1)
The deformations of the contour can reflect the changes of the pose configuration;
(2) Shapes are more robust to the changes of clothing and illumination than color
and texture.

The recognition strategy is constructed for the whole 2D contour sequences.
We use eigenspace-transformed shape contexts [7] and curvature information as
shape features. The features of all contours are listed over time to form a feature
sequence. Fig. 1 illustrates the process.

   Image  

 Sequence  

Feature  

Sequence  
 Contour  

Sequence  

Sequence  

Recognition  

Fig. 1. The process of sequence recognition

Besides the feature sequence, we also use the number of somersaults, which is
one of the most distinct global motion characteristics in diving, to describe the
2D contour sequence as a whole. The dissimilarity between two feature sequences
is computed by sequence matching through Dynamic Time Warping (DTW)
[8] approach. To decide the final dissimilarity between two contour sequences,
the dissimilarity of two feature sequences and the difference of global pairwise
characteristics are integrated together. Finally, sequence recognition is performed
according to a minimum-distance criterion (see Fig. 1).

This paper is structured as follows. Section 2 briefly introduces the related
work. Section 3 details the proposed simple and effective approach to deformable
contour tracking. The feature analysis approaches to contour sequence are de-
scribed in Section 4. Section 5 outlines the algorithm of sequence recognition.
The experimental results are reported in Section 6, followed the conclusion in
Section 7.
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2 Related Work

This section briefly reviews the related work on shape representation and motion
sequence analysis. The literatures on shape representation are rich [9]. However,
we do not need those representations with rotation invariant features, such as
Hu moments, Fourier descriptors, and those wavelet based features (see [9] for
details), because diving motion is highly related to the rotation of the human
body. Whereas, most rotation sensitive representations can only capture the
global perception characteristics, for example the spatial moments [9], and hence
are incapable of describing the local shape feature well. Belongie et al. proposed
a novel method for shape representation and shape matching [7]. The basic idea
of their proposal is to construct a shape context for every discretized contour
point. Due to the detailed description, measuring the similarity between two
points from two shapes can be done explicitly.

From the point view of pattern recognition, two basic tasks are related to
image sequence analysis. One task is to partition a sequence into different meta-
poses or meta-actions [4]. The other task is to recognize image sequences based
on a sequence gallery by taking each of them as a probe sequence. Each probe
sequence is described by global motion characteristics or converted to an asso-
ciated feature sequence. The global characteristics can be derived from time-
independent features [10] or time-related features [11]. A feature sequence is a
temporal sequence of features, such as the sequences derived from gait styles
[3][10][12]. However, different kinds of motions have their own characteristics.
Thus, extracting the salient feature is crucial for sequence recognition.

Sequence recognition is performed according to feature comparison. Cur-
rently, most of the related works are developed for gait recognition [3][6][10][12] .
In contrast, the Hidden Markov Model (HMM) based methods [4][12] and the
DTW [8] based methods [3] are more suitable for general sequence comaparison.
To use HMM, it is necessary to partition the sequences into meta-actions, meta-
gestures or key frames as samples to learn the model parameters. The DTW
is a common technique since there is no need for one to learn the prior model.
However, we need to prepare the sequences to be recognized with roughly equal
sequence lengthes, according to the work of Rabiner et al. [8].

3 Contour Extraction

We use target tracking approach to extract the contours since the background is
non-static. For visual-based human tracking [2], Sequential Monte Carlo (SMC)
estimation [13] has proved to be a successful approach. In SMC framework, the
probability of the object configuration given the observation is described by
a set of weighted particles. Tracking process can then be viewed as a density
propagation governed by the dynamic model and observation model [14].

Dynamic model is highly related to contour representation. Due to non-rigid
motion and occlusions during diving, representing the 2D deformable diver con-
tours is a tough task. The efficient method with regards to processing defor-
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mation is to define complex model with high dimensionality. However, in SMC
framework, this leads that the density function which governs the distributions
of the target states would be propagated in a high-dimensional state space. It
seems that we can use parameterized curves to describe the contour. But due to
occlusions of arms, the changes of the 2D pose configuration are drastic.

However, we observe that in diving there exist fundamental poses, which can
be used to depict the new ones. To this end, we collect the fundamental contours
from different diving action groups to construct a database of exemplars (denoted
by E). We use the exemplars to describe the appearances of the target states
as well as guide the tracking process. As a result, we can only use three state
variables in dynamic model, namely, the centroid coordinate (x, y) and the scale
parameter s. Now we can write the dynamic equation as follow:

{
xt = xt−1 + Vt(x)
yt = yt−1 + Vt(y) (1)

where (xt,yt) is the centroid coordinate of the target state at time t, and Vt(x)
and Vt(y) bear normal distribution N(0, σx) and N(0, σy), respectively.

Each particle (xt,yt) employs an exemplar as its appearance, scaling a little
with parameter s. s is randomly set within the range of 0.9-1.1 since the camera
was always located in the same place at a distance from the diving platform.

We use the exemplars approximately corresponding to the standing poses to
initialize the particles’ appearances. After scaled with s, each of them is located
in the first frame by using fast Hausdorff distance mapping [15].

Then, we embed a process of contour recognition into the tracking process.
For the associated contour of a particle, we retrieval its neighbors from E as its
candidates, which are distributed in the current frame according to Equation 1,
respectively. After measured through observation model [16], the one with the
maximum posterior probability is selected and transferred to the next frame.

To fast retrieval the needed neighbors, the contours in E are organized as a
tree structure, based on all the two and three order contour moments.

Toyama et al. perform probabilistic tracking with exemplars in a metric space
[17]. There the exemplars are interpreted probabilistically. However, we use ex-
emplars as inputs for searching to find the candidates. Furthermore, we do not
need complex training process. Actually, neighbor search approach provides the

Fig. 2. Some results of contour tracking from three image sequences, respectively
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updating dynamics for particles’ appearances as well as the mechanism to guide
the tracker to find the candidates for each particle. Our method is a simple and
effective approach for the purpose of sequence recognition. Fig. 2 shows some
tracked frames from three image sequences.

The exemplar database includes 210 different 2D contours. During tracking,
the particle number is 4000 and the number of neighbors to be searched is 10.
We manually take σy = 2σx and σx = 8 since the motion of the centriod of
the diver body is roughly controlled by gravity and the motion in the horizontal
direction is limited.

4 Sequence Recognition

4.1 Feature Sequence

To convert a contour sequence into a feature sequence, we need the shape features
with translation and scale invariance since the contours are translated to the
image centers and the body sizes of the divers may be slightly different.

We use shape context descriptor as shape feature. For each reference point, its
shape context is a log-polar histogram of the relative coordinates of the remaining
points. The shape context summarizes global shape in a rich and local descriptor.
Since each point can be associated with a histogram, we can get a shape context
matrix, which is a detailed description about the shape perception.

Invariance to translation is intrinsic to the shape context. To achieve scale
invariance, all radial distances by the median distance between all the point pairs
is normalized [7].

We observe that for most shape contexts a lot of bin values are zeros. This
results that the histograms are sparse. Directly using the χ2 statistics to measure
two sparse histograms may not reflect the similarity well [18]. Thus we apply
the eigenspace transformation based on Principal Component Analysis (PCA)
to the histograms to reduce the redundancy. The details are as follows:

We use all the shape contexts calculated from E as PCA training samples.
After performing PCA, we take k eigenvectors corresponding to the k largest
eigenvalues, {e1, e2, · · · , ek}, to form an eigenspace E = [e1, e2, · · · , ek]. For a
novel histogram vector X, we have:

Y = ET X (2)

On the other hand, the log-polar space makes the shape descriptor more
sensitive to the positions near the reference point. In fact, it is unable to robustly
reflect the local geometrical property very well. Actually, the degree of curvature
is highly related to a few neighbor points. We use it as an additional feature.

Now a contour is described as a group of features {C, K}, where C(∈ RN×k)
is the eigenspace-transformed shape context matrix, and K(∈ RN ) is the curva-
ture vector. Here N is the number of discretized points of the contour and M is
the number of the bins of the shape context histogram. As a result, a contour
sequence is naturally converted into a feature sequence.
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Let point P i
S belong to contour S, and P j

T belong to T , the distance between
P i

S and P j
T can then be computed as follow:

d(P i
S , P j

T ) = χ2(Ci
S ,Cj

T )+s1 ·ds2(Ci
S ,Cj

T )+s2 ·dk(κi
S , κj

T )+s3 ·dk2(κi
S , κj

T ) (3)

where Ci
S and κi

S denote the eigenspace-transformed shape context and the
curvature of the ith point of contour S. Cj

T and κj
T have the same meanings as

Ci
S and κi

S , respectviely. s1, s2 and s3 are weighting parameters, which are all
manually set as 0.001.

In Formula 3, χ2(P i
S , P j

T ) and ds2(P i
S , P j

T ) are calculated as the χ2 statistics
and the two order derivative of the eigenspace-transformed shape context cost at
the pair point of (P i

S , P j
T ) [19][20]. dk(P i

S , P j
T ) and dk2(P i

S , P j
T ) are the curvature

cost and the two order derivative of the curvature cost, respectively. The reason
here we use the two order derivatives is that close points on S should also be
close after matched to T .

Finally, the similarity between S and T can be determined, by performing
shape matching [7] based on Formula 3.

4.2 Global Motion Characteristics

The number of somersaults (denoted by Π) is a salient global motion charac-
teristic. To calculate Π, we track the position of the feet to form a trajectory
and then calculate the rotation number. It is feasible since during diving the
feet are always keeping straight and close together and seldom occluded by the
arms in the sky. This leads the diver contours have thin appearances. Thus we
can extract their skeletons. Now the steps to calculate Π can be summarized as
follows:

First, extract the skeleton by morphological thinning operation and trim off
the branches with small lengths. Then, detect the branch ends and track the
one corresponding to the feet based on the movement continuity. To perform
this step, all the vectors defined from the image center to the ends are first
normalized. The vector with minimum angle to the tracked vector in the previous
frame is selected as current result. Thus, we get a normalized trajectory. Due
to translation and normalization, it does not correspond to the real physical
one. However, this does not affect the calculation because the diver body turns
approximately along its own axis. Finally, Π can be computed as:

Π =
1
2π

N∑
i=1

sgn(vi−1 · vi) · arccos(vi−1 · vi) (4)

where sgn(vi−1 · vi) stands for the relative rotation direction from vi−1 to vi,
and N the is total frame number. sgn(vi−1 ·vi) = 1 means the rotation direction
is counter-clockwise, while sgn(vi−1 · vi) = −1 means the rotation direction is
clockwise. Here, v0 is the initial position vector.
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5 Sequence Recognition Algorithm

Note that the lengths of the image sequences would be very different. To make the
sequences to be recognized with almost equal lengthes for using DTW matching,
we cut off the frames corresponding to the preparing stage because the poses are
rest stances and hence weakly informative in the context of action recognition.

To this end, we use again the normalized trajectory. By finding the point
which begins to depart from the vertical position, we obtain the corresponding
image frame. Thus the sequence can be partitioned into two subsequences. We
take the later one for recognition.

The contour sequences may be different every time since the divers may
slightly adjust their poses and alter or control the motion speed. Directly per-
forming frame-to-frame matching is not realistic. Therefore, We use the DTW
to match the sequences and define the matching cost as dissimilarity [3][8].

Let S1 : {S1
1 , · · · , Sn

1 } and S2 : {S1
2 , · · · , Sm

2 } be two contour sequences. Let
Cj

i and Kj
i denote the eigenspace-transformed shape context matrix and the

curvature vector of Sj
i , respectively. Suppose the number of somersaults of Si be

Πi. We summarize the steps of computing the dissimilarity between S1 and S2

as follows:

Step 1: Calculate Cj
1, Kj

1 (j = 1, · · · , n) and Cj
2, Kj

2 (j = 1, · · · , m);
Step 2: Transform Cj

1 (j = 1, · · · , n) and Cj
2 (j = 1, · · · , m), according to

Formula 2;
Step 3: Calculate the distance matrix M ∈ (Rn×m) for S1 and S2:

(1) for Si
1 and Sj

2 (i = 1, · · · , n; j = 1, · · · ,m), compute the pairwise match-
ing cost ei,j based on Formula 3,

(2) let Mi,j = ei,j ;
Step 4: Based on M, use the DTW matching to calculate the matching cost,
and denote it by d1;
Step 5: Calculate Π1 and Π2, and let d2 = |Π1 − Π2|;
Step 6: Compute the dissimilarity between S1 and S2: d =

√
d2
1 + (wd2)2.

Finally, a probe sequence is identified based on the minimum-distance
criterion.

6 Experimental Evaluation

The raw video data involving the divers in training was taken at a distance by
a CCD camera in different days. To keep the diver figures in the range of the
image plane, the camera may slightly rotate along the camera support.

We use the second and fourth group of the international standard diving ac-
tions to test our method. The second group action, denoted by ‘2’, is the back
group (face to the platform or springboard at the beginning, diving backward).
The forth group (‘4’) is the inward group (diving inward). There have four fun-
damental pose groups, denoted by ‘A’ (straight), ‘B’ (pike), ‘C’ (tuck) and ‘D’
(free), respectively. The parameters about somersaults are complex. ‘1’ stands
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Fig. 3. Some 2D poses and their skeletons extracted by morphological thining

(a) (b)

Fig. 4. Two 2D contour sequences extracted by using the method in Sect. 3

(a) (b)

Fig. 5. The translated and normalized trajectories

for ‘0.5’ number of somersaults, ‘2’ for ‘1.0’ number of somersaults, etc. Thus,
according to international diving criteria, ‘21A’ means “the second group, 0.5
number of somersaults, straight pose”.

We build a gallery including of 10 groups of diving actions from a single
diver: 21A, 23A, 23B, 25B, 23C, 25C, 21D, 23D, 43B, 43C. All the ten image
sequences are converted into ten 2D contour sequences by hand. Then a database
consisting of 210 different poses is constructed by selecting the same pose once.
It is used for both contour tracking (see Sect. 3) and PCA training.

The size of the shape context histogram is 5×12. The number of the dis-
cretized contour points is 80. Thus, there are totally 16800 samples for PCA
training. When taking the eigenvectors, we let k = 20.

Fig. 3 shows the 2D poses and their branch-trimmed skeletons. Fig. 4 gives
two translated sequences. The diving code in Fig. 4(a) is ‘43B’, while the code
in Fig. 4(b) is ‘25C’. Fig. 5 demonstrates the translated and normalized tra-
jectories. The trajectories demonstrated in Fig. 5(a) and Fig. 5(b) correspond
to the sequences in Fig. 4(a) and Fig. 4(b), respectively. We can see that two
sequences have the same length. But they show different pose configuration and
different rotation direction (See in Fig. 5). The real values of the numbers of
somersaults of the diving actions shown in Fig. 4(a) and Fig. 4(b) are 1.5 and
-2.5, respectively. The corresponding values calculated from Formula 4 are 1.45
and -2.38, respectively.
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The testing set includes 50 image sequences involving four divers. Each im-
age sequence is used as a probe sequence. The task is to recognize the gallery
sequence corresponding to the probe sequence. We use contour tracking to ob-
tain a 2D contour sequence for a probe sequence. The action group of the probe
sequence is identified as that of the gallery sequence with which the matching
distance is minimum, according to the algorithm in Sect. 5. We achieve 100%
correct recognition ratio for 50 testing sequence.

7 Conclusion

This paper aims to recognize diving actions directly based on image sequences.
Different from the traditional work on action recognition, we treat the sequence
as a whole, rather than partition it into different meta-actions or key frames.
We use exemplar-based contour tracking to convert an image sequence into a 2D
contour sequence. The eigenspace-transformed shape context histogram matrix
and curvature information are used as shape features to form a feature sequence.
The dissimilarity of two feature sequences is determined by sequence matching.

The global motion characteristics and motion type determined by the recog-
nition framework of this paper are important video contents for content-based
video retrieval and video mining. The meta-data based methods can only summa-
rize the global perception information, which is produced jointly by the humans
and the other uninteresting objects.

Although the work is developed on diving actions, the proposed approaches
to visual tracking, sequence feature analysis may be applied to other visual
computations or video analysis tasks since the related problems are general. In
the future, experiments on bigger database and more actions will be carried
out to test our method. And we would like to develop more general method for
human motion sequences-oriented spatio-temporal pattern analysis.
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Abstract. Dominant plane is an area which occupies the largest domain
in an image. A dominant plane detection is an essential task for an
autonomous navigation of mobile robots equipped with a vision system,
since we assume that robots move on the dominant plane. In this paper,
we develop an algorithm for the dominant plane detection using optical
flow and Independent Component Analysis. Since the optical flow field is
a mixture of flows of the dominant plane and the other area, we separate
the dominant plane using Independent Component Analysis. Using an
initial data as a supervisor signal, the robot detects the dominant plane.
For each image in a sequence, the dominant plane corresponds to an
independent component. This relation provides us a statistical definition
of the dominant plane. Experimental results using a real image sequence
show that our method is robust against a non-unique velocity of the
mobile robot motion.

1 Introduction

In this work, we aim to develop an algorithm for a dominant plane detection using
the optical flow observed by means of a vision system mounted on a mobile robot.
The dominant plane is a planar area which occupies the largest domain in the
image observed by a camera. Assuming that robots move on the dominant plane
(e.g., floors and ground areas), the dominant plane estimation is an essential
task for an autonomous navigation and a path planning of mobile robots.

For the autonomous navigation of mobile robots, vision, sonar and laser sen-
sors are generally used. Sonar and laser sensors [1] provide simple methods of
an obstacle detection. These sensors are effective in the obstacle detection for
collision avoidance, since these methods can obtain range information to objects.
On the other hand, stationary vision sensors have difficulties in obtaining range
information. However, vision sensors mounted on a mobile robot can obtain an
image sequence from a camera motion. The image sequence provides a motion
and structure from correspondences of points on successive images [2]. Addition-
ally, vision sensors are fundamental devices for understanding of an environment,
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since robots need to collaborates with human beings. Forthermore, visual infor-
mation is valid for the path planning of mobile robots in a long sequence, because
the vision system can capture environmental information quickly for a large area
compared to present sonar- and laser-based systems.

There are many methods for the detection of obstacles or planar areas us-
ing vision systems [3]. For example, the edge detection of omni and monocular
camera systems [4] and the observation of landmarks [5] are the classical ones.
However, since these methods depend on the environment around a robot, they
are difficult to apply in general environments. If a robot captures an image se-
quence of moving objects, the optical flow [6] [7] [8], which is the motion of the
scene, is obtained for fundamental features in order to construct environment
information around the mobile robot. Additionally, the optical flow is considered
as fundamental information for the obstacle detection in the context of biological
data processing [9]. Therefore, the use of optical flow is an appropriate method
from the viewpoint of the affinity between robots and human beings.

The obstacle detection using optical flow is proposed in [10] [11]. Enkelmann
[10] proposed an obstacle-detection method using model vectors from motion
parameters. Santos-Victor and Sandini [11] also proposed an obstacle-detection
algorithm for a mobile robot using an inverse projection of optical flow to a
ground floor, assuming that the motion of the camera system mounted on a
robot is pure translation with an uniform velocity. However, even if a camera
is mounted on a wheel-driven robot, the vision system does not move with an
uniform velocity due to mechanical errors of the robot and a unevenness of the
floor.

Independent Component Analysis(ICA) [12] provides a powerful method for
texture analysis, since ICA extracts dominant features from textures as inde-
pendent components [13][14]. We consider optical flow as a texture yielded on
surfaces of objects in an environment observed by a moving camera. Therefore,
it is possible to extract independent features from flow vectors on pixels dealing
with flow vectors as textons. Consequently, we use ICA to separate the dominant
plane and the other area.

2 Application of Optical Flow to ICA

ICA [12] is a statistical technique for the separation of original signals from mix-
ture signals. We assume that the mixture signals x1(t) and x2(t) are expressed
as a linear combination of the original signals s1(t) and s2(t), that is,

x1(t) = a11s1(t) + a12s2(t), (1)
x2(t) = a21s1(t) + a22s2(t), (2)

where a11, a12, a21, and a22 are weight parameters of the linear combination.
Using only the recorded signals x1(t) and x2(t) as an input, ICA can estimate
the original signals s1(t) and s2(t) based on the statistical properties of these
signals.
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Camera

Dominant Plane

Obstacle
Camera Motion

Fig. 1. Mixture property of optical flow. Top-left: Example of camera displacement
and the environment with obstacles. Top-right: Optical flow observed through the
moving camera. Bottom-left: The motion field of the dominant plane. Bottom-right:
The motion field of the other objects. The optical flow(top-right) is expressed as a
linear combination of two fields in the bottom
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Fig. 2. Dominant vector detection in a sequence of images. u(ti) corresponds to the
dominant vector which defines the dominant plane at time ti

We apply ICA to the optical flow observed by a camera mounted on a mobile
robot for the detection of the feasible region on which the robot can move. The
optical-flow field is suitable as the input to ICA, since the optical flow field
observed by a moving camera is expressed as a linear combination of the motion
fields of the dominant plane and other objects, as shown in Fig.1. Assuming
that the motion field of the dominant plane and other objects are spatially
independent components, ICA enables us to detect the dominant plane on which
robots can move by separating two signals. For each image in a sequence, we
assume that optical flow vectors on pixels in the dominant plane correspond to
independent components, as shown in Fig.2.
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3 Algorithm for Dominant Plane Detection from Image
Sequence

In this section, we develop an algorithm for the detection of the dominant plane
from an image sequence observed by a camera mounted on a mobile robot. When
the camera mounted on the mobile robot moves on a ground plane, we obtain
successive images which include a dominant plane area and obstacles. Assuming
that the camera is mounted on a mobile robot, the camera moves parallel to
the dominant plane. Since the computed optical flow from the successive images
expresses the motion of the dominant plane and obstacles on a basis of the
camera displacement, the difference between these optical flow vectors enables
us to detect the dominant plane area. The difference of the optical flow is shown
in Fig.3.

Camera

Dominant plane

Camera displacement T

Obstacle

Image Plane

T

T

Optical flow

Fig. 3. The difference of the optical flow between the dominant plane and obstacles. If
the camera moves in the distance T parallel to the dominant plane, the camera observes
different optical flow vectors between the dominant plane and obstacles

3.1 Learning Supervisor Signal

The camera mounted on a robot captures the image sequence Î(x, y, t) at time
t without obstacles as shown in Fig.4 and computes optical flow û(t) = (dx

dt , dy
dt )

as

û(t)∇Î(x, y, t) + Ît = 0, (3)

where x and y are the pixel coordinates of an image. For the detail of the
computation of optical flow (dx

dt , dy
dt ) using this equation, see [6][7][8].

After we compute optical flow û(t), frame t = 0, . . . , n − 1, we create the
supervisor signal û,

û =
1

n − 1

n∑
t=0

û(t). (4)
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Camera

Dominant Plane

Camera motion

Fig. 4. Captured image sequence without obstacles. Top: Example of camera displace-
ment and the environment without obstacles. Bottom-left: An image of the dominant
plane Î(x, y, t). Bottom-right: Computed optical flow û(t)

3.2 Dominant Plane Detection Using ICA

We capture the image sequence I(x, y, t) with obstacles as shown in Fig.5 and
compute optical flow u(t) in the same way.

The optical flow u(t) and the supervisor signal û are used as input signals for
ICA. Setting v1 and v2 to be output signals of ICA, v1 and v2 are ambiguity of
the order of each component. We solve this problem using a difference between
a variance of the length of output signals v1 and v2.

Setting l1 and l2 to be the length of output signals v1 and v2,

lj =
√

v2
xj + v2

yj , (j = 1, 2) (5)

where vxj and vyj are arrays of x and y axis components of output vj , respec-
tively, the variance σ2

j are

σ2
j =

1
xy

∑
i∈xy

(lj(i) − l̄j)2, l̄j =
1
xy

∑
i∈xy

lj(i), (6)

where lj(i) is the ith data of the array lj . Since the motions of the dominant plane
and obstacles in the image are different, the output, which expresses the obstacle-
motion, has larger variance than the output which expresses the dominant plane
motion. Therefore, if σ2

1 > σ2
2 , we detect dominant plane using the output signal

l as l = l1, else we use the output signal l = l2.
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Camera

Dominant Plane

Obstacle
Camera Motion

Fig. 5. Optical flow of the image sequence. Top: Example of camera displacement and
the environment with obstacles. Bottom-left: An image of the dominant plane and
obstacles I(x, y, t). Bottom-right: Computed optical flow u(t). In a top-middle area,
where exists the obstacle, the lengths of optical flow vectors are longer than the flow
vectors in the other area

Since the dominant plane occupies the largest domain in the image, we com-
pute the distance between l and the median of l. Setting m to be the median
value of the elements in the vector l, the distance d = (d(1), d(2), . . . , d(xy)) is

d(i) = |l(i) − m|. (7)

We detect the area on which d(i) ≈ 0, as the dominant plane.

3.3 Procedure for Dominant Plane Detection

Our algorithm consists from two phases, learning phase and recognition phase.
Learning phase is described as following:

1. Robot moves on the dominant plane in a small distance.
2. Robot captures an image Î(u, v, t) of the dominant plane.
3. Compute optical flow û(t) between the images Î(u, v, t) and Î(u, v, t − 1).
4. If time t > n, compute the supervisor signal û using Eq.(4). Else go to step

1.

Next, recognition phase is described as following:

1. Robot moves in the environment with obstacles in a small distance.
2. Robot captures an image I(u, v, t).
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Create supervisor signal u

Compute optical flow u(t)

Input u and u(t) 

Output v1 and v2 

Detect dominat plane

Fast ICA

Robot moves t=t+1 

Capture image I(x,y,t)

^

^

Compute optical flow u(t)

Robot moves t=t+1 

Capture image I(x,y,t)

^

t > n
no

yes

^

Learning phase Recognition phase

Fig. 6. Procedure for dominant plane detection using optical flow and ICA

3. Compute optical flow u(t) between the images I(u, v, t) and I(u, v, t − 1).
4. Input optical flow u(t) and the supervisor signal û to ICA, and output the

signals v1 and v2.
5. Detect the dominant plane using the algorithm in Section 3.2.

Figure 6 shows the procedure for dominant plane detection using optical flow
and ICA.

4 Experiment

We show experiment for the dominant plane detection using the procedure in-
troduced in Section 3.

First, the robot equipped with a single camera moves forward with an uniform
velocity on the dominant plane and captures the image sequence without obsta-
cles until n = 20. For the computation of optical flow, we use the Lucas-Kanade
method with pyramids [15]. Using Eq.(4), we compute the supervisor signal û.
Figure 7 shows the captured image and the computed supervisor signal û.

Next, the mobile robot moves on the dominant plane toward the obstacle, as
shown in Fig.8. The captured image sequence and computed optical flow u(t)
is shown in the first and second rows in Fig.9, respectively. Optical flow u(t)
and supervisor signal û are used as input signals for fast ICA. We use the Fast
ICA package for MATLAB [16] for the computation of ICA. The result of ICA
is shown in the third row in Fig.9. Figure 9 shows that the algorithm detects the
dominant plane from a sequence of images.
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Fig. 7. Doinant plane and optical flow. Left: Image sequence Î(x, y, t) of the dominant
plane. Right: Optical flow û used for the supervisor signal

Fig. 8. Experimental environment. An obstacle exists in front of the mobile robot. The
mobile robot moves toward this obstacle

For each image in a sequence, the dominant plane corresponds to an indepen-
dent component. This relation provides us a statistical definition of the dominant
plane.

5 Conclusion

We developed an algorithm for the dominant plane detection from a sequence
of images observed through a moving uncalibrated camera. The application of
ICA to optical flow vector enables the robot to detect a feasible region in which
robot can move without requiring camera calibration. These experimental results
support the application of our method to the navigation and path planning of a
mobile robot equipped with a vision system.

If we project the dominant plane of the image plane onto the ground plane
using a camera configuration, the robot detects the movable region in front of the
robot in an environment. Since we can obtain the sequence of the dominant plane
from optical flow, the robot can move the dominant plane in a space without
collision to obstacles. The future work is autonomous robot navigation using our
algorithm of the dominant plane detection.
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Fig. 9. The first, second, third, and forth rows show observed image I(x, y, t), com-
puted optical flow u(t), output signal v(t), and image of the dominant plane D(x, y, t),
respectively. In the image of the dominant plane, the white areas are the dominant
planes and the black areas are the obstacle areas. Starting from the left column, t =
322, 359, and 393
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Abstract. Connectionist models often offer good performance in pattern recog-
nition and generalization, and present such qualities as natural learning ability, 
noise tolerance and graceful degradation. By contrast, symbolic models often 
present a complementary profile: they offer good performance in reasoning and 
deduction, and present such qualities as natural symbolic manipulation and ex-
planation abilities. In the context of this paper, we address two limitations of ar-
tificial neural networks: the lack of explicit knowledge and the absence of tem-
poral aspect in their implementation. STN : is a model of a specialized temporal 
neuron which includes both symbolic and temporal aspects. To illustrate the 
STN utility, we consider a system for phoneme recognition. 

1   Introduction 

The automatic speech recognition (ASR) is the process whereby the machine tries “to 
decode” the speech signal. Most of the current speech recognition systems are based 
on hidden Markov models (HMMs) techniques [2],[4]. Another approach besides 
HMM’s are the connectionist techniques[3],[6].  

Artificial neural networks (ANNs) are good pattern recognisers, they are able to rec-
ognize patterns even when data are noisy, ambiguous or  distorted [3]. Albeit, the 
problem in neural networks is with the choice  of architecture (the only way to decide 
on a certain architecture is on a trial-and-error basis) and the lack of explanation. 
Researches in this area deal with the integration of symbolic knowledge insight of the 
connectionist architecture [5],[7].  

The purpose of this paper, is to introduce a symbolic neural network dedicated to the 
speech recognition. The particularity of the proposed system with respect to those avail-
able in literature is the introduction of both the temporal and the symbolic aspects.  

The remainder of the paper is structured as follows: The second section, defines the 
automatic speech recognition, then we introduce the ANNs. Section 3, gives an over-
view of the whole project, which is dedicated to  speech recognition. In section 4, we 
describe the conceptual elements of the first layer. Section 5, describes the decision 
layer and particularly the STN model. In section 6, practical issues of the application 
are described for phonemes recognition. Finally, a conclusion is drawn. 
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2   Speech Recognition and Artificial Neural Networks 

2.1   Speech Recognition  

The speech recognition task involves several stages, the most important of them is the 
features extraction stage. In this stage, a smallest set of features will represent the 
original signal. Then the obtained representation of the signal is compared to the ref-
erence patterns to determine the closest one. 

Most of the methods used in speech recognition (and in pattern recognition) include 
two stages : the training and the recognition stages. In the training stage, we present to 
the system a set of examples and at the end of the stage, the system will be able to 
distinguish them correctly, in this stage, patterns which were not in the training set are 
presented to the system, and it should categorize them correctly. 

2.2   Artificial Neural Networks  

Artificial neural networks are systems composed of a large number of simple intercon-
nected units that simulate brain activity. Each of these units, that are the equivalent of 
the neuron in a biological simulation, is a part of layered structure, and produces an 
output that is a non-linear function of the inputs. In the feed forward networks such as 
the multiplayer perceptron (MLP), the output of each layer of units is connected  
 

 

Fig. 1. Conceptual block diagram of human speech understanding (after [4]) 
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to units of a higher layer with directed connections that are the equivalent to brain 
synapses. In the MLP The first layer is called the input layer, the last one is the output 
layer, and between there may be one or more hidden layers. 

2.3   ANNs and Speech Recognition  

Figure 1 shows a conceptual block diagram of a speech understanding system loosely 
based on a model of speech perception in human beings [4]. This diagram clearly 
underlines the importance of connectionist models when modelling such applications. 
Early attempts to model speech recognizers uses classical MLP, these approaches 
assume static representation of the time, later attempts were made to consider the 
dynamic aspect, the most populer of them is the TDANN (Time Delay Artificial 
Neural Networks) introduced by Waibel (see [6]), here the time is not explicitly 
represented in the network and the structure is too much complicated. A connectionist 
expert system dedicated to speech recognition was presented in [1], although, this 
system did not consider explicitly the temporal parameter. 

3   NESSR: Neural Expert System for Speech Recognition 

3.1   The System Overview  

The overall system comprises three components : a recognition memory, a short term 
memory and a long term memory. NESSR is the recognition memory, which is a neu-
ral expert network. NESSR is a modular network, the first module is concerned  with 
the phoneme recognition, the second one recognizes the words. The short-term mem-
ory is the memory where temporary events are stored, which may occur during the 
inferencing process (see § 5. 3). The long-term memory is the memory where are 
stored high level information of the language, this will validate a given decision. The 
role of this memory is beyond the scope of this paper. 

3.2   Integrating Symbols Insight of the Network [1] 

We consider an MLP, so neurons are regrouped into layers which correspond to the 
levels of our application which consists on the isolated word recognition. Thus, the 
input layer represents the acoustical level, the hidden layer the phonetic level, and the 
 

 

 
 
 
 

 
 

Fig. 2. NESSR  topology 
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output layer, stands for the lexical one (figure 2). For the purpose of this paper, we are 
only concerned with the two first levels. So, the considered objects are : phonemes 
and their acoustic characteristics. 

4   The Sensory Layer: The Acoustic Level 

The input layer detects changes in the environment. Neurons of the sensory layer 
captured particularities of the pattern in entry of the network. In the speech recogni-
tion context, the cells detect features of the signal. 

4.1   The Neurons Structure: Specialized Neurons 

Since these cells belong to a symbolic network; every cell is specialized in the detec-
tion of one characteristic of the signal. We consider these characteristics as acoustic 
classes, so, we call a neuron of this layer : neuron-class. These particularities did not 
have a particular physical significance, they are numbered from 1 to n. 

4.2   How to Determine Acoustic Classes ? 

The first stage of the ASR process provides a collection of numeric vectors from the 
digitised signal. To translate this representation to a symbolic space, we perform a 
vector quantization (VQ) over all available vectors in the training stage. VQ enables 
us to replace each acoustic vector by the correspondent discreet symbol, where sym-
bols represent entries of the code-book. So, there are as many neuron-class as there 
are entries in the codebook. 

4.3   Activation of a Neuron 

A neuron-class fires if the associated characteristic is detected in the signal. The net-
work dynamic is triggered by discreet instants. At a given instant t, only one neuron-
class is active. This supposes that the presentation of a signal to the network lasts from 
the instant t0  to the instant tn.  In this interval of time many neurons can be activated. 

We notice that the successive activation of the same neuron is taken into account 
by the network (see the STN model properties). 

5   The Decision Layer: The Phonetic Level 

Activations of the sensory layer are transmitted to the following layer whose role is to 
associate to the acoustic entries a phonetic units of the language; in this case pho-
nemes. To a detected sequence of acoustic classes will be associated one phoneme. 
The recognition of a phoneme leads to an implicit segmentation of the signal at this 
point of the structure. 

5.1   Structure of Neurons: Specialized Temporal Neurons  

As for the sensory neurons the cells of this layer are meaningful. In this case every 
cell represents one phoneme of the Arabic language, we will call it :  neuron-phoneme.  
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A phoneme is defined by the detection of a sequence of acoustic classes. Thus, when 
there is correlation between the detection of an acoustic class and the recognition of a 
phoneme, a connection between the concerned neurons is initiated. The activation of 
these entries must be in a very definite order assured by the structure of the neuron, in 
which an entry i cannot be considered while the entry i-1 is not already pre–activated. 
To model such neuron we suggest the following neuron model (figure 3). 

5.2   The Phoneme Characterization 

To determine the needed acoustic classes for the detection of a phoneme : we consider 
the set of classes obtained after the VQ stage, and we operate a study of correlation 
between these prototypes and the set of phonemes. This permits us to extract the nec-
essary set of classes for the recognition of any phoneme. 

Table 1. Line of the correlation matrix 

 C1 C2 C3 C4 C5 C6 C7 … C64 
a1_1 ×    × ×    

×: detected class   

Below is a line of a table illustrating relations between the definite classes and the 
apparition of a phoneme. This table is automatically built ; each occurrence of a pho-
neme from the training set  is analysed, then quantified. When a characteristic  ap-
pears in the signal, a mark is set in corresponding phoneme box. If a class appears 
more than 90% in a phoneme, we consider that it is basic constituent of the phoneme. 
Once characteristics of the phoneme are designated their order is established. 

5.3   Activation  of  the STN 

When a characteristic Ci is detected the associated neuron-class fires and all connec-
tions from this neuron are pre-activated. All neuron-phonemes whose first characteris-
tic is Ci  are pre-activated.  Thus, a neuron-phoneme is pre-activated as soon as its 
first entry is pre-active, this supposes that several neuron-phonemes can be simulta-
neously pre-activated. Albeit, a neuron-phoneme fires only if all its entries are acti-
vated. When a neuron-phoneme fires all connections coming from the previous layer 
are deactivated, it is the same way for all competitor neurons, i.e. those which were 
simultaneously pre-active. If the detection of a characteristic can provoke the activa-
tion of more than one target cell, only one cell fires and this information is stored in 
the short-term memory. Let's notice that this situation is very rare (considering the 
number of classes 64). 

 

Fig. 3. The STN model 
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5.4    Illustrative Example 

In the figure 8, we present an example to illustrate the particular situations that consti-
tute limit conditions of the model, and justify its use in temporal applications. 

 

Fig. 4. Network connections to illustrate the STN activations 

Table 2. Activation example of neuron-phonemes 
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We consider the above network, and we assume the following sequence: 
…C1C1C5C2C3C4…, the activation of the network is transcribed in the following table. 

At the instant t = 0, the characteristic C1 is detected so the correspondent neuron-
class fires, and all its output links are pre-activated ; this implies the pre-activation of 
the three neuron-phonemes of the network; because C1 corresponds to the first entry 
for all these target neurons. 

At the instant t = 1, the same characteristic is detected, but this second activation 
doesn't bring any change in the state of the network. 

At the instant t = 2, the characteristic C5 is detected, this induces the pre-activation 
of the entry C5 of the neuron-p3. The C5 entry of neuron-p2 could not be pre-
activated, because it  could not be considered before the connection C3 is pre-
activated. 

At the instant t = 3, the characteristic C2 is detected this pre-actives the second en-
try of neuron-p1. 

At the instant t = 4, the characteristic C3 is detected this pre-actives the correspond-
ing entries in the target neurons p1 and p2. In this last pre-activation the neuron-p1 
has its entries pre-active. At this moment, it fires and all connections as well as the 
other target neurons are deactivated. 

After C3 the sequence in entry of the network is segmented and the activation of 
neuron - p1 is propagated to the following layer. A new session of phoneme recogni-
tion starts with C4. 

5.5   Particularities of the STN Model 

The structure of the STN neuron we suggest to model phonemes, allows the succes-
sive detection of the same acoustic characteristic of the signal (C1 in the previous 
example); i.e. the model allows stationary transitions of the signal. This structure also 
allows the insertion of less important classes in the phoneme among pertinent classes 
(in the previous example  C5 is inserted in p1 structure). 

6   Experimental Results 

To evaluate performances of this module of NESSR, we perform some experimenta-
tions related to Arabic phoneme recognition. In the following, we describe the practi-
cal stages: 

6.1   Features Extraction 

The context of the present work is phoneme recognition. For developing experimental 
results, a set of Arabic words, including all the phonemes, was used. This corpus 
comprises twenty five words. Words are segmented and labelled into phonemes. 
Words are recorded with pause between them, and are uttered by many people of the 
laboratory. All examples were uttered in relatively quiet room. The incoming signal is 
sampled at 11025 Hz, with 8 bits of precision, and the sampled signal is processed by 
a first-order digital filter in order to  spectrally flatten the signal. Sections of 400 
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consecutives samples are blocked into a single frame, corresponding to 400/11.025 ≈ 
36ms. Frames are spaced M samples (M=100). Then the frames are individually mul-
tiplied by a N-sample window. In ASR the most-used window shape is the Hamming 
window. From each frame, we extract a set of 13 Mel Frequency Ceptral Coefficients 
(MFCCs). 

6.2   Vector Quantization 

We consider all acoustical vectors we obtain during the training stage, we regroup 
them into disjoint classes (64) using the k-means algorithm. At the recognition 
phase, the vector quantizer compares each acoustical vector vj of the signal to stored 
vectors ci  (code-words), and vj is coded by the vector cb that best represents vj  
according to some distortion measure d. d(vj,cb)  =  min (d(vj, ci)), we use the 
Euclidian distance. 

6.3   Results 

The database comprises utterances of 25 words, uttered by 14 speakers, 8 of them 
participate in the training stage (when, we define the acoustic classes and the pho-
neme characteristics). To perform evaluation tests we form two groups : The group 
TS1, includes new utterances of speakers who have participate in the training 
stage.The group TS2, includes utterances of speakers who did not participate in the 
training stage and some of those who participate. In the table bellow, we mention 
results, we have obtained for the considered phonemes (phonemes are given in IPA 
notation ; /a/, /u/ and /i/ are Arabic vowels). 

Table 3. recognition rate in % 

 /a/ /u/ /i/ /m/ / H / 

TS1 99.2 98.4 98.2 97.6 95.1 

TS2 97.7 97 97 95.8 95 

7   Conclusion 

In this paper we have attempted to present our contribution in the separate fields of 
the neurosymbolic systems and the temporal connectionist models. Our suggestion 
tries to combine in the same network the two components throughout the proposition 
of a new neuron structure : we called STN model. An application of this model is 
proposed in the phoneme recognition.  

Although the obtained recognition rates are under our hope they still being promis-
ing ones, and we still believe that the neural expert models are a promising trend in 
resolution of perception problems, since this category of problems involve both neural 
models and symbolic reasoning. 
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Abstract. Arguing that various ways of using context in word sense dis-
ambiguation (WSD) can be considered as distinct representations of a
polysemous word, a theoretical framework for the weighted combination
of soft decisions generated by experts employing these distinct represen-
tations is proposed in this paper. Essentially, this approach is based on
the Dempster-Shafer theory of evidence. By taking the confidence of in-
dividual classifiers into account, a general rule of weighted combination
for classifiers is formulated, and then two particular combination schemes
are derived. These proposed strategies are experimentally tested on the
datasets for four polysemous words, namely interest, line, serve, and hard.

Keywords: Computational linguistics, Weighted combination of classi-
fiers, Word sense disambiguation, Dempster-Shafer theory of evidence.

1 Introduction

Word sense disambiguation is a computational linguistics task recognized since
the 1950s. Roughly speaking, word sense disambiguation involves the association
of a given word in a text or discourse with a particular sense among numerous
potential senses of that word. As mentioned in [5], this is an “intermediate
task” necessarily to accomplish most natural language processing tasks. It is
obviously essential for language understanding applications, while also at least
helpful for other applications whose aim is not language understanding such as
machine translation, information retrieval, among others. Since its inception,
many methods involving WSD have been developed in the literature (see, e.g.,
[5] for a survey). During the last decade, many supervised machine learning al-
gorithms have been used for this task, including Näıve Bayesian (NB) model,
decision trees, exemplar-based model, support vector machine, maximum en-
tropy, etc. As observed in studies of machine learning systems, although one
could choose one of learning systems available to achieve the best performance
for a given pattern recognition problem, the set of patterns misclassified by the
different classification systems would not necessarily overlap. This means that

P. Perner and A. Imiya (Eds.): MLDM 2005, LNAI 3587, pp. 516–525, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



An Evidential Reasoning Approach to Weighted Combination of Classifiers 517

different classifiers may potentially offer complementary information about the
patterns to be classified. This observation highly motivated the interest in com-
bining classifiers during the recent years. Especially, classifier combination for
WSD has unsurprisingly received much attention recently from the community
as well, e.g., [6, 4, 12, 8, 3, 15].

As is well-known, there are basically two classifier combination scenarios. In
the first scenario, all classifiers use the same representation of the input pattern.
In the context of WSD, the work by Kilgarriff and Rosenxweig [6], Klein et al. [8],
and Florian and Yarowsky [3] could be grouped into this first scenario. In the
second scenario, each classifier uses its own representation of the input pattern.
An important application of combining classifiers in this scenario is the possi-
bility to integrate physically different types of features. In this sense, the work
by Pedersen [12], Wang and Matsumoto [15] can be considered as belonging to
this scenario. In this paper, we focus on the weighted combination of classifiers
for WSD in the second scenario of combination strategies. Particularly, we first
consider various ways of using context in WSD as distinct representations of a
polysemous word under consideration, then all these representations are used as
providing individual information sources to identify the meaning of the target
word. We then develop a general framework for the weighted combination of
individual classifiers corresponding to distinct representations. Essentially, this
approach is based on Dempster-Shafer (DS) theory of evidence [13], which has
been recently increasingly applied to classification problems, e.g. [2, 16]. More-
over, two combination strategies are developed and experimentally tested on the
datasets for four polysemous words, namely interest, line, serve, and hard, and
compared with previous studies.

The paper is organized as follows. In the next section, basic notions of DS
theory will be briefly recalled. Section 3 reformulate the WSD problem so that
the general framework for the weighted combination of classifiers can be formu-
lated, and the two combination strategies can be developed. Section 4 discuss
about context representation of a target word and presents our selection. Next,
section 5 presents experimented results and the comparison with previous known
results on the same test datasets. Finally, some conclusions are presented in
Section 6.

2 Dempster-Shafer Theory of Evidence

In DS theory, a problem domain is represented by a finite set Θ of mutually
exclusive and exhaustive hypotheses, called frame of discernment [13]. In the
standard probability framework, all elements in Θ are assigned a probability.
And when the degree of support for an event is known, the remainder of the
support is automatically assigned to the negation of the event. On the other
hand, in DS theory mass assignments are carried out for events as they know, and
committing support for an event does not necessarily imply that the remaining
support is committed to its negation. Formally, a basic probability assignment
(BPA, for short) is a function m : 2Θ → [0, 1] verifying
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m(∅) = 0, and
∑

A∈2Θ

m(A) = 1

The quantity m(A) can be interpreted as a measure of the belief that is commit-
ted exactly to A, given the available evidence. A subset A ∈ 2Θ with m(A) > 0
is called a focal element of m. A BPA m is called to be vacuous if m(Θ) = 1 and
m(A) = 0 for all A �= Θ.

Two evidential functions derived from the basic probability assignment m
are the belief function Belm and the plausibility function Plm, defined as

Belm(A) =
∑

∅�=B⊆A

m(B), and Plm(A) =
∑

B∩A �=∅
m(B)

Two useful operations that play a central role in the manipulation of belief
functions are discounting and Dempster’s rule of combination [13]. The discount-
ing operation is used when a source of information provides a BPA m, but one
knows that this source has probability α of reliable. Then one may adopt (1−α)
as one’s discount rate, which results in a new BPA mα defined by

mα(A) = αm(A), for any A ⊂ Θ (1)
mα(Θ) = (1 − α) + αm(Θ) (2)

Consider now two pieces of evidence on the same frame Θ represented by two
BPAs m1 and m2. Dempster’s rule of combination is then used to generate a
new BPA, denoted by (m1⊕m2) (also called the orthogonal sum of m1 and m2),
defined as follows.

(m1 ⊕ m2)(∅) = 0,
(m1 ⊕ m2)(A) = 1

1−∑B∩C=∅ m1(B)m2(C)

∑
B∩C=A

m1(B)m2(C) (3)

It is worth noting that Dempster rule of combination has some attractive
features such as: it is commutative and associative; given two BPAs m1 and m2,
if m1 is vacuous then m1 ⊕ m2 = m2.

3 Weighted Combination of Classifiers for WSD

In this section, after reformulating the WSD problem in terms of a pattern recog-
nition problem with multi-representation of patterns. The general framework for
weighted combination of classifiers is developed for WSD problem and then, two
particular combination schemes are explored.

3.1 WSD with Multi-representation of Context

Given a polysemous word w, which may have M possible senses (classes): c1,
c2,. . . , cM , in a context C, the task is to determine the most appropriate sense
of w. Generally, context C can be used in two ways [5]: in the bag-of-words
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approach, the context is considered as words in some window surrounding the
target word w; in the relational information based approach, the context is con-
sidered in terms of some relation to the target such as distance from the target,
syntactic relations, selectional preferences, phrasal collocation, semantic cate-
gories, etc. As such, for a target word w, we may have different representations
of context C corresponding to different views of context. Assume we have such
R representations of C, say f1, . . . , fR, serving for the aim of identifying the right
sense of the target w.

Now let us assume that we have R classifiers, each representing the context
by a distinct set of features. The set of features fi, which is considered as a
representation of context C of the target w, is used by the i-th classifier. Fur-
thermore, assume that each i-th classifier (expert) is associated with a weight
αi, 0 ≤ αi ≤ 1, reflecting the relative confidence in it, which may be interpreted
as reliable probability of the i-th classifier in its prediction. As such representa-
tions fi’s (i = 1, . . . , R) are considered as distinct information sources associated
with corresponding weights serving for identifying the sense of the target w. The
problem now is how to combine these information sources to reach a consensus
decision for identifying the sense of w.

3.2 A General Framework

Given a target word w in a context C and S = {c1, c2, . . . , cM} is the set of its
possible senses. Using the vocabulary of DS theory, S can be called the frame
of discernment of the problem. As mentioned above, various ways of using the
context could be considered as providing different information sources to identify
the meaning of the target word. Each of these information sources does not by
itself provide 100% certainty as a whole piece of evidence for identifying the
sense of the target. Formally, we have the available information for making the
final decision on the sense of w given as follows

– R probability distributions P (·|fi) (i = 1, . . . , R) on S,
– the weights αi of the individual information sources (i = 1, . . . , R)1.

From the probabilistic point of view, we may straightforwardly think of the
combiner as a weighted mixture of individual classifiers defined as

P (ck|f1, . . . , fR) =
1∑
i αi

R∑
i=1

αiP (ck|fi), for k = 1, . . . , M (4)

Then the target word w should be naturally assigned to the sense cj according
to the following decision rule

j = arg max
k

P (ck|f1, . . . , fR) (5)

However, by considering the problem as that of weighted combination of
evidence for decision making, in the following we will formulate a general rule

1 Note that the constraint
∑

i αi = 1 does not need to be imposed.
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of combination based on DS theory. To this end, we first adopt a probabilistic
interpretation of weights. That is, the weight αi (i = 1, . . . , R) is interpreted
as reliable probability of the i-th classifier. This interpretation of weights seems
to be especially appropriate when defining weights in terms of the accuracy of
individual classifiers.

Under such an interpretation of weights, the piece of evidence represented by
P (·|fi) should be discounted at a discount rate of (1−αi). This results in a BPA
mi verifying

mi({ck}) = αiP (ck|fi) � pi,k, for k = 1, . . . , M (6)

mi(S) = 1 − αi � pi,S (7)
mi(A) = 0,∀A ∈ 2S \ {S, {c1}, . . . , {cM}} (8)

That is, the discount rate of (1−αi) can not be distributed to anything else than
S, the whole frame of discernment. We are now ready to formulate our belief on
the decision problem by aggregating all pieces of evidence represented by mi’s
in the general form of the following

m =
R⊕

i=1

mi (9)

where m is a BPA and ⊕ is a combination operator in general.

3.3 The Discounting-and-Orthogonal Sum Combination Strategy

As discussed above, we consider each P (·|fi) as the belief quantified from the
information source fi and the weight αi as a “degree of trust” of fi supporting
the identification for the sense of w as a whole. As mentioned in [13], an obvious
way to use discounting with Dempster’s rule of combination is to discount all
BPAs P (·|fi) (i = 1, . . . , R) at corresponding rates (1−αi) (i = 1, . . . , R) before
combining them. Thus, Dempster’s rule of combination now allows us to com-
bine BPAs mi (i = 1, . . . , R) under the independent assumption of information
sources for generating the BPA m, i.e. ⊕ in (9) is the orthogonal sum operation.

Note that, by definition, focal elements of each mi are either singleton sets or
the whole set S. It is easy to see that m also verifies this property if applicable.
Interestingly, the commutative and associative properties of the orthogonal sum
operation with respect to a combinable collection of BPAs mi (i = 1, . . . , M)
and the mentioned property essentially form the basis for developing a recursive
algorithm for calculation of the BPA m. This can be done as follows.

Let I(i) = {1, . . . , i} be the subset consisting of first i indexes of the set
{1, . . . , R}. Assume that mI(i) is the result of combining the first i BPAs mj , for
j = 1, . . . , i. Let us denote

pI(i),k � mI(i)({ck}), for k = 1, . . . , M (10)

pI(i),S � mI(i)(S) (11)
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With these notations and (6)–(7), the key step in the combination algorithm
is to inductively calculate pI(i+1),k (k = 1, . . . , M) and pI(i+1),S as follows

pI(i+1),k =
1

κI(i+1)
[pI(i),kpi+1,k + pI(i),kpi+1,S + pI(i),Spi+1,k] (12)

pI(i+1),S =
1

κI(i+1)
(pI(i),Spi+1,S) (13)

for k = 1, . . . , M, i = 1, . . . , R− 1, and κI(i+1) is a normalizing factor defined by

κI(i+1) =

⎡
⎢⎣1 −

M∑
j=1

M∑
k=1
k �=j

pI(i),jpi+1,k

⎤
⎥⎦ (14)

Finally, we obtain m as mI(R). For the purpose of decision making, we now
define a probability function Pm on S derived from m via the pignistic transfor-
mation as follows

Pm(ck) = m({ck}) +
1
M

m(S) for k = 1, . . . , M (15)

and we have the following decision rule:

j = arg max
k

Pm(ck) (16)

It would be interesting to note that an issue may arise with the orthogonal
sum operation, that is the use of the total probability mass κ associated with
conflict as defined in the normalization factor. Consequently, applying it in an
aggregation process may yield counterintuitive results in the face of significant
conflict in certain situations as pointed out in [17]. Fortunately, in the context of
the weighted combination of classifiers, by discounting all P (·|fi (i = 1, . . . , R) at
corresponding rates (1 − αi) (i = 1, . . . , R), we actually reduce conflict between
the individual classifiers before combining them.

3.4 The Discounting-and-Averaging Combination Strategy

In this strategy, instead of using Dempster’s rule of combination after discounting
P (·|fi) at the discount rate of (1 − αi), we apply the averaging operation over
BPAs mi (i = 1, . . . , R) to obtain the BPA m defined by

m(A) =
1
R

R∑
i=1

mi(A) (17)

for any A ∈ 2S . By definition, we get

m({ck}) =
1
R

R∑
i=1

αiP (ck|fi), for k = 1, . . . , M (18)

m(S) = 1 −
∑R

i=1 αi

R
� 1 − α (19)

m(A) = 0,∀A ∈ 2S \ {S, {c1}, . . . , {cM}} (20)
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Note that the probability mass is unassigned to individual classes but the
whole frame of discernment S, m(S), is the average of discount rates. Therefore,
instead of allocating the average discount rate (1−α) to m(S) as above, we use
it as a normalization factor and easily obtain

m({ck}) =
1∑
i αi

R∑
i=1

αiP (ck|fi), for k = 1, . . . , M (21)

m(A) = 0,∀A ∈ 2S \ {{c1}, . . . , {cM}} (22)

which interestingly turns out to be the weighted mixture of individual classifiers
as defined in (4). Then we have the decision rule (5).

4 Representations of Context for WSD

Context plays an essentially important role in WSD and the representation
choice of context is a factor which may be more important than the algorithm
used for the task itself on the aspect of affecting the obtained result. For predict-
ing senses of a word, information usually used in all studies is the topic context
which is represented by bag of words. Ng and Lee [11] proposed the use of more
linguistic knowledge resources including topic context, collocation of words, and
a syntactic relationship verb-object, which then became popular resources for
determining word sense in many papers. In [9], the authors use another informa-
tion type, which is words or part-of-speech and each is assigned with its position
in relation with the target word. However, in the second scenario of classifier
combination strategies, according to our knowledge, only topic context with dif-
ferent sizes of context windows is used for creating different representations of a
polysemous word, such as in Pedersen [12] and Wang and Matsumoto [15].

On the other hand, we observe that two of the most important information
sources for determining the sense of a polysemous word are the topic of con-
text and relational information representing the structural relations between the
target word and the surrounding words in a local context. Under such an obser-
vation, we have experimentally designed five kinds of representation defined as
follows: f1 is a set of unordered words in the large context; f2 is a set of words
assigned with their positions in the local context; f3 is a set of part-of-speech
tags assigned with their positions in the local context; f4 is a set of colloca-
tions of words; f5 is a set of collocations of part-of-speech tags. Symbolically, we
have

– f1 = {w−n1 , . . . , w−2, w−1, w1, w2, . . . , wn1}
– f2 = {(w−n2 ,−n2), . . . , (w−1,−1), (w1, 1), . . . , (wn2 , n2)}
– f3 = {(p−n3 ,−n3), . . . , (p−2,−2), (p−1,−1), (p1, 1), (p2, 2), . . . , (pn3 , n3)}
– f4 = {w−l · · ·w−1ww1 · · ·wr| l + r ≤ n4}
– f5 = {p−l · · · p−1wp1 · · · pr| l + r ≤ n5}

where wi is the word at position i in the context of the ambiguous word w and
pi be the part-of-speech tag of wi, with the convention that the target word
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w appears precisely at position 0 and i will be negative (positive) if wi ap-
pears on the left (right) of w. In the experiment, we design the window size
of topic context (for both left and right windows) as 50 for the representation
f1, i.e. n1 = 50, while the window size ni of local context as 3 for remaining
representations.

5 Experiments

5.1 Computing the Probabilities and Determining Weights

In the experiment, each individual classifier is a naive Bayesian classifier built
on a context representation. We have five individual classifiers corresponding to
five context representations as mentioned above. As we have seen above, in the
weighted combination of classifiers we need to compute the a posteriori proba-
bilities P (ck|fi). For the context C, suppose that the representation fi of C is
represented by a set of features fi = (fi,1, fi,2, . . . , fi,ni

) with the assumption that
the features fi,j are conditionally independent, and then P (ck|fi) is computed
using the following formula based on Bayes theorem.

P (ck|fi) =
P (fi|ck)P (ck)

P (fi)
=

P (ck)
ni∏

j=1

P (fi,j |ck)

P (fi)
(23)

In the experiment, we used 10-fold cross validation on the training data and
then the obtained accuracies of the individual classifiers are used for weights αi.
Although we determine the weights based on the accuracies of individual classi-
fiers, other methods of identifying the weights αi such as using linear regression
and least-squares-fit could be used. However, this is left for the long version of
this paper.

5.2 Data and Result

We tested on the datasets of four words, namely interest, line, serve, and hard,
which are used in numerous comparative studies of word sense disambiguation
methodologies such as Pedersen [12], Ng and Lee [11], Bruce & Wiebe [1], and
Leacock and Chodorow [9]. There are 2369 instances of interest with 6 senses,
4143 instances of line with 6 senses, 4378 instances of serve with 4 senses, and
4342 instances of hard with 3 senses.

In the experiment, we obtained the results using 10-fold cross validation. Ta-
ble 1 shows the results obtained by using two strategies of weighted combination
of classifiers and the best results obtained by individual classifiers respectively.
It is shown that both combination strategies give better results than the best
individual classifier in all cases. Interestingly also, the results showed that in
all cases the orthogonal sum based combination strategy is better than that
based on weighted sum. This can be experimentally interpreted as follows. In
our multi-representation of context, each individual classifier corresponds to a
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Table 1. Results using the proposed methods and some results from previous studies.
In the table, BW, M, NL, LC, and P respectively abbreviate for Bruce & Wiebe [1],
Mooney [10], Ng & Lee [11], Leacock & Chodorow [9], and Pedersen [12]

(%) BW M NL LC P
The proposed method

best individual based on based on

classifier weighted sum orthogonal sum

interest 78 – 87 – 89 86.8 90.7 90.9

line – 72 – 84 88 82.8 85.6 87.2

hard – – – 83 – 90.2 91 91.5

serve – – – 83 – 84.4 89 89.7

type of features so that the conditional independence assumption seems to be
realistic and, consequently, the orthogonal sum based combination strategy is
a suitable choice for this scheme of multi-representation of context. In addi-
tion, Table 1 also shows that both combination strategies also give better results
than previous work in all cases, with the exception of line which corresponds to
Pedersen’s method as the best.

6 Conclusion

In this paper we first argued that various ways of using context in WSD can be
considered as distinct representations of a polysemous word under consideration,
then these representations assigned with weights are jointed into an account
to identify the meaning of the target word. Based on DS theory of evidence,
we developed a general framework for the weighted combination of individual
classifiers corresponding to distinct representations. Moreover, two combination
strategies have been developed and experimentally tested on the datasets for
four polysemous words, namely interest, line, serve, and hard, and compared
with previous studies. It has been shown that considering multi-representation
of context significantly improves the accuracy of WSD by combining classifiers, as
individual classifiers corresponding to different types of representation suitably
offer complementary information about the target to be assigned to a sense. The
experiment also shows that the combination strategy based on orthogonal sum
is a suitable choice for this scheme of multi-representation of context.
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5. Ide, N., J. Véronis, Introduction to the Special Issue on Word Sense Disambigua-
tion: The State of the Art, Computational Linguistics 24 (1998) 1–40.

6. Kilgarriff, A., and J. Rosenzweig, Framework and results for English SENSEVAL,
Computers and the Humanities 36 (2000) 15–48.

7. Kittler, J., M.Hatef, R. P.W.Duin, and J.Matas, On combining classifiers, IEEE
Transactions on Pattern Analysis and Machine Intelligence 20 (3) (1998) 226–239.

8. Klein, D., K.Toutanova, H.Tolga Ilhan, S.D.Kamvar, and C.D.Manning, Com-
bining heterogeneous classifiers for Word-Sense Disambiguation, ACL WSD Work-
shop, 2002, pp. 74–80.

9. Leacock, C., M. Chodorow, and G. Miller, Using corpus statistics and WordNet
relations for Sense Identification, Computational Linguistics 24 (1998) 147–165.

10. Mooney, R. J., Comparative experiments on Disambiguating Word Senses: An il-
lustration of the role of bias in machine learning, Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), 1996, pp. 82–91.

11. Ng, H.T., and H.B. Lee, Integrating multiple knowledge sources to Disambiguate
Word Sense: An exemplar-based approach, Proceedings of the 34th Annual Meeting
of the Society for Computational Linguistics (ACL), 1996, pp. 40–47.

12. Pedersen, T., A simple approach to building ensembles of Naive Bayesian classifiers
for Word Sense Disambiguation, Proceedings of the North American Chapter of the
Association for Computational Linguistics (NAACL), 2000, pp. 63–69.

13. Shafer, G., A Mathematical Theory of Evidence (Princeton University Press,
Princeton, 1976).

14. Smets, P. and R. Kennes, The transferable belief model, Artificial Intelligence 66
(1994) 191–234.

15. Wang, X. J., and Y.Matsumoto, Trajectory based word sense disambiguation,
Proceedings of the 20th International Conference on Computational Linguistics,
Geneva, August 2004, pp. 903–909.

16. Wang, H., and D.Bell, Extended k -nearest neighbours based on evidence theory,
The Computer Journal 47 (6) (2004) 662–672.

17. Zadeh, L.A., Reviews of Books: A Mathematical Theory of Evidence, The AI
Magazine 5 (1984) 81–83.



 

P. Perner and A. Imiya  (Eds.): MLDM 2005, LNAI 3587, pp. 526 – 536, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Signature-Based Approach for Intrusion Detection 

Bon K. Sy 

Queens College/CUNY, Computer Science Department, 
Flushing NY 11367, U.S.A 
bon@bunny.cs.qc.edu 

Abstract. This research presents a data mining technique for discovering 
masquerader intrusion. User/system access data are used as a basis for deriving 
statistically significant event patterns. These patterns could be considered as a 
user/system access signature. Signature-based approach employs a model 
discovery technique to derive a reference ground model accounting for the 
user/system access data. A unique characteristic of this reference ground model 
is that it captures the statistical characteristics of the access signature, thus 
providing a basis for reasoning the existence of a security intrusion based on 
comparing real time access signature with that embedded in the reference ground 
model. The effectiveness of this approach will be evaluated based on 
comparative performance using a publicly available data set that contains user 
masquerade. 

1   Introduction 

Different kinds of security intrusion could occur in a networked computing 
environment [1]. For example, network intrusion could be launched via a denial of 
service attack, while system intrusion in the application layer (or layer 7) could occur 
through user masquerade. Intrusion prevention involves IT security professions to 
define security policy rules that can be translated into event patterns that, through real 
time monitoring, could trigger an alert for a potential intrusion [2, 3]. 

The challenge for intrusion detection is to develop scalable, extensible data mining 
techniques that can efficiently examine the audit trials in real time to accurately 
pinpoint the occurrence of an intrusion. Instead of relying on event patterns that 
attempt to capture an intrusion, we propose to rely on event patterns that attempt to 
capture what is expected to be the normal behavior of users and systems. In other 
words, our research is focused on developing models that signify the access signature 
as opposed to the intrusion signature. The rationale behind this shift in paradigm is 
that data are readily available to derive the statistical information about the event 
patterns, and thus the access signature. On the other hand, significant statistical 
information from sporadic intrusion activities may hardly be available, if any. 

In this research we propose a signature-based approach for discovering 
masquerader intrusion. Masquerader intrusion refers to an intruder who executes 
system commands or requests system services under the identity of someone else, 
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often other legitimate user. In our proposed signature-based approach, statistically 
significant event patterns that characterize the user/system access behavior will be 
identified based on the concept of association patterns discussed in our previous 
research [9]. These statistically significant event patterns will be used to define a 
unique signature about the user/system access behavior. A probability model, referred 
to as a reference model, preserving the statistical information embedded in the unique 
signature will then be derived [10]. In the production cycle, statistically significant 
event patterns will be derived using windowed sequential real time user/system access 
data, and these event patterns of a windowed sequential data block defines a 
transitional signature. Inference about the existence of an intrusion will then be based 
on the degree of statistical deviation as measured by comparing the transitional 
signature with that embedded in the reference model.  

2   Background Discussions 

The signature based approach for intrusion detection presented in this paper could be 
considered as a behavior-based approach for statistical anomaly detection; where the 
essence of the signature based approach is to capture normal behavior  as opposed to 
unusual behavior  in terms of signature patterns. 

Many different well-known techniques have been proposed for statistical anomaly 
detection. Many such techniques rely on detecting change point or outlier. One 
common approach towards change point or outlier detection is to determine how 
much an observed event (in question) is deviated from some reference “normal event 
set” using a distance measurement such as L-norm, Hamming distance, Manhattan 
distance, or vector cosine measure. Another common approach [13] is to determine 
whether an observed event (in question) appears in the low density regions of the 
probability distribution characterizing the “normal event set.” More recently, novel 
approach based on the use of n-gram matching rule [14] for positive and negative 
detection, as well as hybrid Markov model chain and rarity index model (based on 
extending the STIDE model) were also proposed [6,7].  

In comparison to the existing techniques for statistical anomaly detection, 
signature based approach presented in this paper is unique in two regards. First, 
“normal event set” is characterized by a set of statistically significant association 
patterns referred to as a signature. These statistically significant association patterns 
bear an important information-theoretic characteristic; namely, frequently co-occurred 
events in a pattern do not just happen by chance as measured by mutual information 
criterion. Second, the distance measurement is then conducted under a two-way 
mutual comparison as opposed to a one-way comparison as typical in standard 
posterior probability measure. In a one-way comparison, observed event sample is 
compared against normal event observation. In a two-way comparison, access 
signature is compared against the observed model (of possible intrusion), and the 
signature of observed events (of possible intrusion) is compared against the access 
model to arrive a composite measurement. These are the distinctions of the signature-
based approach in comparison to other approaches such as rarity criterion or 
posteriori probability based matching rule of n-gram samples.  
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3   Deriving Statistically Significant Patterns 

In this research, the type of intrusion we focus on is masquerader intrusion in a 
Unix/Linux environment; i.e., an intruder injects operating system commands into the 
shell environment for a command execution under someone else identity. In a 
Unix/Linux system, “praudit” utility can be installed to keep track of the command 
execution history of a user [4]. Consider the following example of the command 
execution history of a user since a successful login session is established: pine, emacs, 
netscape, ssh, chmod, sftp, javac, java, …. 

The problem of discovering masquerader intrusion is to determine from 
the command execution history such as the one shown above whether 
some command(s) in the command execution history is/are injected by an 
intruder but not issued by the user who owns the successful login session. 

While it is conceivable to define sequential intrusion patterns as a basis for 
intrusion detection, there are three fundamental challenges of this approach [5,6,7]. 
First, the size of the security policy rule set and the corresponding intrusion patterns 
will grow over time as new intrusion methodologies are discovered. Second, real 
world intrusion seldom occurs frequent enough to accumulate statistical evidence for 
timely intrusion detection. Third, it may not be possible to always define security 
policy rules without causing conflict to what may be an expected acceptable activities. 
Consider a general security policy: “Change of the file access privilege on the 
password table should be trapped and interpreted as a potential intrusion,” this may be 
translated to an event trigger defined by “chmod 770 /etc/passwd”. Yet such a policy 
will cause interference on backup/recovery during the regular maintenance process.  

To address the limitations just mentioned, we propose a signature concept that 
attempts to capture the unique characteristic of a legitimate user. The premise of 
applying the concept of signature is that there exist some unique access patterns of a 
legitimate user. Imagine in an extreme case where each legitimate user always 
performs the same activity upon establishing a successful login session; e.g., checking 
email (using pine), launching emacs to write a report to the supervisor, launching 
netscape to check company news events, … etc. The likelihood of having two or more 
users with identical command execution sequence would be very small. Therefore, 
one may consider the entire command execution sequence of a user as an access 
signature. This is similar to the idea of uniqueness for intrusion detection discussed 
elsewhere [7]. Obviously defining an access signature based on the entire command 
execution sequence is unlikely to be computationally manageable. In addition, no user 
will have the execution sequence completely identical upon different successful login 
sessions  even certain commands or command sequence may always co-occur and 
appear as association patterns. An alternative approach is to consider categorizing the 
commands into few categories and to focus on low order association patterns [8] as an 
access signature. In doing so, it would be relatively more computationally manageable 
while we try to “optimize” the uniqueness of the access signature of a user. 

In this research every Unix/Linux command is categorized into one of the 
following five groups: (1) Networking, (2) OS/System application/shell script, (3) 
File access, (4) Security, and (5) Communication. 
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The example of the command execution history shown earlier “pine, emacs, 
netscape, ssh, chmod, sftp, javac, java, ….” can then be translated into a category 
sequence “5 3 2 5 4 3 2 2…” Furthermore, the category sequence can be shifted and 
aligned when considering the low order association event patterns. In this example, 
shift and alignment for considering 4th order association patterns that accounts for the 
4-tuple patterns (x1 x2 x3 x4) of the command execution history will be (x1:5 x2:3 
x3:2 x4:5), (x1:3 x2:2 x3:5 x4:4), (x1:2 x2:5 x3:4 x4:3), … etc. In this research, an 
access signature is defined as the collection of the statistically significant association 
patterns of 4th order (x1 x2 x3 x4) using the criteria below [9]: 

   Support measure Pr(x1, x2, x3, x4)  some predefined threshold                    (1), 

and  
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where MI(x1,x2,x3,x4) = Log2Pr(x1 x2 x3 x4)/Pr(x1)Pr(x2)Pr(x3)Pr(x4) 

N = sample population size 
2 = Pearson chi-square test statistic defined as (oi – ei)2/ei with 

oi = observed count = N Pr(x1 x2 x3 x4) 
ei = expected count under the assumption of independence 

E
)

= Expected entropy measure of estimated probability model  
E’ = Maximum possible entropy of estimated probability model 
O  = order of the association pattern (i.e., 4 in this case) 

The choice of the 4th order association patterns is ad-hoc but under a careful 
consideration on balancing the representational and computational complexities. 
Further details about statistically significant patterns could be found in our previous 
paper [9]. Note that the above two criteria guarantee that any pattern considered 
statistically significant would have appeared frequently, and the co-occurrence of 
the associated events in a pattern does not just happen independently and by  
chance [10]. 

Since there are only 625 4th order association patterns for five command 
categories, one could argue that an intruder just has to run commands that belong to 
the same group as the legitimate user to reduce the chances of detection. This is true 
under the assumption that the intruder has the prior knowledge about the behavior 
of the legitimate user. If this is the case, no behavior-based intrusion detection will 
succeed because the intruder and legitimate user will no longer be distinguishable. 
And if the intruder is trying to guess the command sequence of the patterns that 
represent the access signature, there are C(625,k) combinations; where k is the 
number of patterns defining the access signature. In this case, we will want to 
define the time period within which the legitimate user must reveal the access 
signature, while the likelihood of guessing the correct set of patterns defining the 
access signature is low. 
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4   Identifying Probability Reference Model 

Referring to the example in the previous section, there are 54=625 possible association 
patterns for (x1 x2 x3 x4). Let’s assume three statistically significant association 
patterns are found: (x1:3 x2:2 x3:5 x4:4) (x1:4 x2:3 x3:2 x4:2) (x1:5 x2:4 x3:3 x4:2). 
Let’s further assume the following probability information related to the three 
significant patterns just shown is available as below: 

    Pr(x1:3 x2:2 x3:5 x4:4) = 0.03  Pr (x1:4 x2:3 x3:2 x4:2) = 0.05 
   Pr (x1:5 x2:4 x3:3 x4:2)=0.07  Pr(x1:3)=0.15  Pr(x1:4)= 0.37   Pr(x1:5) = 0.23 
   Pr(x2:2) = 0.13    Pr(x2:3) = 0.35    Pr(x2:4) = 0.14     Pr(x3:2) = 0.27 
   Pr(x3:3) = 0.17    Pr(x3:5) = 0.3     Pr(x4:2) = 0.45     Pr(x4:4) = 0.12 

Note that the degree of freedom of a joint probability model Pr(x1 x2 x3 x4) is 54 
(=625) - 1 – 14 (# of constraints) = 610. Therefore, there are multiple probability 
models that can satisfy the conditions. The process of model discovery is beyond the 
scope of this paper. Readers interested in further details are referred to chapter 9 of 
our book [10]. Nonetheless, we show one such probability model that is locally 
optimized to minimize the bias to unknown information:  

Pr(x1:1 x2:1 x3:2 x4:2) = 0.057272747 Pr(x1:1 x2:2 x3:5 x4:1) = 0.057272717 
Pr(x1:1 x2:3 x3:1 x4:1) = 0.12454547 Pr(x1:1 x2:4 x3:5 x4:4) = 0.010909086 
Pr(x1:3 x2:1 x3:2 x4:1) = 0.12  Pr(x1:3 x2:2 x3:5 x4:4) = 0.03 
Pr(x1:4 x2:1 x3:1 x4:2) = 0.09727271 Pr(x1:4 x2:1 x3:5 x4:1) = 0.026363678 
Pr(x1:4 x2:3 x3:2 x4:2) = 0.05  Pr(x1:4 x2:3 x3:5 x4:2) = 0.1754545 
Pr(x1:4 x2:4 x3:3 x4:1) = 0.020909093 Pr(x1:5 x2:1 x3:3 x4:4) = 0.079090910 
Pr(x1:5 x2:2 x3:2 x4:1) = 0.042727260 Pr(x1:5 x2:4 x3:1 x4:1) = 0.038181823 
Pr(x1:5 x2:4 x3:3 x4:2) = 0.07 

Where the remaining Pr(x1 x2 x3 x4)s equal to 0. 

The significance of an optimal probability model just shown is that it preserves the 
statistical properties of the significant association patterns while minimizing bias. In 
other words, the probability information of the model will reveal the statistically 
significant association patterns that define an access signature. This optimal 
probability model will be referred to as a reference model for a user.   

5   Chi-square Goodness of Fit for Intrusion Detection  

To determine masquerader intrusion, the command execution history will be 
examined in a regular time interval. If the command execution history of a user within 
some time interval could not produce a matching access signature with sufficient 
confidence level, then it will serve as a basis to suspect the existence of a 
masquerader intrusion. In the statistical inference framework, Chi-square test statistic 

2 is used to determine the goodness of fit between the access signature revealed in 
the command execution history and that in the reference model. Specifically, we test 
the following null hypothesis versus the alternative hypothesis: 
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Null Hypothesis: 
Masquerader intrusion exists if 2 = i=1

k (oi – ei)
2/ei > 2

(1- ,d) where  
   k is the number of significant patterns {sspi: i=1 ..k}  revealed in the source model, 
   N is the size of the command execution history within some given time interval, 
   ei = N·Prsource(sspi) is the expected count of the ith pattern sspi derived from source 

model, 
   oi = N·Prtarget(sspi) is the observed count of the ith pattern sspi derived from target 

model,  
   2

(1- ,d) is the value of the Chi-square random variable with a degree of freedom  
d =k -1;     where 0 <  < 1 is the significance level. 

Alternative Hypothesis: 
Masquerader intrusion does not exist if 2 = i=1

k (oi – ei)
2/ei  2

(1- ,d) 
In the formulation just shown, if sspis are statistically significant patterns 

revealed in the reference model, then the source model is the reference model 
described in the previous section. The target model is then the probability 
distribution estimated by observing the actual frequency count of the occurrence of 
the sspis in the command execution history within the given time interval. On the 
other hand, if sspis are significant patterns revealed in the data block pertaining to 
the command execution history, then the source model is the probability 
distribution estimated from the data block while the target model is the reference 
model described in the previous section.  

In other words, the goodness of fit statistical test will be conducted twice. First, it 
will be from the perspective of the reference model by comparing the access signature 
of the data block against its own signature. Second it will be from the perspective of 
the access data block by comparing the access signature in the reference model 
against its own signature. By combining the result of the statistical inference tests, a 
strong conclusion on the existence of masquerader intrusion could be drawn if the null 
hypothesis survives in both tests, or a weak conclusion on the existence of masquerader 
intrusion could be drawn if the null hypothesis survives in at least one test. 

6   Experimental Study and Result Discussion 

The proposed signature-based approach for masquerader intrusion is evaluated using 
the masquerade data available in the public domain for comparing various intrusion 
detection methods [11]. The masquerade data consists of 50 groups  each group is 
the access data of one user. Each data group for a user contains 15000 commands. 
The first 5000 commands within each data group do not contain any masqueraders 
and are used for the training purposes. The remaining 10000 commands are divided 
into 100 blocks. Within each block there are 100 commands that are used for testing 
purposes. The data blocks for testing are seeded with user masquerade that simulates 
masquerader intrusion. The location of masquerader intrusion is also provided in the 
masquerade data for evaluation purposes. About 5% (231 out of 5000) of the test data 
contain masquerades. 

The masquerade data also provide additional information. At any given block after 
the initial 5000 commands a masquerade starts with a probability of 1%. If the 
previous block was a masquerade, the next block will also be a masquerade with a 
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probability of 80%. However, this information is not used in this experimental study. 
The following procedure is applied to each one of the 50 users in the study: 

Step 1: Reproduce the data column of the first 5000 commands by shifting the data 
by one time unit. Repeat it 4 times to get a 4-column data table in which each row is 
a sequential pattern of 4 Unix commands appearing in the command execution 
history. 
Step 2: Extract the first 5000 rows of the four-column data. Apply the function made 
available elsewhere [10] that implements the two criteria described in section 3 to 
discover statistically significant patterns. This set of statistically significant patterns 
defines the access signature of a user. 
Step 3: Based on the set of the statistically significant patterns that defines the access 
signature, define the constraint set similar to that described in section 4.  
Step 4: Apply the model discovery utility made available elsewhere [10] to derive the 
probability reference model for a user. This probability reference model, Prref, reveals 
the access signature and has the (local) minimum biased information.  
Step 5: For each one of the 100 test data block that has been enumerated into four-
column data, apply the following procedure: 

Step 5a: Reproduce the data column of the 100 Unix commands in the block by 
shifting the data by one time unit. Repeat it four times to get a four-column data table 
similar to that described in step 1. 

Step 5b: Apply the function made available elsewhere [10] that implements the two 
criteria described in section 3 to discover statistically significant patterns. This set of 
statistically significant patterns defines the access signature of the test data. 

Step 5c: For each statistically significant pattern of a target user, derive the 
observed count oi. Likewise, derive the expected count ei as described in section 5. 

Step 5d: Apply statistical inference based on Chi-square goodness of fit as 
described in section 4 to determine whether masquerader intrusion exists.  

Step 6: Derive the correct detection rate, the false positive rate, and the false negative 
rate based on the result of the 100 test data blocks in step 5. 

In order to determine the effectiveness of the approach, Receiver Operating 
Characteristic (ROC) curve [12] analysis is used to evaluate the result. The followings 
are the parameters used in a ROC curve analysis: 

AP = Actual total positive counts in the test data (masquerader intrusion) 
AN = Actual total negative counts in the test data (no masquerader intrusion) 
PP = Number of predicted true positive counts 
PF = Number of predicted false positive counts 
FP = False positive rate = PF/AN 
TP = True positive rate = PP/AP 

An ROC curve is a graphical plot of FP (X-axis) against TP (Y-axis). Note that 
both FP and TP are between 0 and 1. An ideal intrusion detector will have a 
performance where TP = 1 and FP = 0; i.e., every masquerader intrusion is accurately 
captured with no false alarm. When TP = 1 and FP = 0, it also implies that there is no 
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false negative (since TP = 1) and all negative counts in the test data are correctly 
concluded by the detection system as no intrusion. 

Referring to the threshold value 2
(1- ,d) defined in section 4, FP and TP will vary 

with different choices of . An ROC curve shows the changes of TP vs. FP as 
different threshold values are applied. An intrusion/anomaly detector is optimized if 
its threshold value 2

(1- ,d) yields a point (FP, TP) that has the shortest distance to (0,1) 
in an ROC curve. 

An ROC curve is derived for every single user based on the six steps described 
previously. An ROC curve using all the data  referred to as overall ROC  is also 
derived to illustrate the overall performance. In the case of overall ROC, all 5000 
blocks (100 blocks for each of the 50 users) are used as testing data. Again, an overall 
ROC curve is obtained by varying the threshold 2

(1- ,d). 
Referring to section 4, a Chi-square test statistic 12 could be derived by using the 

training data as the source, and the testing data as the target. Likewise, another Chi-
square test statistic 22 could be derived by using the testing data as the source, and 
the training data as the target. We then derive an overall Chi-square test statistic 2 
based on the linear combination of 12 and 22; i.e., 2 = (1-w) · 12 + w· 22. The 
choice of w varies from 0 to 1 with an increment of 0.1. In applying the statistical 
inference described in section 4 using the test statistic 2 = (1-w) · 12 + w· 22, the 
optimal setting for w is 0.1. Using the test statistic 2, the overall ROC curve and the 
ROC curves for the 50 users (but skipping those with a testing data set that has no 
intrusion) are shown in Fig.1. 

Fig. 2 shows the ROC band envelope that encloses all the ROC curves, the overall 
ROC curve, and the estimated ROC curve. The estimated ROC curve is based on 
“averaging” all ROC curves. Fig. 2 also shows the ROC curves that are one and two 
standard deviation away from the estimated ROC curve. In Fig. 2, one could note that 
the ROC band is wide due to a wide variation across all 50 users. Consequently, it is 
no surprise that the estimated ROC matches closely to the overall ROC curve only 
partially at FP < 0.2 or FP > 0.8.  

Fig. 3 and Fig. 4 show the ROC curves of different selected users. Fig. 5 shows the 
ROC curve for six different approaches reported elsewhere [7]. Fig. 5 is reproduced 
for gaining insights into achievable performance. An interesting observation in 
comparing Fig. 1 and Fig. 3 is that the overall optimal performance for 50 users is 
better than that for 8 selected users as shown in the corresponding ROC curve. But by 
comparing Fig. 3 and Fig. 4, the optimal performance for 6 selected users is better 
than that of all 50 users and 8 selected users. In other words, one must be mindful that 
performance comparison is only meaningful when the ROC curves generated for 
different methods are based on the same population of sample users. 

One final note about the experimental result is that only normal event/behavior 
instances are available in the training data set for deriving access signature and 
reference model. If we are willing to reduce the size of the testing data, it is 
conceivable to include some of the masquerade intrusion test data as training data to 
explore the idea of incorporating both access signature and intrusion signature in a 
reference model. To extend the signature-based approach to incorporate intrusion 
signature, we only need to modify the statistical hypothesis test by introducing two 
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additional test statistics in additional to 12 and 22 described earlier to account for the 
consideration of known intrusion patterns. This additional study will be included in 
our next report. 
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Fig. 1. ROC curves of all 50 users        Fig. 2. ROC band and estimated ROC curve 
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Fig. 3. ROC curve of 8 selected users       Fig. 4. ROC curve of 6 selected users 
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Fig. 5. ROC curves for six different approaches 

7   Conclusion 

A signature-based approach is presented for discovering masquerader intrusion. In 
this proposed approach we introduce the concept of an access signature, which is a 
collection of statistically significant association patterns. The concept of an access 
signature is appealing because it allows one to derive a probability model that 
captures the uniqueness of the access behavior of a user while taking into the 
consideration of the intra-usage variation. Equally important, the derived probability 
model provides a basis for detecting masquerader intrusion efficiently. As shown in 
this paper, efficient detection on masquerader intrusion is simply a process of 
matching the real time online access signature against the one in the probability 
reference model based on Chi-square statistical test for goodness of fit. The 
experimental study also shows an encouraging result in the comparative evaluation. 
Although we focus on this paper only the masquerader intrusion, the signature-based 
approach is extensible for incorporating intrusion signatures, as well as for 
discovering other kinds of intrusion; e.g., network intrusion. This will be the focus of 
our future research. 
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Abstract. Given a transaction database as a global set of transactions
and its sub-database regarded as a local one, we consider a pair of item-
sets whose degrees of correlations are higher in the local database than
in the global one. If they show high correlation in the local database,
they are detectable by some search methods of previous studies. On the
other hand, there exist another kind of paired itemsets such that they
are not regarded as characteristic and cannot be found by the methods
of previous studies but that their degrees of correlations become dras-
tically higher by the conditioning to the local database. We pay much
attention to the latter kind of paired itemsets, as such pairs of itemsets
can be an implicit and hidden evidence showing that something partic-
ular to the local database occurs even though they are not yet realized
as characteristic ones. From this viewpoint, we measure paired itemsets
by a difference of two correlations before and after the conditioning to
the local database, and define a notion of DC pairs whose degrees of
differences of correlations are high. As the measure is non-monotonic,
we present an algorithm, searching for DC pairs, with some new prun-
ing rules for cutting off hopeless itemsets. We show by an experimental
result that potentially significant DC pairs can be actually found for a
given database and the algorithm successfully detects such DC pairs.

1 Introduction

In the studies of data mining from transaction databases, many studies have
been paying much attention to finding itemsets with high supports, paired item-
sets appeared in association rules with high confidence [1], or paired itemsets
with strong correlation [6, 7, 8, 9]. These notions are considered useful for distin-
guishing characteristic itemsets from other ones in a single transaction database.
A similar strategy based on the notion of change of supports, known as Emerg-
ing Patterns [2, 3], is successful even for finding itemsets characterizing either of
two databases. All of the notions about itemsets are thus proposed to extract
(paired) itemsets required to be characteristic in a given database or either of a
given pair of databases.

P. Perner and A. Imiya (Eds.): MLDM 2005, LNAI 3587, pp. 537–548, 2005.
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However, as has been indicated in the study of Chance Discovery [10], some
itemsets not characteristic in the above sense are also useful, as they are poten-
tially significant under some condition. For instance, suppose we have a transac-
tion database for supermarkets in a particular area and the database includes the
information of ages of customers and goods on sale as items. We here consider
the problem of capturing some correlations between some ages and some goods
in the database. We regard the correlations as an interest of customers of some
ages in some goods. For example, consider a case that degrees of the correlations
are not high in a particular area but are very low in a global area including the
particular area. The correlation cannnot be found by search methods of previous
studies because the degrees of the correlations are not high in both global and
particular areas. However, there is a possibility that the customers of the ages
are interested in the goods in the particular area more than in the global area
by some factor even if the correlations in the particular area are not regarded
as characteristic. It may be worth remarking this specific phenomenon as an
implicit and hidden evidence in order to consider a new strategy for sale. More-
over, consider a case that the database includes the information of time as item.
In the particular area, we can find characteristic correlations with high degree
of correlation in time t1 or t2 after t1 by search methods of previous studies.
But we may want to know an implicit correlation which may become a charac-
teristic correlation in t3 after t2. In short, we want to know customers of some
ages start to be interested in some goods. In the case, non-characteristic corre-
lations in t2 with high degrees of differences of correlations from t1 to t2 may be
useful.

From the viewpoints mentioned in the above, for a given global database
and its local database obtained by a certain conditioning, the purpose of this
paper is to present an algorithm for finding pairs of itemsets such that (1) the
paired itemsets are not necessarily characteristic, where we say that two itemsets
are characteristic in a database if the correlation between them is high, (2) the
degrees of correlation become much higher in the local database than ones in
the global database. That is, we are going to observe the degrees of difference of
correlations before and after the conditioning to the local database. Such a pair
of itemsets with high degrees of difference of correlations is called a DC pair. We
confirm by an experiment that potentially significant DC pairs can be actually
found for a given database.

It is generally a hard problem to find DC pairs, as the degrees of difference of
correlations are never monotonic w.r.t. the standard ordering of itemsets, namely
the set inclusion. For this reason, we consider a restricted problem under given
two parameters, ζ and ε. More precisely speaking, we evaluate the degrees of
difference of correlations by a function defined with ζ and ε and restrict DC
pairs we try to find. Then, we prove that a monotone property over itemsets
can be observed in the mining of DC pairs depending on ζ or ε. Based on this
monotonic property, we can design some pruning rules for cutting off hopeless
itemsets X and Y not satisfying the constraints of DC pairs.
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1.1 Related Works and Paper Organization

There exist many works in the field of data mining that are based on a strategy
of contrasting two or more databases in order to extract significant properties
or patterns from a huge data set. Particularly, data mining techniques, known
as contrast-set mining [2, 3, 4, 5], have been designed specifically to identify dif-
ferences between databases to be contrasted.

For instance, in the study of Emerging Patterns [2, 3] for two transaction
databases, itemsets whose supports are significantly higher in one database than
in another one are considered significant, as they can be candidate patterns for
distinguishing the former from the latter. A similar strategy is also used in the
system STUCCO [4] in order to obtain characteristic itemsets in one database
based on χ2 test. In addition, the system, Magnum Opus [5], examines relations
between itemsets and a database among several databases. On the other hand,
what this paper tries to find are paired itemsets whose correlations drastically
increase in one database. Thus we can say that the subject of this paper is a
kind of ”contrast-set mining of correlations between itemsets”.

Secondly, many methodologies have been proposed to detect characteristic
correlations in a single database [6, 7, 8]. In these studies, using some function
measuring the degree of correlation between itemsets, strongly correlated item-
sets in a given database or in one database from given two databases are exam-
ined. Thus, these methods are also used to discover itemsets or family of item-
sets that are characteristic in one database. On the other hand, the algorithm
presented in this paper is designed so as to find even paired itemsets whose cor-
relation in one database is not significantly high but is significantly higher than
correlation in another database. Our algorithm may find the characteristic paired
itemsets as special cases, but is never supposed to find only characteristic ones.
To find these paired itemsets, we present in this paper some new pruning rules so
that the algorithm successfully detects even non-characteristic paired itemsets.

Finally, several notions about correlations have been proposed and used in the
above previous studies from information theoretic or statistical viewpoints, then
we describe our standpoint that we use a measure to evaluate correlations. If we
need to consider even negative events that itemsets do not appear in transactions,
the notion of correlations based on χ2-test shall be taken into account. But this
paper is based on the notion of self mutual information without taking log to
measure positive relationships between events that itemsetsoccur.

The rest of this paper is organized as follows. The next section defines some
terminologies used throughout this paper. In Section 3, we introduce the notion
of DC pairs and define our problem of mining DC pairs. An algorithm for finding
DC pairs is described in Section 4. Section 5 presents our experimental results.
In the final section, we summarize our study and discuss future work.

2 Preliminaries

Let I = {i1, i2, · · · , in} be a set of items. An itemset is a subset of I. A
transaction database D is a set of transactions, where a transaction is an itemset.
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We say that a transaction t contains an itemset X, if X ⊆ t. For a transaction
database D and an itemset X, the occurrence of X over D, denoted by O(X,D),
is defined as O(X,D) = {t|t ∈ D ∧ X ⊆ t}, and the probability of X over D,
denoted by P (X), is defined as P (X) = |O(X,D)|/|D|.

For an itemset C, a sub-database of D w.r.t. C, denoted by DC , is defined as
the set of transactions containing C in D, that is, DC = O(C,D). The comple-
ment of DC w.r.t. D is denoted by DC and is defined as DC = D −DC .

For itemsets X and Y , the correlation between X and Y over a transaction
database D, correl(X,Y ), is defined as correl(X,Y ) = P (X ∪ Y )/P (X)P (Y ).
For a sub-database DC , the correlation between X and Y overDC , correlC(X,Y ),
is given by correlC(X,Y ) = P (X ∪ Y |C)/P (X|C)P (Y |C), where P (X|C) =
P (X ∪ C)/P (C). Note here that correlations are defined for only itemsets X
whose supports in D and DC are non-zero. We regard a pair of X and Y such
that correl(X,Y ) > 1 as characteristic since P (X|Y ) > P (X) holds. Notice that
P (Y |X) > P (Y ) holds, too. Similarly, we regard a pair of X and Y such that
correl(X,Y ) ≤ 1 as non-characteristic.

3 DC Pair Mining Problem

In this section, we define a notion of DC pairs and our problem of mining them.
For a pair of itemsets X and Y , we especially focus on “difference of correla-

tions observed by conditioning to the local database”. The difference of correla-
tions is measured by the following ratio:

change(X,Y ;C) =
correlC(X,Y )
correl(X,Y )

=
P (C)P (C|X ∪ Y )
P (C|X)P (C|Y )

. (1)

Let ρ(> 1) be an admissible degree of difference of correlations. In our framework,
a pair of itemsets X and Y is considered significant if change(X,Y ;C) ≥ ρ
holds. Since we assume C is given by users, P (C) can be regarded as aconstant.
Therefore, the change is actually evaluated with the following function g:

g(X,Y ;C) =
P (C|X ∪ Y )

P (C|X)P (C|Y )
. (2)

A pair of itemsets X and Y is called a DC pair if g(X,Y ;C) ≥ ρ/P (C). We
try to find all DC pairs efficiently. It should be noted here that the function g
behaves non-monotonically according to expansion of itemsets X and Y . So we
cannot apply a simple pruning method like one Apriori adopted [1]. Therefore,
we approximate the above problem according to the following naive strategy:

Find pairs of X and Y which give higher values of P (C|X ∪Y ), keeping
the values of P (C|X) and P (C|Y ) small.

With a new parameter ζ (0 ≤ ζ ≤ 1), our approximated problem is precisely
defined as follows:
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Definition 1. DC Pairs Mining Problem
Let C be an itemset for conditioning. Given ρ and ζ, DC pair mining problem
is to find any pairs of X and Y such that P (C|X ∪ Y ) > ζ, P (C|X) < ε and
P (C|Y ) < ε, where ε =

√
ζ · P (C)/ρ.

4 Algorithm for Finding DC Pairs

In this section, we present an algorithm to solve the DC pair mining problem.
In Section 3, by using parameters ζ and ε, we restrict DC pairs we try to find.
But, P (C|Z) behaves non-monotonically according to expansion of an itemset
Z as well as g. This means that there is a possibility that we have to examine
all itemsets in database since a simple pruning method cannot be used. Then,
we prove some pruning rules by considering the problem of mining DC pairs
in top-down manner. Therefore, in this paper, we explain an algorithm which
candidates Z for compound itemsets of DC pairs such that P (C|Z) > ζ are
found at first in top-down manner. In order to examine itemsets in top-down
manner, we firstly enumerate maximal itemsets in the local database DC because
P (Z|C) > 0 must hold. After all, the computation for mining DC pairs is divided
into two phases:

Phase1: Identifying Candidates for Compound Itemsets
An itemset Z such that P (C|Z) > ζ is identified as a candidate itemset from
which DC pairs X and Y are obtained as Z = X ∪ Y .

Phase2: Dividing Compound Itemsets
Each candidate Z is divided into two itemsets X and Y such that Z = X∪Y ,
P (C|X) < ε and P (C|Y ) < ε.

In the algorithm, there is a case that some candidate Z may not be decom-
posable. Therefore, we consider checking the possibility for Z to be divided into
some DC pair. Then, we first describe a basic enumeration schema, and then
introduce more refined one taking the decomposability into account.

4.1 Pruning Search Branches by Dropping Items

For each maximal itemset Zmax found in DC , we first examine Zmax, then its
proper subsets are examined, and so on. During this search, we can prune useless
branches (itemsets) based on the following observation.

Let Z be an itemset containing an item i. Suppose that there exists a subset
Z ′ of Z such that i ∈ Z ′ ⊂ Z and P (C|Z ′) > ζ. Since P (C|Z ′) = P (C)P (Z ′|C)/
P (Z ′) > ζ, P (Z ′|C) > ζ · P (Z ′)/P (C) holds. Therefore, P (i|C) ≥ P (Z ′|C) >
ζ ·P (Z ′)/P (C) ≥ ζ ·P (Z)/P (C). As the result, we have P (C∪i) > ζ ·P (Z). This
means that if P (C ∪ i) ≤ ζ · P (Z) holds, then we cannot obtain any subset Z ′

of Z containing i such that P (C|Z ′) > ζ. That is, assuming Z as a search node
in Phase1, if P (C ∪ i) ≤ ζ · P (Z) holds, any immediate subset of Z containing i
does not have to be examined. Therefore, we can safely drop i from Z.
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Dropping Items:
For a search node (itemset) Z and an item i ∈ Z, if P (C ∪ i) ≤ ζ · P (Z), any
subset Z ′ containing i never be a child node of Z in our top-down construction
process. In other words, any child node consists of only items in Z that are not
dropped.

As a special case, if any item i ∈ Z is dropped, we do not need to examine
any subset of Z.

Termination Condition:
For a search node (itemset) Z, if max{P (C ∪ i)|i ∈ Z}/ζ ≤ P (Z) holds, then Z
does not have to be expanded further.

The termination condition provides a theoretical lower bound of our search
in Phase1. Since i ∈ Z and P (Z|C) > 0, then P (i|C) > 0 holds. Therefore, we
can obtain the following.

Lower Bound of Search in Phase1:
If a search node Z is visited in Phase1, then P (Z) ≤ maxpζ , where maxpζ =
max{P (C∪i)|P (i|C) > 0}. In other words, any search node Z whose probability
exceeds maxpζ never be generated in Phase1.

4.2 Pruning Search Branches Based on Decomposability

The pruning mechanism just discussed above can become more powerful by
taking some constraint in Phase2 into account. More concretely speaking, we
can perform the operation of “Dropping Items” more frequently.

In Phase2, each candidate Z found in Phase1 is divided into two itemsets X
and Y such that P (C|X) < ε and P (C|Y ) < ε. Similar to the above discussion,
for any i ∈ X ∪ Y (= Z), P (C ∪Z) < ε · P (i) holds. Therefore, if there exists an
item i ∈ Z such that P (C ∪ Z) ≥ ε · P (i), Z cannot be divided into two parts
satisfying the constraint on ε. In other words, such an item i never be a member
of adequate two parts. Therefore, i can be dropped from Z. Thus, we can obtain
a revised operation on search nodes which is more powerful.

Dropping Items (Revised):
For a search node Z and an item i ∈ Z, if P (C ∪ i) ≤ ζ · P (Z) or P (i) ≤
P (C ∪ Z)/ε, i can be dropped from Z.

According to it, a new termination condition and a new theoretical lower
bound is given as follows:

Termination Condition (Revised):
For a search node Z, if max{P (C ∪ i)|i ∈ Z}/ζ ≤ P (Z) or max{P (i)|i ∈ Z} ≤
P (C ∪ Z)/ε, then Z does not have to be expanded further.

Lower Bound of Search in Phase1 (Revised):
If a search node Z is visited in Phase1, then P (Z) ≤ maxpζ and P (C ∪ Z) ≤
ε · maxpε holds, where maxpε = max{P (i)|P (i|C) > 0}.
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4.3 Another Termination Condition in Phase1

In this section, we show another lower bound in Phase1 by taking the complement
DC = D −DC into account. We expect this lower bound stop expanding search
nodes before Dropping Items start to work.

Suppose a DC pair of X and Y is obtained from an itemset Z, that is, Z =
X∪Y . Then, P (C|Z) = |O(Z,DC)|/(|O(Z,DC)|+|O(Z,DC)|) > ζ and P (C|X) =
|O(X,DC)|/(|O(X,DC)| + |O(X,DC)|) < ε. Then it follows that |O(Z,DC)| >

ζ
1−ζ |O(Z,DC)| and |O(X,DC)| < ε

1−ε |O(X,DC)|. Therefore, ζ
1−ζ |O(Z,DC)| <

|O(Z,DC)| ≤ |O(X,DC)| < ε
1−ε |O(X,DC)|. As a result, we have |O(Z,DC)| <

k(ζ, ε)|O(X,DC)|, where k(ζ, ε) = (1−ζ)ε
ζ(1−ε) . Furthermore, as |O(Z,DC)| ≤ |DC | ≤

|D|, we have |O(Z,DC)| < k(ζ, ε)|D|. Conversely, if |O(Z,DC)| ≥ k(ζ, ε)|D|, it
follows that Z as well as any subset Z ′ of Z is never decomposable to obtain DC
pairs, as |O(Z ′,DC)| ≥ |O(Z,DC)|.
Termination Condition Based on Complement:
If |O(Z,DC)|/|D| ≥ k(ζ, ε), Z does not need to be expanded further.

In the top-down mining process of DC pairs, we firstly check the above ter-
mination condition for the present itemset Z. If the condition does not hold,
then we make the next node Z ′ with the help of the rule of dropping items.

4.4 Dividing Compound Itemsets

In Phase 2, we divide a candidate compound itemset Z into itemsets X and Y
such that Z = X ∪ Y , X ∩ Y = ∅, P (C|X) < ε, and P (C|Y ) < ε. For this
purpose, we consider a lattice of itemsets with Z as its greatest itemset, and
enumerate X ⊂ Z in a bottom-up manner, from a singleton itemset to Z, with
the following pruning rule.

Dropping Items in Phase 2:
For a search node (itemset) X and an item i ∈ X, if P (C ∪Z) ≤ εP (i∪X), any
superset of X containing i does not need to be expanded further.

The above rule is exactly dual to the rule of Dropping Items in Phase1, and
is therefore similarly proved and utilized for cutting off useless branches to next
nodes including items that can be dropped.

5 An Experiment

In this section, we present some experimental results on the mining of DC pairs.
The main purpose of experiments is to confirm that potentially significant DC
pairs can be actually found for a given database.

5.1 Datasets and Implementation

At first, we explain a database we use in our experiment. We carried out the ex-
periments on Entree Chicago Recommendation Data, a family of databases from
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the UCI KDD Archive (http://kdd.ics.uci.edu). It consists of eight databases
each of which contains restaurant features in a region, e.g. Atlanta, Los Angeles,
New Orleans and so on in the USA. To examine DC pairs given a particular
region to be compared with the whole regions, we consider a new item working
as a name for each region, and assign it to every transaction of the corresponding
database. By this operation, we have an integrated database of 4160 transactions
and 265 items. The items represent various restaurant features as ”Italian”, ”ro-
mantic”, ”parking” and so on. Given the integrated database, we have developed
a system written in C for finding DC pairs. All experiments are conducted on
1.5 GHz PentiumIV PC with 896 MB memory.

As we have already explained in Section 4, our top-down search procedure
enumerates compound itemsets Z such that P (C|Z) > ζ, starting from maximal
itemsets in DC and using the pruning rules based on Dropping Items (Revised)
and two Termination Conditions.

We carried out a preliminary experiment before the experiment at first. So, we
can know our pruning rules are difficult to work well when the size of an itemset
examined is long. We describe the reason in 5.2. Therefore, let the purpose of the
experiment be to confirm that potentially significant DC pairs can be actually
found for a given database and the algorithm successfully detects such DC pairs
and to examine a performance of our pruning rules when the size of an itemset
examined is short. Moreover, based on the result of the experiment, we examine
a possibility of an efficient search of DC pairs.

For the above purpose, we here assume that our search procedure starts from
itemsets of shorter length than maximal itemsets in DC . More precisely speaking,
instead of maximal itemsets in DC , we introduce a family of itemsets such that
(1) the lengths are no more than a given size parameter (6 in our experiment)
and that (2) they are maximal among all itemsets having non-zero support and
satisfying (1), where the order to define the maximality is also based on the set
inclusion.

5.2 Experimental Results

Our experimental results are summarized in Figure 1, where ρ is the ratio of
correlC(X,Y ) to correl(X,Y ), ζ is a parameter in our search strategy, and
|Nfull| is the number of itemsets in DC whose sizes are no more than the size
parameter. ρ, ζ and size parameter are set for the values 3.0, 0.4 and 6, respec-
tively in our experiment. |Ndrop| is the number of itemsets actually examined in
Phase1, |P (C|Z) > ζ| denotes the number of itemsets Z such that P (C|Z) > ζ
in DC whose sizes are no more than 6, |DC| is the number of detected DC
pairs. Finally, |DCNotCor| is the number of DC pairs of itemsets whose degree
of correlation is less than or equal to 1.

There exist various kinds of DC pairs in the experimental data. For instance,
in New Orleans, a DC pair X = {Entertainment, Quirky, Up and Coming} and
Y = {$ 15-$ 30, Private Parties, Spanish} is found. The pair shows high degree
of difference of correlations by conditioning to New Orleans. But since the pair
shows very high degree of correlation as a result of its conditioning, the pair can
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be found by search methods of previous studies. Also, in many cases, such DC
pairs show high degrees of correlations in global database in the experiment. In
short, such DC pairs may not be worth paying attention to by especially condi-
tioning to New Orleans. On the other hand, there exists a pair X = {Quirky}
and Y = {Good Decor, Italian, $15-$30, Good Service} in DC pairs in New
Orleans. The pair is not correlated in both global database and local database.
Therefore, the pair cannot be found by search methods of previous studies. But
the pair shows high degree of difference of correlations by conditioning to New
Orleans. In short, the pair shows not high degree of correlation in New Orleans,
on the other hand, the pair shows very low degree of correlation in a global
database. We pay much attention to such DC pairs. We consider such DC pairs
can be useful in some cases. For instance, people who look for a restaurant in
New Orleans may be interested in a ”quirky Italian restaurant” which is a hidden
feature in New Orleans in contrast with a ”quirky Spanish restaurant” which is a
significant feature in both global and local database because there may be some
factor of its high degrees of difference of correlations even if the pair doesn’t
show high degree of correlation. As we described the above, it is shown that po-
tentially significant DC pairs can be actually found for the given database and
our algorithm detects such DC pairs. In addition, various potentially significant
DC pairs are found in the experimental data.

As is shown in Figure 1, the number of compound itemsets examined is
certainly reduced by the pruning rules in Section 4. Every pruning rule we have
presented is theoretically safe in the sense that they cut off some branches only
when it is proved that no solution can be reached through the branches. However,
the degree of reduction does not seem sufficient to improve the efficiency. We
consider the causes as follows.

The first cause is a low chance that our pruning rules can be applied to
itemsets examined in our search. By a simple operation of our pruning rules,
there is a possibility that we can turn out that many itemsets don’t have to be
examined. But our pruning rules cannot reduce so many itemsets examined in
the experiment because there are not many opportunities that our pruning rules
can be applied to the itemsets. So, we analyze a property of our pruning rules.
And we can know our pruning rules are difficult to work well when a difference
between a probability of an itemset Z and a probability of an item i ∈ Z is large
in a global or a local database. Note here that, in a sparse data which is often
used in data mining, many itemsets whose size is long have a low probability
and the difference is large in many cases. This is the cause that our pruning rules
are difficult to be applied to the itemsets whose size is long. Therefore, in order
to solve the problem and increase the chance of our pruning, we have to weaken
conditions of our pruning rules and modify a procedure in our search.

The second cause is the large number of an itemset Z such that P (C|Z) >
ζ in the experimental data. In Fig. 1, in Atlanta, it seems that our pruning
rules cannot reduce only 100 thousands itemsets out of one million and 920
thousands all itemsets. But there are one million and 570 thousands itemsets
Z such that P (C|Z) > ζ which we find in step 1. Therefore, there are only
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ρ = 3.0, ζ = 0.4

region sup(C) ε |Nfull| |Ndrop| |P (C|Z) > ζ| |DC| |DCNotCor|
Atlanta 0.064 0.0922 1922264 1826678 1575575 112877 269

Los Angeles 0.107 0.118 1857501 1760522 1769705 30404 97

New Orleans 0.079 0.102 1120224 1071306 1027241 39158 55

San Francisco 0.100 0.114 2154595 2113443 1735822 134520 312

Fig. 1. Experimental Results

350 thousands itemsets which don’t have to be examined in Step 1. Notice here
that, in Los Angeles, the number of itemsets actually examined is less than the
number of itemsets Z such that P (C|Z) > ζ. This phenomenon is influenced by
decomposability of DC pair described in 4.2. Then, by taking decomposability
of DC pairs into account more, there is a possibility that itemsets examined can
be reduced. We describe the prosperity of the above problems in Concluding
Remarks.

6 Concluding Remarks

Given a transaction database D and its sub-database DC , we proposed the notion
of DC pairs. A pair of itemsets X and Y is called a DC pair if the correlation
between X and Y in DC is relatively high to one in the original D with some
degree. It should be noted that the correlation is not always high in DC even
though we can observe some degree of correlation change for D and DC . In this
sense, such a pair might not be characteristic in DC . Thus, DC pairs are regarded
as potential characteristics in the sub-database. Our experimental results showed
that DC pairs which are potentially significant can be actually found for “Entree
Chicago Recommendation Data” under conditioning by each region. On the
other hand, it is turned out that our pruning rules have to be more powerful
before we apply our algorithm to a problem in a real life. Then, in order to search
DC pairs efficiently, we have some prosperities as follows.

At first, we try to weaken conditions of our pruning rules and modify a
procedure. In the experiment, we can know our pruning rules are difficult to
work well when a difference between P (Z) and P (i) or P (C ∪ Z) and P (C ∪ i)
(i ∈ Z) is large. Conversely, if the difference is small, our pruning rules can work
well. So, in order to increase an opportunity of our pruning, a set of itemset
whose probability is almost same can be useful. In order to make use of the
set of itemsets, we have to weaken conditions of pruning rules. In short, for
an itemset Z, our pruning rules need to be applied to itemsets Z ′ ⊂ Z not
items i ∈ Z. Moreover, in order to use the weaken rules, we have to modify
a search procedure. Next, we try to take advantage of decomposability of DC
pairs more. In 4.2, if an itemset Z examined doesn’t contain X(i ∈ X ⊂ Z)
such that P (C|X) < ε, we drop an item i ∈ Z from Z because Z ′(i ∈ Z ′ ⊂
Z) cannot be divided into two itemsets X and Y such that P (C|X) < ε and
P (C|Y ) < ε. Notice here that we can make use of the decomposability more.
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Briefly speaking, a DC pair is a pair of itemsets X and Y . Therefore, if X cannot
hold P (C|X) < ε or Y cannot hold P (C|Y ) < ε, a pair of X and Y is not a
DC pair. In addition, when an itemset Z is divided into two itemsets X and Y
(Z = X ∪ Y,X ∩ Y = ∅), X or Y contains an item i ∈ Z necessarily. In short,
Z cannot be divided into a DC pair if X(i ∈ X ⊂ Z) cannot hold P (C|X) < ε.
In a preliminary experiment, by taking the new decomposability into account,
there is a possibility that the number of itemsets examined may become no more
than the half number without using the new decomposability. We are trying to
tackle the above problems.

Finally, we discuss our future work. As we described in Introduction, we
consider our frame work can be applied to time series data. In this paper, we
pay attention to a difference of correlation observed by conditioning to the local
database. Based on the notion of the DC pair, if we pay attention to a difference
of correlation from time t1 to t2 after t1, our algorithm can be applied to time
series data easily although we have to take the information particular to time
series data into account. In this problem, characteristic correlation in t1 or t2 can
be found by using search methods of previous studies. But there may be a case
that we want to know an implicit correlation that may become characteristic in
t3 after t2 although we have to consider an interval between t1 and t2 seriously.
We can find such a correlation by capturing a difference of correlations from t1
to t2. We are considering the application of the notion of the DC pair to time
series data.
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Abstract. An integrated approach of mining association rules and meta-rules 
based on a hyper-structure is put forward. In this approach, time serial databases 
are partitioned according to time segments, and the total number of scanning 
database is only twice. In the first time, a set of 1-frequent itemsets and its 
projection database are formed at every partition. Then every projected database 
is scanned to construct a hyper-structure. Through mining the hyper-structure, 
various rules, for example, global association rules, meta-rules, stable association 
rules and trend rules etc. can be obtained. Compared with existing algorithms for 
mining association rule, our approach can mine and obtain more useful rules. 
Compared with existing algorithms for meta-mining or change mining, our 
approach has higher efficiency. The experimental results show that our approach 
is very promising. 

1   Introduction 

Mining association rules is one of the important issues of data mining, and the key of 
mining association rules is mining frequent patterns. Now Apriori[1] and its enhanced 
algorithm, FP-growth[2] and CT-ITL[3] algorithm are some important ones on 
frequent pattern mining in the world. Those algorithms aim at methods and efficiency 
on mining association rules, but they only fit for mining strong association rules with 
average support in total. However, the strength of some association rules may change 
over time. To mining the association rules at changing data sets, some incremental 
updating algorithm for mining association rule [4] are put forward, but these algorithms 
mine still rules which are average support and confidence more than or equal to 
appointed threshold at whole, so they can not use to mine rules which are change over 
time and predict. 
                                                        
* The work was supported in part by the fund of the Natural Science Plan from University in 

Jiangsu Province, China, Number: 04KJB460033. 
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Researchers have put forward some changing mining algorithms [5-9]. Ref. [5] is 
concerned with a basic framework for mining change from rule sets. To find whether a 
set of association rules discovered in a time period is applicable in other time periods 
was discussed in [7]. An approach to find a decision tree change between two time 
periods was proposed in [6]. Ref. [9] is concerned with meta-mining. The method of 
mining changes in association rules using fuzzy decision trees was put forward in [8]. 
In these algorithms, only the algorithms that were mentioned in [5][7][8][9] can be used 
to mining change of association rule. However, these algorithms only consider the 
mining change of association rule based on rule sets that have been mined by some of 
algorithms for mining association rule, so they do not consider the integrated efficiency 
for the whole mining process. 

This paper presents an integrated approach of mining association rules and 
meta-rules based on a hyper-structure, this approach is evidently different from the 
above mentioned algorithm. With this approach, we can mine various association rules 
and meta-rules, for example, stable association rules, trend association rules, etc. In this 
paper, a classification approach, based on neural network, to classify association rule 
sets is discussed and the corresponding experiment is performed.  

2   Constructing Hyper-Structure 

In this section, Hyper-Structure is constructed. We first define the problem of 
1-frequent itemset projected database. 

Definition 1. Let },,,{ 21 miiiI L=  be a set of all item in transaction database 0D that 

there are N transactions, kX ′ is the transaction itemsets of the k ′ -th 

transaction, IX k ⊆′ ,i.e., },,,{
21 nkkkk iiiX L=′ , where mkknj jj ≤<≤<≤ +11,1 . )(nX denotes 

that the set X contains n items. The number of transactions in 0D containing itemset  

X is called the support of X ,denoted as )X(sup0 .Given a minimum support 
threshold s, if s0 ≥)X(sup ,then X is frequent in 0D .Let

jpi
′

′ be a frequent item in 

0D , called as 1-frequent item, where mp1 j ≤≤ ′ ,and Let I ′= },,,{
21 mppp iii

′
′′′ L be the set of 

all 1-frequent item, where mm1 ≤′≤ and II ⊆′ .Thus the projection 
between I ′ and kX ′ is kA ′ , and },,,{

21

k
q

k
q

k
qik n

iiiXIA ′′′
′ ′

=∪′= L , and then the transaction 
database that consists of NA,,A,A L21 is called 1-frequent itemset projected 
database A . 

2.1   Structure of Hyper-Structure Head Table 

The hyper-structure head table contains two fields: item number field and pointer field. 
The pointer in pointer field points to a hash chain structure with the same number of 
items. The hyper-structure head table is created dynamically. The hyper-structure is 
illustrated in Fig.1.  
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Fig. 1. Hyper-structure 

2.2   Chain Address Function 

The hash function of the item jki (where jk is the item number) in 1-frequent itemsets is 
given below: 

jj kkh =)(  1  

Let },,,{ 21 nqqqB ′= L be a set of the item number in itemset },,,{
21

k
q

k
q

k
qk n

iiiA ′′′
′ ′
= L . The 

hash function of the multi-item itemsets is given below:  

pziqqqh
nq

qi
in ′+=

′

=
′ mod))12((),,,(

1

21 L  2  

If Bi ∈ , then izi = ,otherwise 0=iz ; p′ is the sum of the adjusted pattern of the 
multi-itemsets. 

2.3   Chain Address Structure 

The node structure of the heat table and the chain table of 1-frequent itemsets is 
illustrated in Fig.2 and Fig.3 respectively. 

The chain address is produced according to formula (1) in Fig.2. The pointer points 
to the node structure of chain table.  

The node structure of head table of multi-itemsets is shown in Fig.4 and the node 
structure of the chain table of the multi-itemsets is shown in Fig.5: 

Chain address pointer  

Fig. 4. The node structure of head table  

Sup1 … Supn X pointer 

Fig. 5. The node structure of chain table 

Chain address pointer 

Fig. 2. The node structure of head table  

Sup1 … Supn 

Fig. 3. The node structure of chain table 
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The chain address is obtained from formula (2) in Fig.4 ,Here, pointer  points to 
its chain table node; iSup is used to record the count of itemsets X which appears 
in iD ;The pointer points to the next chain table node in Fig.5.  

2.4   The Algorithm of Constructing Hyper-Structure 

Algorithm 1: the algorithm of constructing the hyper-structure 

Input: A transaction database 0D  

Output: Hyper-structure 

Method: 

1. scan transaction database 0D to obtain the set of 1-frequent item and its projected 

database and maximal projected item )( XMax , and partition the projected database 

A of 0D into A
n

AA DDD ,,, 21 L according to time period nttt ,,, 21 L ; 

2. construct the head table of hyper-structure from 1-item to )( XMax ; 

3. construct 1-frequent item hash chain; 

4. for (i=1; n;i++)  { 

j=1; 

do while  the scan for projected database A
iD is unfinished 

  {forall  join the item in item number set B of jA to generate itemset X do { 

     calculate value of ),,,( 21 nqqqh ′L for X ; 

     locate address of ),,,( 21 nqqqh ′L in X -item hash chain; 

if  there has not been X in corresponding address chain table in 

X -item hash chain according to the value of ),,,( 21 nqqqh ′L  then  

{save X to there and 1=isup  ;} 

else { 1+= ii supsup ;}} 

j=j+1;} 

3   Association Rule and Meta-rule Mining 

The association rule mining problem can be decomposed into two subproblems 
(Agrawal et al., 1993), That is, Finding all frequent itemsets and using the frequent 
itemsets to generate the desired rules. The meta-rules mining problem is to find the 
change of the association rule over time. So the main mission of mining association 
rules and meta-rule is mining frequent itemsets. Having got a frequent itemset, we can 
further obtain all its subsets, and form the corresponding rule set. To mine the 
association rules and meta-rules from the hyper-structure, the association rule and the 
meta rule are defined below:  
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Definition 2. An association rule r is denoted by 21 XX  with caveat c , where 

XX ⊂1 and XX ⊂2 ,and φ=∩ 21 XX , c is support and confidence. 

Definition 3. Let supmin_ be a minimum support threshold, confmin_ be a minimum 

confidence threshold, if rule r satisfies both supmin_)XX(portsup ≥21 and 

confmin_)XX(confidence ≥21 , then r is called strong rule. R  denotes the set of rule r. 

Lemma 1: If itemsets X is global frequent, then it is frequent at least in one segment iD  

ni ≤≤1 . 
When mining the meta-rule, we consider only the rules which are global frequent and 

are frequent in one time segment, According to Lemma 1 the meta-rule is defined in 
the following: 

Definition 4. Let the support and confidence of rule 21 XX from datasets 

nDDDD ,,,, 210 L be nsup,,sup,sup,sup L210 and nconf,,conf,conf,conf L210 respectively, if 

supmin_sup ≥0 and confmin_conf ≥0 ,then the support meta-rule sm from 

nDDD ,,, 21 L is given below: 

}sup,,sup,{sup: 2121 nXX L , 

And the confidence meta-rule cm from nDDD ,,, 21 L  is given below: 

},,,{: 2121 nconfconfconfXX L . 
Lemma 2: All subsets of the frequent itemsets that appear in n-itemsets hash chain 
must also appear in corresponding 1-itemsets to (n-1)-itemsets hash chain. 

Apriori property: All nonempty subsets of a frequent itemset must also be frequent. 
According to above definition and lemma and property, the algorithm for mining 
association rules and meta-rules is given in the following:  

Algorithm 2: The algorithm for mining association rules and meta-rules 

Input: hyper-structure; dataset 0D and dataset nDDD ,,, 21 L ; support threshold 

isupmin_ ),,1,0( ni L=  and confidence threshold iconfmin_ ),,1,0( ni L=  

Output: Association rules and meta-rules 

Method:  

Association rule set φ=R ;support meta-rule set φ=sM ;confidence meta-rule 

set φ=cM ; 

For (i=2;n;i++) { 

  The pointer points to the first address of i-items hash chain; 
  Do while to search i-item hash chain is unfinished { 

Search the chain table node at the address and obtain itemset X and 
nsup,,supsup L21 and 0sup ; 
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If 00 supmin_sup ≥ then { 

  If i>2  then { 

       Forall  the subsets )1( −iX and )2( −iX of  the itemset X do { 

           Forall the itemsets )1( −iX , )2( −iX , )2( −iX and )2( −iX to satisfy definition 2 are 

regarded as antecedent and consequent for forming association rules do 

{ 

Obtain the )n,,,j(sup j L10= of antecedent and consequent of association 

rule respectively; 

          Calculate ),,1,0( njconf j L=  according to ),,1,0(sup njj L= ; 

          If confconf min_0 ≥ then add the rule to R and add support meta-rule 

)sup,,sup,(sup:m ns L21  to set sM and add confidence meta-rule 

)sup,,sup,(sup:m nc L21  to set cM ;}}} 

  else { 

search and obtain the corresponding )n,,,j(supj L10=  of two item of X ; 

 Calculate )n,,,j(confj L10=  according to )n,,,j(supj L10= ; 

If confconf min_0 ≥ then add the rule to rule sets and add support 

meta-rule )sup,,sup,(sup:r nL21 to meta-rule set sM and add confidence 

meta-rule )sup,,sup,(sup:r nL21  to meta-rule set cM ;}} 

 else {stop mining}} 

4   Analysis of the Change Trend of Association Rules Using 
Meta-rules 

The types of change trend of association rules can be divided into several cases in the 
following: 

Stable rules: These rules do not change a great deal over time. Stable rules are more 
reliable and can be trusted.  
Trend rules: These rules indicate some underlying systematic trends. 
Irregular or random movements: These characterize the sporadic motion of time 
series due to random or chance events.  
Cyclic movement or cyclic variation: These refer to the cycles, that is, the long-term 
oscillations about a trend line or curve, which may or may not be periodic.  
Seasonal movements or seasonal variations: These movements are due to events that 
recur annually.  

In this paper, only forefront three types are considered.  
Apparently, if the meta-rules are directly analyzed using the trend analysis method, 

each rule will be scanned and calculated repeatedly. It is necessary to first classify the 
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meta-rules in order to improve the analysis efficiency. That is, the meta-rules are 
classified into several classes which donate a change trend of association rules. For 
example, the association degree is stable or decreased or increased over time, etc. Then 
each class meta-rules are respectively analyzed on demand. There are many existing 
classification methods, for example, the SVM method, neural network method, C4.5 
algorithm, Bayesian classification, etc. Next we are going to discuss classification 
method for meta-rules using BP neural network. 

Before using neural network for classification, some training samples need to be 
obtained. These samples should be formed according to the following cases: 

1) The association degree of rule sets is stable movement over time, its output is 1y . 
2) The association degree of rule sets is increased over time, its output is 2y . 
3) The association degree of rule sets is decreased over time, its output is 3y . 
4) The association degree of rule sets is random movements over time, its output 

is 4y . 

First, the BP network is trained by sample data sets to obtain its weight, and then 
trained BP network is applied to corresponding classification work. In the process of 
mining the meta-rule, the meta-rule which has already mined from hyper-structures will 
be imported into the BP network defined before so that the classified association rules 
can be obtained.  

Generally speaking, after classification the usability of association rules is improved 
considerably, and they can be further analyzed expediently.  

5   Experimental Result 

In our experiments the dataset is from a supermarket transaction database from 

October 1 in 1996 to May 31 in 1997, its original size is 50.6M, its worked size is 

11.6M , and let it be 0D , there are 47536 transactions in 0D . We partition 0D into 

4321 ,,, DDDD according to time period from t1 to t4, and the partitioned result is shown 

in Table 3. 

Table 3. Partitioned result 

Sub-database D1 D2 D3 D4 
Time period t1 96.10-96.11  t2 96.12-97.01 t3 97.02-97.03 t4 97.04-97.05  

The number of 
transaction 

10918 10456 13801 12361 

By setting minimum support to 0.04% and minimum confidence to 50%, the 

association rule set R0 and corresponding meta-rule set sM and cM are discovered in the 

hyper-structure that is constructed through scanning the sub-databaseD1, D2, D3, D4 
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respectively. There are 25 entry association rules in R0. There are 25 entry support 

meta-rules and 25 entry confidence meta-rules in sM and cM respectively. The classified 

result of the support meta-rule set is showed in Table 4. The classified result of the 

confidence meta-rule set is omitted. 

Table 4. Classified result 

By observing the classified result we can discover that classified result is correct. 
The supports of 3 entries “Stable” rules are all more than support threshold from t1 to t4 
and support change is little. The support of 3 entries “Decreased” rule falls gradually 
from t1 to t3, and the rules are perished in t4. In “Random” column, except 1 entry rule 
appears both t1 and t3, the rest only appear in one time period. So the association rules 
obtained from R0 is not all usable and trend analysis is necessary. Experimental result 
indicates that the usability of association rules obtained by our approach is improved 
considerably. 

6   Discussion 

Existing algorithm for mining association rule [1-4] can only mine strong association 
rules with average support and confidence in total. Our approach is distinctly different 
from above mentioned algorithm, as not only it can mine strong association rules with 
average support and confidence in total, but also can mine more various association 
rules. Experimental result appears that our approach can mine the association rules that 
have better usability. 

Compared with existing algorithm of meta-mining or change mining [8-9], our 
approach has higher efficiency. In existing algorithms of meta-mining or change 
mining, first the data sets are partitioned into several subset according to time segments, 
and then each subset is mined by existing algorithm for mining association rule to gain 
association rule sets, finally, the meta-rule sets or trend rules are mined from 
association rule sets. With the approach proposed in this paper, global strong rule sets, 
meta-rule sets and the classification of the meta-rule sets can be obtained by scanning 
database only twice, so our approach has lower I/O spending than above mentioned 
algorithm.  

In addition, our algorithm will generate less numbers of 2-itemsets than Apriori 
algorithm, because the 2-itemsets is generated by linking all 1-frequent item in Apriori 
algorithm. However, in our algorithm, the 2-itemsets is generated by linking 1-frequent 
item in intersection between 1-frequent itemset and each transaction. In our algorithm, 
the confidence of association rule can be calculated by obtaining the count of 
corresponding itemsets from the hyper-structure directly. 

Type of rules Stable Increased  Decreased Random 
Number of rules 3 0 3 19 
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7   Conclusion 

In this paper, we put forward an integrated approach for mining association rules and 
meta-rules. With the approach, the association rules and meta-rules can be mined for 
time serial database effectively, Not only has it high efficiency, but also has more 
powerful mining capability, It has some distinct advantages compared with existing 
algorithms. A formalized expression of meta-rules for time serial databases is given, 
thus meta-rules can be denoted and processed expediently, this offer a new pass for 
expression or re-mining of meta-rules. 
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Abstract. The work presented in this paper is part of the cooperative
research project AUTO–OPT carried out by twelve partners from the au-
tomotive industries. One major work package concerns the application of
data mining methods in the area of automotive design. Suitable methods
for data preparation and data analysis are developed. The objective of
the work is the re–use of data stored in the crash–simulation department
at BMW in order to gain deeper insight into the interrelations between
the geometric variations of the car during its design and its performance
in crash testing. In this paper a method for data analysis of finite element
models and results from crash simulation is proposed and application to
recent data from the industrial partner BMW is demonstrated. All nec-
essary steps from data pre–processing to re–integration into the working
environment of the engineer are covered.

1 Introduction

The objective of the data mining work presented in this paper is the re–use of
data stored in the crash–simulation department at BMW in order to gain deeper
insight into the interrelations. Here the objective is to find hidden knowledge in
stored data. In principle one could think of various possible questions for such a
knowledge mining analysis:

– which innovations have evolved during the design process
– were certain steps in the development unnecessary or could they be shortened
– is it possible to extract analogies between different car projects
– can reasons that have lead to certain design decisions be reproduced
– can this reasoning be applied to future projects

The data mining project in AUTO–OPT aims at examining the applicability of
data mining methods on crash simulation data [1]. Due to the fact that design
and development knowledge is the major asset of engineering, an automotive
company cannot be expected to share large amounts of their data for research
reasons. On the other hand, interesting results from data mining can only be
achieved from interesting data. Therefore in this work the applicability of the

P. Perner and A. Imiya (Eds.): MLDM 2005, LNAI 3587, pp. 558–569, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Procedure for data mining. Models and crash results are exported from CAE–
Bench, models are disassembled into parts, geometry based meta data are calculated,
parts and meta data are stored within SCAI–DM, crash results are attached to meta
data, data mining tables are assembled, DM analysis is performed, result files are
produced and exported

method is demonstrated, its value cannot be evaluated on the data basis avail-
able. This will be aimed at in future work.

The crash department at BMW stores all relevant information in the sim-
ulation data management system CAE–Bench [2]. Data mining queries are to
be submitted from this environment. Results have to be brought back into this
system and assigned to the underlying models, i.e. stored within their audit trail.
This procedure is schematically shown in Figure 1.

Fraunhofer SCAI has been provided with data from one of the most recent
car projects at BMW. The vehicle under development is shown in Figure 2
(left). Each data set describes one stage of construction of this car within the
development process via finite element models (FE models) made up by about
500.000 independent nodes and elements.

Each car is composed of app. 1200 parts. CAE–Bench stores the models as
complete vehicles, i.e. one single large FE model, called input deck. In order to
analyse the geometry of the parts these input decks need to be disassembled as
shown in Fig. 2 (right) for an older BMW vehicle, the new model cannot be
shown in such detail because of a nondisclosure agreement.
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Fig. 2. Recent model of BMW employed for data mining (left). One FE input deck
consisting of numerous parts (right)

2 Preparation of the Data for Data Mining

It is generally accepted that the preparation of the data involves as much as
80-90% of the effort when a data mining task is attempted, see e.g. [3]. The
data cannot be processed by a data mining tool in their original format. To the
authors best knowledge no approach for data mining on raw finite element data
exists. The preparation of the data thus constitutes the main challenge for the
data mining approach on the FE data. In addition, the data has to be cleaned
and checked for consistency and the appropriate values have to be combined. As
a first but major step a process for data preparation has been developed:

a) Export of data from CAE–Bench
b) Disassembling into parts and computation of meta data
c) Data cleaning and sorting — clustering of parts
d) Similarity analysis and data reduction — clustering of variants
e) Evaluation and cleaning of crash result data

As a result of this procedure a table is generated that allows for access to the
data with data mining algorithms. This section focuses on the preparation of the
data, whereas the application of the data mining algorithms will be presented in
section 3.

a) Export of Data from CAE-Bench

CAE–Bench can export selected input decks along with the result achieved when
these models were subjected to a virtual crash test. An example is shown in
Fig. 4. Information is extracted from this export, such that the relevant crash
results can be attached to the respective input deck data and stored in the SCAI
data mining framework (SCAI–DM).

b) Disassembling into Parts and Computation of Meta Data

Motivation. The data mining approach in this work concerns the shape of the
parts of the car. The aim is to analyse how changes in shape have influenced crash
behaviour. The FE–model itself contains all geometrical information. However,
this information is hidden from data mining algorithms, as these cannot extract
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Fig. 3. Typical meta data and their appearance in an example part

meaningful knowledge from node and element descriptions. Meta data has to be
determined such that it quantifies geometry in an appropriate manner. In this
work several values have been chosen as meta data, e.g. the centre of gravity
of each part, the moments of inertia, the length of edges and margins, surface
size, bounding box, length of branching lines—as shown in Figure 3. All of these
are mesh independent. They thus enable comparison between models that have
been meshed with different algorithms or programs. The meta data reduce the
amount of data massively, such that handling of data is facilitated considerably.

Reading the Input Deck. Today the body–shell of a finite element car model
is described by an input deck of 100 MB containing approximately 1.500.000
lines. Figure 4 shows a small subset of such an input deck. The part number
indicates which element of the meshes belongs to which specific part of the car.
The material section defines a homogeneous density and thickness for each part.
In the disassembling procedure all elements with the same part number and their
respective nodes are extracted from the input deck and form one new mesh for
this single part.

For each part the disassembler thus extracts a sub–mesh of the input deck.
This sub–mesh is the basis of the calculation of the meta data. The sub–mesh
files are also used to create previews of the parts: from three different angles or—
on demand—in form of a three–dimensional applet visualisation [4, 5, 6]. Since
the generation of previews of parts is a time intensive process, it is initiated only
for new parts which have not previously been stored in the database.

Computation of Meta Data. For meta data calculation various details on
FE models have to be taken into account. The model surfaces here are curved.
Using shell elements for the description means that the four corner points of a
quadrilateral do not necessarily lie in one common plain, see Fig 3. One well
defined way to calculate their surface is S ≈ 1

2 [(a + c) × (b + d)]. The mass of
an element is given by its surface multiplied by the material thickness d and
density ρ. The centre of gravity, at which the mass m is assumed to be located
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Material density and thickness

Node coordinates (x,y,z)

Node connections (quadrilaterals or triangles)

Part numbers

Fig. 4. Excerpt of an input deck: the NODE and SHELL sections describe the geometry
of the finite element meshes; in the MATER section the thickness d and density ρ of the
material can be found. Beside shell elements, which can be triangles or quadrilaterals,
additional elements like membrane elements (with 4 nodes), solid (8 nodes), beams (2
nodes), or bars (3 nodes) appear in an input deck

in a single element is positioned approximately at 1
4 [A + B + C + D], where A

. . .D are the corner points of the SHELL element. Then the centre of gravity and
the moments of inertia of the complete part are given by their sum over all point
masses. For every element a normal vector is constructed by n = a+c

|a+c| × b+d
|b+d|

The normal vectors n1 and n2 of adjacent elements are used for detecting edges.
If the angle α = 2arcsin (|n2 − n1|/2) is larger than a user defined value, the
connection line between the elements is called an edge of the mesh. If one side
of an element is not connected to any further element, this line is assumed to
be a margin of the structure. In this manner all meta data characterising the
geometry of each part is computed.

c) Data Cleaning and Sorting — Clustering of Parts

The finite element models are subject to numerous kinds of modifications. During
the engineering process in which a car model is improved with respect to its
crash–worthiness a subset of parts is modified. In general the parts modified are
the crash–relevant ones. Additional modifications follow the demands of other
engineering disciplines, e.g. holes may be inserted into the parts in order to
achieve a better drain of varnish during production. Such measures reduce crash-
worthiness, which then again has to be improved by further modifications.

However, not all parts are modified in all stages of car design. As unchanged
parts cannot be responsible for deviations in the simulation results, such parts
can be excluded from the analysis. In order to remove the parts that never have
been modified MD5 checksums are created for all sub–mesh files, Fig. 5 (right
column). If the checksum of any part stays constant in any data set of interest



Data Mining on Crash Simulation Data 563

Fig. 5. Screenshot of SCAI–DM framework, here some variations of part no. 11171
with meta data and checksums. The database contains about 146.000 parts belonging
to 134 different crash tests. Deleting all sub–mesh files with multiple MD5 checksums
(right column) the database can be reduced by 93% to 9900 different parts

the part was left unchanged and one single reference of the sub–mesh file is
stored. Solely parts with more than one instance in the data base are included
in the data mining queries.

SCAI–DM Data Base. After disassembling all parts are stored in the SCAI–
DM framework along with their meta data, as shown in Fig. 5. Depending on
the purpose parts and data can be displayed in any other combination.

Avoiding Inconsistent Naming/Numbering. One bottle neck for data min-
ing of the BMW data is the fact that text entries in the data management system
are free text. Some agreements are complied with in the majority of cases. Re-
peatedly, however, re–naming and re–numbering of parts was encountered in
the data, which showed that rules were not consequently followed. Therefore, to
avoid irrelevant results from the analysis aimed at it is vital that all data entering
the analysis stick to the same rules. The safest way to achieve correct data is to
avoid the text entries in CAE–Bench altogether and use the FE descriptions as
a basis. This again implies that an automatic method to identify parts has to be
set up such that the use of part–numbers or –names coming from CAE–Bench is
avoided. The meta data calculated from the FE model can be the basis for part
identification using cluster analysis. The clustering process divides a dataset into
mutually exclusive groups such that the members of each group are as ”close”
as possible to one another, and different groups are as ”far” as possible from
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one another, where distance is measured with respect to all available variables,
see e.g. [7].

Each meta data property spans a new dimension in the similarity space. The
meta data of a specific part are represented by a point in the multidimensional
similarity space. Similar parts have similar meta data and form a cloud of ad-
jacent points. Figure 6 (left) shows the idea of clustering of meta data in a
schematic diagram: Two dimensions of the similarity space are shown. The meta
data of the parts L and C form two clouds, in which a substructure indicates
the presence of several modifications. Figure 6 (right) shows a clustering plot
of the BMW data. The dots describe to two different parts with the same part
number 11011 ”Motorträger” (three clusters on the right) and ”Schottblech Mo-
torträger” (small cluster in the centre of the diagram). This is an example for a
change in numbering of a part.

d) Similarity Analysis and Data Reduction — Clustering of Variants

Differing checksums indicate that a sub–mesh was modified in some unknown
way. Then negligible file modifications have to be distinguished from relevant
changes such as modified shapes. In this framework for data mining the geomet-
ric meta data, as described above, serves as a similarity measure for the parts.
Minor and major changes of the parts design will result in a hierarchical struc-
ture of clouds and sub–clouds, see Fig. 6 (left). Using hierarchical clustering a
substructure can be found inside the clusters. Starting with C2 as a reference,
C1 contains parts with a higher mass (caused by a higher thickness d or density
ρ of the material) while the parts in C3 result from geometrical modifications
increasing the surface (e.g. caused by additional beadings for higher stiffness).
In the clustering plot of BMW data, Fig. 6 (right), the light grey dots belong to
three modifications of the same part, namely 11011 ”Motorträger”. An example
for typical modifications and their influences on the meta data can be seen in
Fig. 5, where similar parts have been selected from the data base.

This clustering of parts in the meta data space in order to identify variants
of designs is a time consuming task when all relevant parts and meta data are

Surface

M
as

s

L2
L1

3C

C1

C2

L

C

Fig. 6. Left: idea of hierarchical clustering in a schematic diagram. Two dimensions of
the similarity space are shown. Right: meta data of real parts. The grey clusters on the
right correspond to three different variants of the same part
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considered. An alternative method leading to similar results is to merge the meta
data into a single similarity measure [8]. For the work presented in this paper
a weighted sum of all the meta data has been employed. Then, if the weights
are appropriately chosen, parts with the same similarity measure are similar in
shape. This similarity measure serves as the main attribute for data mining, as
described in section 3.

e) Evaluation and Cleaning of Crash Result Data

For each crash simulation several values and curves, as well as images and movies
are computed in order to evaluate the crash worthiness of this particular design.
The bottle neck here is similar as before: the scripts that calculate the values
stored in CAE–Bench can be altered at any time, such that the compatibility of
the values has to be ensured before data mining can be attempted. No automatic
approach could be developed to check this compatibility so far. In this work
values whose scripts have been left unchanged for all simulations have been used
for the DM analysis. This could, however, be a serious drawback of the method
and other possibilities of ensuring reproducible values for the crash results have
been discussed with BMW. In this paper the only result values analysed are
intrusions. Intrusions measure the difference between the distances of two points
inside the car (one FE node) before and after the crash test.

In the last step of data preparation the data base is reordered. A table con-
taining one line per crash test is formed: the name of the model, the similarity
values of the parts and the result values of interest.

3 Datamining on Similarity Data

The aim of this work is to evaluate the applicability of data mining methods
for simulation data in engineering. As a result from a complex data preparation
procedure a table suitable for data mining can be achieved in which simulation
data appears transformed into geometrical meta data. This table (Fig. 7) is
written in Weka format, for which readily applicable data mining algorithms are
available, see [11, 12].

3.1 Attribute Selection

An important step in data mining is the selection of those attributes that are
relevant predictors before starting to build the model [9]. This is important be-
cause too many may be available when the full data set is encountered. Irrelevant
information should be excluded from the data set [10]. Thus a feature selection
algorithm can show which attributes have the strongest influence on the class.
For the crash simulation data this information can be particularly valuable, as
it reduces a vast amount of geometrical modifications to a small number of
seemingly important ones.

Employing an attribute selection algorithm on the crash data, e.g. ChiSquared
in Weka, means that parts are ranked depending on the impact of the variation
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Fig. 7. Re–ordered table for data mining: each line contains one model with similarity
values of relevant parts and serves as instance for analysis. Simulation results (intru-
sions) are attached and serve as classes

Fig. 8. Attribute selection with Weka: The six parts whose variations have most influ-
ence on the intrusion. BMW has confirmed the importance of these parts for the front
crash simulated here

of their similarity measure on the intrusion of interest. In Figure 8 one result of
such a calculation is shown. The list of parts shows those 6 out of 1200 whose
variations have most influence on the intrusion. In this case the data basis is 30
models—the portability therefore is likely to be rather limited.

3.2 Decision Trees

Another method employed in order to demonstrate the possible outcome of data
mining on simulation data is the decision tree method. Here a further step has
been taken towards the achievement of results relevant to the application engi-
neer. In practice the engineer is very rarely interested in the behaviour of only
one of his result values, instead he needs to get an understanding of the influ-
ences of his design modification on a range on values. For this reason four result
values were selected and clustered into three groups, one of which covers the
most desired vehicle behaviour during crash. The clustering of the instances into
three groups is demonstrated in Figure 9 for two of the result values. A clear
grouping into ”good” (circles), ”medium” (squares) and ”poor” (triangles) crash
tests can be seen.
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Fig. 9. Clustering of result values ”Intrusion 1 . . . 4” in order to be able to represent
various aspects of crash behaviour with one single class value

Fig. 10. Decision tree weka.classifiers.trees.J48 -C 0.25 -M 2. The existence of
the part 11631 ”Abstützung Lenksäule Unterteil” is the determining factor for the
intrusions. If this part was integrated (> 0) further important parts in this data basis
are two modifications of part 13001 ”Bodenblech vorne” and part 12162 ”Verbindung
Längsträger”

The membership of a model to these clusters is then used as ”class” when the
decision tree is built. As attributes the similarity measure—in this case again a
weighted sum of all meta data—is employed.

An example for such a tree is shown in Figure 10. The tree thus shows in
which cluster a carmodel can be expected to lie depending on the geometrical
version of the parts contained in the carmodel. These represent now the nodes
of the tree.

For this example a data basis of 77 crashtests has been employed, which still
is a rather small basis for rule building. However, these results are promising
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because the similarity measure seems capable of adequately representing shape
modifications and lead to meaningful results.

3.3 DM Reports

The results achieved within the SCAI-DM framework is imported into CAE–
Bench in order to be accessible by other engineers at other times. The reporting
tool in CAE–Bench can include text and figures, such that a data mining report
can be stored with the underlying input decks in CAE–Bench. This closes the
circle of the procedure shown in Fig. 1.

4 Results

The applicability of data mining on crash simulation data has been demonstrated
in this work. A framework for data preparation has been developed. The com-
putation and handling of meta data for similarity search has been studied in
detail. The employed similarity measure has proved to be appropriate for detec-
tion of relevant changes in shape. The usability of the approach on data from
an automotive application has been shown. Due to the limited amount of data
available for this work conclusions are limited, but first significant results have
been achieved on a test set of data. The next step aimed at is the integration of
selected algorithms and data preparation tools into CAE–Bench. As soon as this
has been accomplished the method needs to be validated on a more substantial
data set, i.e. within the working environment of BMW. Then it will be feasible
to judge whether the original questions aimed at can be answered.
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Abstract. This paper discusses a consistency in patterns of language use across 
domain-specific collections of text.  We present a method for the automatic 
identification of domain-specific keywords – specialist terms – based on com-
paring language use in scientific domain-specific text collections with language 
use in texts intended for a more general audience.  The method supports auto-
matic production of collocational networks, and of networks of concepts – 
thesauri, or so-called ontologies.  The method involves a novel combination of 
existing metrics from work in computational linguistics, which can enable ex-
traction, or learning, of these kinds of networks.  Creation of ontologies or 
thesauri is informed by international (ISO) standards in terminology science, 
and the resulting resource can be used to support a variety of work, including 
data-mining applications. 

1   Introduction 

A measurable difference appears to exist between language used in specialist commu-
nications and language used to communicate with a more general audience.  The 
difference suggests that specialists are relatively disciplined in their language use, and 
provides the opportunity for automatic processing of natural language texts, for ex-
ample for identification of the keywords of an arbitrary specialisation.  On this prem-
ise we have explored a method that contrasts frequency lists obtained from predomi-
nantly scientific, domain-specific, text collections with lists from general language 
texts.  The method is based on a novel combination of statistical measures originating 
in corpus linguistics, and is supported by developments in international (ISO) stan-
dards in relation to Terminology Science, and in the development of ontologies in the 
computing discipline of Knowledge Engineering; such ontologies may be construed 
as modern-day thesauri. 

Approaches to the identification of domain-specific keywords – the terminology of 
the domain – generally rely on extensive prior linguistic knowledge, perhaps embod-
ied in an initially linguistic extraction technique.  Our method differs from these ap-
proaches in being a primarily statistical treatment that could significantly reduce the 
amount of prior linguistic knowledge needed.  The results of this statistical analysis 
can be augmented using linguistic techniques such that the entire process bootstraps 
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itself. The analysis produces collocational networks suitable for use in visualizing 
sequences of texts [1].  Use of various interchange formats can make such networks 
available for use as a thesaurus, as a terminology, or as an ontology.  In these forms, 
the results become useful for tasks such as document management or query expan-
sion, and may also provide a means of feature selection for data mining applications 
involving text collections.  The automatic identification of such patterns has long been 
a goal of terminologists.  Approaches to identification of such patterns are generally 
considered from the perspective of a single collection (corpus) of texts with a single 
specialism (subject field) in mind.  Our work has been undertaken using several such 
corpora from different specialisms to explore generalisation of the approach.   

We consider that since these automatically identified domain-specific keywords – 
terms – are an artefact of notions, ideas or thoughts – concepts – then inter-relations 
between the terms provides evidence of the conceptual organisation (ontology or 
thesaurus) of that domain.   

2   Automatically Extracting Terminology / Ontology 

While for the Information Retrieval community a term seems to be any word that 
relates to a document or query, stop words aside, for the terminology community, a 
term is “a “verbal designation of a general concept in a specific subject field” (ISO 
1087-1, ISO 12620).  The phrase “verbal designation” may be misleading, and the 
phrase “general concept” is the subject of debate, however “specific subject field” 
indicates the treatment of particular specialisms.   In both communities, the notion of 
statistical significance has been used to identify a term.  Statistical significance, for IR 
purposes, is a function of rarity across a collection of documents: more occurrences of 
the keyword(s) in fewer documents.  Statistical significance for terminology purposes, 
on the other hand, can be conceived of as a function of rarity in contrast with what is 
considered to be general language.  By consideration of this statistical significance, a 
task variously referred to as terminology extraction / terminology structuring [2] or 
ontology learning [3] is possible; an intermediary of this activity may be a colloca-
tional network [1].  Papers on ontology learning and terminology extraction, and on 
information extraction, enumerate three techniques: (i) statistical [4], [5]; (ii) linguis-
tic [6]; and (iii) hybrid [7], [8].  Typically, approaches to ontology learning from text 
employ syntactic parsing [9], [10], [11], [12], [13].  Some authors augment their ap-
proach using TF/IDF, word clustering, and coded linguistic relationships [10].  Hy-
brid techniques may include sophisticated classification systems (neural networks and 
other learning algorithms), and rely on the frequency counts of linguistic units.  Statis-
tical measures, such as log-likelihood and mutual information, may be used to rank 
information extracted linguistically [8], but predominantly statistical approaches to 
this task are scarce.   

We have developed a statistical method to identify collections of these domain 
terms – the terminology – automatically, and we use the terms as the basis for 
thesauri, or the latter-day ontologies.  These terms are extracted from collections of 
text in specific subject fields.   
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2.1   Method 

We are interested in the Quirkian notion that frequency of use of words correlates 
with acceptability of those words as part of the vocabulary [14]:33.  Our method uses 
the 100 million-word British National Corpus (BNC) [15] as reference collection of 
general language.  We consider similarities between BNC and specialist corpora as 
can be derived from Zipf’s Law [16], which produces a difference between general 
language and specialist language and suggests a similarity exists between language 
use in different specialisms: the approach may be generalisable to other specialist 
texts.  Subsequently, we use a weirdness calculation [17], based on one of Mali-
nowski’s observations, that has been adapted by smoothing [18], to seed a collocation 
extraction technique [19] that results in the production of a network of 
terms/concepts.  By reference to international standards (ISO) for terminology, we 
can facilitate the construction of terminological resources that have a potentially 
wider scope of use as thesauri or ontologies.  Such a terminology/thesaurus/ontology 
is then suitable for validation by experts.   

For our analysis we considered five specialist text corpora of various sizes: 4 col-
lated at Surrey, consisting of full texts from automotive engineering, nuclear physics, 
finance and nanoscale science and design, and a fifth from the MuchMore Springer 
Bilingual Corpus consisting of abstracts from medical journals.  Examples presented 
are generally from one of these corpora – concerned with nanoscale science and de-
sign – but similar results have been obtained from all of these corpora, and are the 
subject of ongoing expert evaluation, and further analysis, in other work.  If different 
specialisms use language in similar ways, it may be possible to systematically extract 
terminology, or thesauri, or ontology, from arbitrary collections of specialist text.  In 
our treatment, we make a distinction between tokens (words occurring at various 
locations in texts) and types (the different words used).   

2.2   Comparing Text Corpora 

The contrast between the general, everyday use of English with that of specialist use 
has been observed empirically and recently quantified using Zipf’s Law.  We consider 
the British National Corpus as an example of general language, alongside five special-
ist domain corpora, data for which is presented in Table 1. 

Table 1. Type and token counts for the 6 corpora that are the subject of our analysis 

 Automotive  Nuclear Finance Medical Nanoscale BNC 
Tokens 350920 393993 685037 1081124 1012096 100106029 
Types 14252 14937 28793 35033 26861 669417 

Counting words in collections of text provides a means by which to study proper-
ties of language use.  The first 100 most frequently occurring types in a text corpus 
have been shown to comprise just under half the corpus, which is true of both special-
ist and non-specialist corpora [20].  The first 100 most frequent types within a special-
ist text collection of around half a million words comprises between 30 and 40 open 
class words (types) – predominantly nouns specific to the domain.  The distinction 
between open-class words and closed-class words – grammatical words, for example 
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determiners and conjunctions, that tend to appear in stop-lists – requires human 
judgement and prior (domain) knowledge: a word such as keep may occur in a stop-
list for IR, but is important in documents relating to medieval architecture.  Since we 
seek to automate our approach, we need to determine how language behaves by con-
sidering characteristics of language use.   

George Kingsley Zipf’s power-law function has been used to show that for a text 
corpus of N tokens, the rank of a word (type) multiplied by its frequency produces a 
constant of N/10 (e.g. for the Brown Corpus [21]:26-27).  Zipf’s law has been tested 
in analysis of large (sub-)corpora of newswire texts (the Wall Street Journal for 1987, 
1988 and 1989: approximately 19 million, 16 million and 6 million tokens respec-
tively) and shows similar behaviour between these collections, with little deviation 
due to corpus size [22].  In these analyses, Zipf’s law holds only for a certain range of 
ranks: at high frequency and low frequency similar patterns of deviation from Zipf’s 
law are encountered that may be accounted for by the Zipf-Mandelbrot law.  Our 
chosen corpora have similar deviations from Zipf’s law, however application of 
Zipf’s law to words of low frequency - the hapax legomena – produced a clear differ-
ence between general language and specialist language (Fig.1.).     
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Fig. 1. Difference between percentage of types (y-axis) in the specialist corpora and predicted 
values derived from Zipf’s law (0.00%) for frequencies between 1 and 10 (x-axis) for 5 special-
ist corpora. For frequency 1, specialisms have around 37-43% of types compared to expectation 
(50%) and BNC (53%) 

By Zipf’s law, 50% of words should occur at frequency 1.  In the BNC, this figure 
is around 53%, whereas for the specialist corpora only 37-43% of words occur once.  
Additionally, within this hapax legomena, Zipf’s law suggests that 90% of words 
should occur with frequency of 10 or less.  For BNC, this is 84.45%, while it is 
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around 80% for the specialist corpora.  A first inference from such results is that spe-
cialist corpora, and the specialists who contribute to them, are disciplined in their 
language use since they deviate in the same manner from Zipf’s law and from a gen-
eral language resource such as BNC.  A second inference is that the reduced values 
for specialist corpora fit better with Zipf’s principle of least effort [16]: 22-23.   

2.3   Automatic Single-Word Term Extraction 

The empirical observations above have led us to develop the notion of weirdness [17].  
On the basis of similar properties of corpora, we compare frequencies of words 
(types) in the specialist corpora to frequencies in general language.  This computation 
has been adapted using an additive smoothing technique to account for words not 
found in general language [18].  For the selected specialist corpora, between 13% and 
38% of types are not found in the general language contained in the BNC (Table 2). 

Table 2. Words (types) in the specialist corpora that do not occur in the reference corpus 

Corpus Types  Tokens Number of types not in 
BNC 

% types not in 
BNC 

Automotive 14252 350920 1794 13% 
Nuclear 14937 393993 4190 28% 
Finance 28793 685037 4718 16% 
Medical 35033 1081124 11395 33% 
Nanoscale 26861 1012096 10231 38% 

Weirdness, smoothed, is calculated as 

SLGL

SLGL

Nf

fN
weirdness

)1( +
=  

(1) 

where fSL is the frequency of word in the specialist corpus, fGL is its frequency in 
BNC, and NSL and NGL are the token counts of the specialist corpus and the BNC 
respectively.  For example, for the Nanoscale corpus, we can produce a list of words 
and a combination of frequencies and weirdness values which suggest their domain-
specificity (Table 3). 

Table 3. Words, their frequencies in a specialist corpus and the BNC, and the result of weird-
ness and its smoothing 

Word Freq BNC Weirdness 
nanowires 619 0 61225 

nanoparticles 829 1 40998 

nanowire 360 0 35607 

nanotube 969 2 31948 

nanoscale 268 0 26508 

tunneling 514 1 25420 

nanoparticle 232 0 22947 
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Highly frequent words include closed class words – the being most frequent in 
English; across corpora a weirdness value for the of around 1 is obtained.  The com-
bination of high frequency and high weirdness is therefore of interest, and can auto-
mate removal of these closed class words (stop lists).  This may be suitable for stop 
lists for other languages and purposes also.  Resulting lists of frequency and weird-
ness values can be treated systematically by taking z-scores of each.  Where z-score 
for both frequency and weirdness is above a given threshold, the words provided by 
this mechanism are used in subsequent analysis (Table 4). 

Table 4. Number of words selected by z-score thresholds for both frequency and weirdness 

 Automotive  Nuclear Finance Medical Nanoscale 
z-score      
5 0 0 0 0 1 
4 0 0 0 0 5 
3 0 1 0 0 6 
2 0 3 2 1 8 
1 7 6 3 4 19 
0 154 176 186 494 352 

2.4   Automatic Multiword Term Extraction 

While some single-words may be terms in their own right, terms in specialist domains 
tend to be formed from a number of single words to identify more specific concepts: 
for example as multiword terms. Multiword terms in English generally exclude closed 
class words, punctuation marks and numerals, although chemical, mathematical and, 
indeed, nomenclatures for logic use a variety of hyphenation, numerals and other 
symbols that are important in that subject field.  The frequency with which words 
appear in close proximity to each other has been variously analysed.  Magnusson and 
Vanharanta have created collocational networks for visualising sequences of texts [1] 
using the “information theoretic concept of mutual information” [23].  Elsewhere, 
Church’s t-score has been used for calculating strength of association [24]:34.  We 
have found both measures to be limited on three counts: first, the selection of words 
for treatment by both seems to be arbitrary; second, both metrics take no account of 
features of the neighbourhood of the selected word(s); third, both metrics consider 
only two words together.  On the first issue, our weirdness-frequency combination 
seems to offer a solution; for the second and third we consider Smadja’s work on 
collocations [19].  Smadja uses a neighbourhood of five words and records frequency 
of words occurring at each position.  If the two words consistently appear together in 
the same relative position in contrast to other positions, this collocation is deemed 
significant.  We refer to a process of using such significant collocates as inputs to a 
subsequent collocation phase as re-collocation.  This expands a collocation network 
systematically, depending on the satisfaction of Smadja’s constraints.  Table 5 shows 
a sample of the words that collocate in the five positions either size of carbon (fre-
quency of 1506 in about 1 million tokens), in the nanoscale science and design cor-
pus, and that satisfy Smadja’s constraints.   
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Table 5. Collocations with carbon (frequency of 1506) in the Nanoscale science corpus 

Collocate Freq -5 -4 -3 -2 -1 1 2 3 4 5 
nanotubes 690 8 8 9 2 0 647 6 0 7 3 
nanotube 252 3 2 2 0 0 229 2 1 5 8 
single-walled 77 0 0 1 1 75 0 0 0 0 0 
aligned 94 1 1 3 5 74 0 1 1 3 5 
multiwalled 70 1 1 2 0 59 0 0 1 5 1 
amorphous 58 1 1 6 0 46 0 1 1 0 2 
atoms 51 1 2 0 1 0 42 0 1 3 1 
nanotips 44 0 2 1 1 0 39 0 0 1 0 

Re-collocation of carbon nanotubes produces collocating words such as those in 
Table 6. 

Table 6. Collocations with carbon nanotubes (frequency of 647) in the Nanoscale science 
corpus 

Collocate Frequency -5 -4 -3 -2 1 1 2 3 4 5 

single-walled 73 0 0 1 1 71 0 0 0 0 0 

aligned 63 1 1 1 5 48 0 0 2 4 1 

multiwalled 53 0 0 1 0 46 0 0 5 1 0 

properties 60 1 4 15 32 0 0 0 6 2 0 

multiwall 34 0 1 0 1 30 0 2 0 0 0 

single-wall 26 0 0 1 0 24 0 0 0 1 0 

2.5   Terminology/Ontology Construction 

The collocation network in our case is a tree branching out from the originally  
selected list of words.  Gillam has shown how this tree can be encoded in conformity 
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Fig. 2. Fragment of the resulting ontology from a corpus of Nanoscale science and design texts.  
Dotted outlines denote collocations deemed to be invalid 
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with international standards for the production of terminology interchange formats 
using ISO 12620 and ISO 16642 and for use with so-called ontology exchange lan-
guages [25].  A fragment of such a tree, resulting from the above analysis, and suit-
able for such encoding, is shown in Fig. 2. 

3   Discussion 

The method discussed relates to Minsky’s “thesaurus problem” [26]:27 of building 
and maintaining a thesaurus useful for a specific task or set of tasks, of learning to 
build thesauri, and of finding “new ways [to] make machines first to use them, then to 
modify them, and eventually to build for themselves new and better ones”.  A thesau-
rus has been described as “one type of ontology, one specialized to information re-
trieval” [27], and is built to show the inter-relationships between words.  Unlike a 
dictionary, which is usually alphabetically organized and seeks to elaborate meaning, 
a thesaurus is developed to elaborate the conceptual (hierarchical and part-whole) 
relationships between a word, or more specifically a word related to a concept, and 
one or more other words.  Our method for constructing ontologies extends work on 
construction of collocational networks.  These ontologies, or terminologies, or 
thesauri, can be extracted automatically from text collections, and show how knowl-
edge in a specific subject field is organised.  Such resources may be useful for the 
organization of this scientific information.  Other applications include: generating 
buy/sell signals in financial trading [28], health policy communication [29], digital 
heritage [30] and query expansion for multimedia information retrieval [31], [32].  
The resulting ontology has been exported to a de facto standard ontology editor – 
Protégé – for viewing and editing.  Here it becomes the basis for developing intelli-
gent (rule-based systems) using applications such as JESS [33].  The ontology also 
enables text-based feature selection to be made, which may be useful for systems 
such as WebSOM [34].   

Initial discussions with domain experts have validated the first results with some 
degree of confidence, and we are studying the effects of increasing the length of mul-
tiword patterns being generated, against decrease in frequency.  For example, at low 
frequencies that are not statistically validated, we have aligned single-walled carbon 
nanotubes (2) and large-diameter single-walled carbon nanotubes (2).  Subsequent 
effort is required to classify collocations into facets: in the examples presented, the 
types of carbon nanotubes appear to have “walledness” as a significant facet, and 
being aligned has importance also, though is perhaps a value of a different facet.  
Determining this distinction currently requires expert input.  properties is not a posi-
tionally valid collocation – though we can infer that properties of carbon nanotubes 
are described in this collection.  We have considered combined use with linguistic 
patterns elsewhere [35]. 

Acknowledgements.  This work was supported in part by research projects sponsored 
by the EU (SALT: IST-1999-10951, GIDA: IST-2000-31123, LIRICS: eContent-
22236) and by UK research councils: EPSRC (SOCIS: GR/M89041/01, REVEAL: 
GR/S98450/01) and ESRC (FINGRID: RES-149-25-0028).   



578 L. Gillam and K. Ahmad 

 

References 

1. Magnusson, C. and Vanharanta, H.: Visualizing Sequences of Texts Using Collocational 
Networks. In Perner, P. and Rosenfeld, A. (Eds): MLDM 2003, LNAI 2734 Springer-
Verlag, Heidelberg. (2003) 276-283 

2. Grabar, N. and Zweigenbaum, P.: Lexically-based terminology structuring. Terminology 
10(1). John Benjamins, Amsterdam (2004) 23-53. 

3. Maedche, A.:. Ontology Learning for the Semantic Web. The Kluwer International Series 
in Engineering and Computer Science, Vol. 665. Kluwer Academic Publishers (2002).  

4. Salton, G.:. Experiments in Automatic Thesauri Construction for Information Retrieval. In 
Proceedings of the IFIP Congress, Ljubljana, Yugoslavia. Vol. TA-2. (1971) 43-49. 

5. Jing, Y. and Croft, W.B.: An Association Thesaurus for Information Retrieval. In Bretano, 
F., Seitz, F. (eds.), Proc. of RIAO’94 Conference, CIS-CASSIS, Paris, France (1994) 146-
160.  

6. Grefenstette, G.: Explorations in Automatic Thesaurus Discovery. Boston, USA: Kluwer 
Academic Publishers (1994) 

7. Drouin, P.: Term extraction using non-technical corpora as a point of leverage. Terminol-
ogy 9(1). John Benjamins, Amsterdam (2003) 99-115. 

8. Vivaldi, J. and Rodríguez, H.: Improving term extraction by combining different tech-
niques. Terminology 7(1). John Benjamins, Amsterdam (2001) 31-47. 

9. Maedche, A. and Volz, R.: The Ontology Extraction and Maintenance Framework Text-
To-Onto. Workshop on Integrating Data Mining and Knowledge Management. California, 
USA (2001) 

10. Maedche, A. and Staab, S: Ontology Learning. In S. Staab & R. Studer (eds.): Handbook 
on Ontologies in Information Systems. Heidelberg: Springer (2003). 

11. Faure, D. and Nédellec, C.: Knowledge Acquisition of Predicate Argument Structures from 
Technical Texts Using Machine Learning: The System ASIUM. LNCS 1621. Springer-
Verlag, Heidelberg. (1999) 329-334. 

12. Faure, D. and Nédellec, C.: ASIUM: Learning subcategorization frames and restrictions of 
selection. In Y. Kodratoff, (Ed.), 10th Conference on Machine Learning (ECML 98), 
Workshop on Text Mining, Chemnitz, Germany. (1998). 

13. Mikheev, A. and Finch, S.: A Workbench for Acquisition of Ontological Knowledge from 
Natural Text.  In Proc. of the 7th conference of the European Chapter for Computational 
Linguistics (EACL'95), Dublin, Ireland. (1995) 194-201.  

14. Quirk, R.: Grammatical and Lexical Variance in English. Longman, London & New York 
(1995) 

15. Aston, G. and Burnard, L.: The BNC Handbook: Exploring the British National Corpus.  
Edinburgh University Press (1998). 

16. Zipf, G.K.: Human Behavior and the Principle of Least Effort. Hafner, New York. (1949).  
17. Ahmad, K. and Davies, A.E.: Weirdness in Special-language Text: Welsh Radioactive 

Chemicals Texts as an Exemplar. Internationales Institut får Terminologieforschung Jour-
nal 5(2). (1994) 22-52. 

18. Gale, W. and Church, K. W.: What's wrong with adding one? In Oostdijk, N. and de Haan, 
P. (eds.): Corpus-Based Research into Languge: In honour of Jan Aarts. Rodopi, Amster-
dam (1994), 189-200 

19. Smadja, F.: Retrieving collocations from text: Xtract. Computational Linguistics, 19(1).  
Oxford University Press. (1993), 143-178 



 Pattern Mining Across Domain-Specific Text Collections 579 

 

20. Ahmad, K.: Neologisms to Describe Neologisms: Philosophers of Science and Termino-
logical Innovation.  In (Ed.) Peter Sandrini: Proc. of Terminology and Knowledge Engi-
neering (1999), 54-73. 

21. Manning, C. and Schütze, H.: Foundations of Statistical Natural Language Processing. 
MIT Press, Cambridge, MA. (1999) 

22. Ha, L. Q., Sicilia, E. , Ming, J. and Smith, F. J.: Extension of Zipf's law to words and 
phrases. In Proceedings of International Conference on Computational Linguistics 
(COLING 2002), Taipei, Taiwan. (2002), 315-320 

23. Church, K.W. and Hanks, P.: Word association norms, mutual information and lexicogra-
phy. In Proceedings of the 27th Annual Conference of the Association of Computational 
Linguistics (1989), 76-82. 

24. Jacquemin, C.: Spotting and Discovering Terms through Natural Language Processing. 
MIT Press. Cambridge, MA. (2001) 

25. Gillam, L.: Systems of concepts and their extraction from text. Unpublished PhD thesis, 
University of Surrey. (2004).  

26. Minsky, M.: Semantic Information Processing. MIT Press (1968) 
27. Oard, D.W.: Alternative approaches for cross-language text retrieval. In AAAI Symposium 

on Cross-Language Text and Speech Retrieval. American Association for Artificial Intelli-
gence. (1997). 

28. Gillam, L. (Ed): Terminology and Knowledge Engineering: making money in the financial 
services industry. Proceedings of workshop at 2002 conference on Terminology and 
Knowledge Engineering (2002). 

29. Gillam, L. and Ahmad, K.: Sharing the knowledge of experts. Fachsprache 24(1-2). (2003), 
2-19. 

30. Gillam, L., Ahmad, K. Salway,.: Digital Heritage and the use of Terminology. Proceedings 
of Terminology and Knowledge Engineering. (2002) 

31. Ahmad, K., Tariq, M., Vrusias, B. and Handy, C.:. Corpus-Based Thesaurus Construction 
for Image Retrieval in Specialist Domains. ECIR 2003, LNCS 2633. Springer Verlag, Hei-
delberg (2003), 502-510. 

32. Vrusias, B. Tariq, M. and Gillam, L.: Scene of Crime Information System: Playing at St 
Andrews. CLEF 2003, LNCS 3273. Springer Verlag, Heidelberg (2004), 631-645. 

33. Eriksson, H.: Using JessTab to Integrate Protégé and Jess. IEEE Intelligent Systems 18(2). 
(2003), 43-50 

34. Kohonen, T., Kaski, S., Lagus, K. Salojärvi, J., Honkela, J., Paatero, V. and Saarela, A.: 
Self Organization of a Massive Document Collection. IEEE Transactions on Neural Net-
works 11(3). (2000), 574-585. 

35. Gillam, L., Tariq, M. and Ahmad, K.: Terminology and the Construction of Ontology. 
Terminology. John Benjamins, Amsterdam. Terminology 11:1 (2005), 55–81. 



Text Classification Using Small Number
of Features

Masoud Makrehchi and Mohamed S. Kamel

Pattern Analysis and Machine Intelligence Lab,
Department of Electrical and Computer Engineering,

University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
{makrechi, mkamel}@pami.uwaterloo.ca

Abstract. Feature selection method for text classification based on in-
formation gain ranking, improved by removing redundant terms using
mutual information measure and inclusion index, is proposed. We report
an experiment to study the impact of term redundancy on the perfor-
mance of text classifier. The result shows that term redundancy behaves
very similar to noise and may degrade the classifier performance. The
proposed method is tested on an SVM text classifier. Feature reduction
by this method remarkably outperforms information gain based feature
selection.

1 Introduction

Recently text classification has been one of the fast paced applications of machine
learning and data mining [1]. There are many applications using text classifica-
tion techniques such as natural language processing and information retrieval [2].
Since text classification is a supervised learning process, a wide range of learning
methods, namely nearest neighbour, regression models, Bayesian approach, deci-
sion trees, inductive rule learning, neural networks and support vector machines
have been proposed [3, 4].

Most text classification algorithms use vector space model or bag of words to
represent text documents. In this model, every word or group of words, depends
on working with a single word or a phrase, called a term, which represents one
dimension of the feature space. A positive number is assigned to each term. This
number can be the frequency of the term in the text [5].

One problem with this modelling is high dimensionality of feature space,
meaning a very large vocabulary that consists of all terms occurring at least
once in the collection of documents. Although high dimensional feature space
has destructive influences on the performance of most text classifiers, its impact
on increasing complexity is worse and expensive. Then, two main objectives of
feature selection are improving both classification effectiveness and computa-
tional efficiency. [6, 7].

In aggressive feature selection, most irrelevant, non-predictive, and non-
informative features are removed and classification task is performed by very

P. Perner and A. Imiya (Eds.): MLDM 2005, LNAI 3587, pp. 580–589, 2005.
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few features with minimum loss of performance and maximum reduction of com-
plexity. In [6] the number of selected features is as low as 3% of features. More
aggressive feature selection, including only 1% of all features, has been reported
in [8]. Both reports are about feature selection for text classifiers. In this type
of feature selection strategies, the main concern is the complexity reduction, as
well as improving the classifier performance.

One well-known approach for removing a large number of non-predictive fea-
tures is feature ranking [6, 8]. Being ranked by a scoring metric such as infor-
mation gain, Chi-Squared or odds-ratio, all features are descendingly sorted and
a very few number of best features are kept and the rest of features are re-
moved. However, these methods have a serious disadvantage, which is ignoring
the correlation between terms because most ranking measures consider the terms
individually. An experiment, detailed in the next section, shows that the impact
of term redundancy is as distractive as noise.

In this paper, a new approach for feature selection, with more than 98% re-
duction, is proposed. The method is based on a multi stage feature selection in-
cluding pre-processing tasks, information gain based term ranking and removing
redundant terms by a proposed method which uses mutual information measure
and inclusion index. The paper consists of five sections. After the introduction,
impact of redundancy on the performance of text classifier is discussed in Sec-
tion 2. In Section 3, the proposed multi stage feature reduction and a method to
identify and remove redundant terms are introduced. Experimental results and
conclusion are presented in Sections 4 and 5, respectively.

2 Impact of Redundancy on the Performance of Text
Classifiers

Redundancy is a kind of data dependency and correlation which can be estimated
by different ways, such as the Jaccard distance, Cosin similarity, co-occurrence
and co-location measures [9,10,11]. In this paper, redundancy between two terms
is measured by mutual information. An experiment is set up in order to illustrate
the influence of redundancy on the classifier performance. An SVM classifier with
a linear kernel is employed. The data collection is the well known 20 Newsgroups
data set. In this experiment, classification accuracy is used as a performance
evaluation measure. We show that adding redundancy, in the case of very low
number of features, can degrade the accuracy. The testing process is as follows.

Let T = {t1, t2, . . . , tN} be the vocabulary. The terms are ranked by informa-
tion gain, such that t1 is the best term and tN is the worst one. A smaller set V, so
called the set of selected features, is defined as follows; V={v1, v2, . . . , vn},V⊂T,
n � N . Three different forms of V are generated by the following schemas;

– n best terms: The n first terms of T are selected such that vi = ti, 1 ≤ i ≤ n.
– n/2 best terms + n/2 redundant terms: In this schema, vector V contains

two parts. First part is selected like first schema, except instead of n, n/2
best terms are picked up. The n/2 terms in the second part are artificially
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Table 1. The impact of redundancy and noise on the accuracy of the SVM text
classifier

number of terms 5 10 15 20 25 30 35 40 average
n best terms 0.1793 0.3465 0.5843 0.6991 0.7630 0.8455 0.9299 0.9369 0.6606
50% redundancy 0.1493 0.2499 0.3473 0.4456 0.5029 0.5922 0.6646 0.6925 0.4555
50% noise 0.1485 0.2483 0.3302 0.4038 0.5024 0.5833 0.6752 0.7185 0.4513

generated by adding very small noise to each term of the first part. By this
formulation, the rate of redundancy is at least 50%. Since we use binary
features (without weights), added noise is a uniform binary noise changing
the corresponding binary features from zero to one or vice versa. In order
to achieve high degree of redundancy, few number of features, 2% of whole
features, are chosen to be affected by noise.

– n/2 best terms + n/2 noise: It is the same as previous schema except the
second part consists of noisy terms. Because of using feature ranking mea-
sures, n/2 last (worst) terms which can be treated as noise, are added to the
first part.

All three feature vectors with different values for n, n = {5, 10, . . . , 40}, are
submitted to the SVM classifier. In order to estimate the accuracy, a five-fold
cross validation schema is employed. In this process, the collection is divided
into five subsets. The experiment is repeated five times. Each time we train the
classifier with four subsets and leave the fifth one for test phase. The average of
five accuracies is the estimated accuracy.

Table 1 illustrates the result. It clearly shows that redundancy and noise
reduce the accuracy. Comparing the averages depicts both schemas have almost
similar impact on the classifier. In a small ranked feature vector, the risk of
having redundant term is quite high. For example in a five-term feature vector,
if there is only one redundant term, we are actually using four terms instead
of five because one of the terms is useless. By removing the redundant term,
we make room for another term which can improve the predictive power of the
feature vector.

3 Proposed Approach

The main goal of the proposed schema is providing a solution for feature se-
lection with a high rate of reduction, by which the number of selected features
V is much less than those in the original vocabulary T. We propose a three-
stage feature selection strategy including pre-processing tasks, information gain
ranking, and removing redundant terms. The first stage involves pre-processing
tasks that include Porter word stemming which can reduce almost 40% of terms,
removing general stopwords reducing about 200 terms, and removing most and
least frequent terms. Since we are using the 20 Newsgroups data set, the origi-
nal vocabulary has about 118, 275 terms. The pre-processing tasks cut down the
size of the vocabulary 75.50%. In this step, we are not losing much information
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because the pre-processing tasks remove non-informative, noise, stopwords, and
misspelled words.

In the second stage, information gain is used to select most informative and
predictive terms. Information gain is one of the most efficient measures for feature
ranking in classification problems [8]. Yang and Pedersen [7] have shown that
sophisticated techniques such as information gain or Chi-Squared can reduce the
dimensionality of the vocabulary by a factor of 100 with no loss (or even with
a small increase) of effectiveness. Here, the terms in the vocabulary after pre-
processing which includes 28, 983 terms, are ranked by information gain. The
10% of best terms are chosen as most informative and predictive terms.

Information gain and other filter based feature selection methods ignore the
correlation between features and evaluate them individually. The main motiva-
tion of the work reported in this paper is improving information gain ranking
by identifying any correlation between terms, and extracting and removing re-
dundancies, which is the third stage. At this level, about 5% to 20% of ranked
features are selected. While employing very few features, any term redundancy
influences the output of the classifier and reduces the accuracy. The proposed
approach has two core elements; mutual information and inclusion index which
are detailed in the following subsections.

3.1 Mutual Information

Mutual information is a measure of statistical information shared between two
probability distributions. Based on the definition in [12], mutual information
I(x; y) is computed by the relative entropy of a joint probability distribution
like p(x, y) and the product of the marginal probability distributions p(x) and
p(y)

I(x; y) = D(p(x, y)||p(x)p(y)) =
∑

x

∑
y

p(x, y)log
p(x, y)

p(x)p(y)
(1)

Mutual information has been applied in text mining and information retrieval for
applications like word association [13] and feature selection [14]. Mutual infor-
mation is viewed as the entropy of co-occurrence of two terms when observing a
category. We practically compute mutual information between two other mutual
information measures. Each measure represents shared information between a
term like ti and a class such as ck. Since we are interested in the distribution
of a pair of terms given a specific category, the joint distribution is considered
as the probability of occurrence of the two terms ti and tj in those documents
belonging to the class ck. Eq. 1 can be rewritten as follows

I(ti; ck) =
∑
ti

∑
ck

p(ti, ck)log
p(ti, ck)

p(ti)p(ck)
(2)

where I(ti; ck) is the mutual information of the distribution of term ti and cat-
egory ck. Mutual information itself has been used as a ranking measure and
showed very poor result [7]. Eq. 2 might be writhen for term tj exactly the same
way. In other word, I(ti; ck) is the entropy of p(ti ∩ ck) which is the probability
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distribution of the occurrence of the term ti in the class ck. The total mutual
information (ϕ) is calculated as follows

ϕ {I(ti; ck); I(tj ; ck)} = ϕ(ti ∩ ck, tj ∩ ck) (3)

ϕ(ti ∩ ck, tj ∩ ck) =
∑
ti,ck

∑
tj ,ck

p(ti ∩ ck, tj ∩ ck)log
p(ti ∩ ck, tj ∩ ck)

p(ti ∩ ck).p(tj ∩ ck)
(4)

ϕ {I(ti; ck); I(tj ; ck)} is a point-wise mutual information. The total mutual infor-
mation of two terms when observing whole category information is the average
of the mutual information over c. This measure is simply represented by the
summarized form ϕ(ti; tj).

ϕ(ti; tj) =
C∑

k=1

ϕ(ti ∩ ck, tj ∩ ck) (5)

where C is the number of categories. Since ϕ has no upper bound, normalized
mutual information Φ which has upper bound and is a good measure to compare
two shared information, is proposed as follows [16].

Φ(ti; tj) =
ϕ(ti; tj)√

I(ti; c).I(tj ; c)
, 0 ≤ Φ(t1; t2) ≤ 1 (6)

From [16], ϕ and I(ti; c) can be estimated as following equations,

I(ti; c) =
C∑

k=1

nck
ti

n
log

n
ck
ti

n
nti

n .
nck

n

=
1
n

C∑
k=1

nck
ti

log
n.nck

ti

nti
.nck

(7)

ϕ(ti; tj) =
C∑

k=1

nck
ti,tj

n
log

n
ck
ti,tj

n
nti,tj

n .
nck

n

=
1
n

C∑
k=1

nck
ti,tj

log
n.nck

ti,tj

nti,tj
.nck

(8)

where n is the total number of documents in the collection, nck
depicts the

number of documents in kth category, nti
(nti,tj

) is the number of documents
which have term ti (both ti and tj). The number of documents which belongs to
the kth class, and includes the term ti (ti and tj) is represented by nck

ti
(nck

ti,tj
).

Eq. 6 is estimated as follows,

Φ(ti; tj) =

∑C
k=1 nck

ti,tj
log

n.n
ck
ti,tj

nti,tj
.nck√∑C

k=1 nck
ti

log
n.n

ck
ti

nti
.nck

.
∑C

k=1 nck
tj

log
n.n

ck
tj

ntj
.nck

(9)

Φ is equal to one if the two terms are completely identical and correlated
when observing a category, and Φ = 0 if the two terms are completely un-
correlated. It should be noted that although point-wise mutual information
ϕ {I(ti; ck); I(tj ; ck)} can be negative [15], the average mutual information



Text Classification Using Small Number of Features 585

ϕ(ti; tj) is always positive and its normalized version is less than or equal to
one.

Φ is calculated for all possible pairs of terms in the vocabulary. The result is
Φ matrix in the order of M × M , where M is the size of the vocabulary or the
number of terms. Since Φ is a symmetric measure, and always Φ(ti; ti) = 1, in
order to construct the matrix, M(M−1)

2 number of Φ calculations are necessary,
that it very expensive. One approach to overcome the problem is to calculate
Φ matrix for a very small subset of terms S of the vocabulary V . It means
instead of the full Φ matrix, a sub-matrix of Φ is provided. In other words, we
need to calculate Φ for most likely correlated terms. Let us suppose that there
are ns groups of correlated terms in the vocabulary. The problem is identifying
these groups and calculating Φ for each of them. We propose inclusion index
and matrix for this purpose.

3.2 Inclusion Index

Let D = {d1, d2, . . . , dn} be the collection of documents. Every document is
represented by a vector of words, called the document vector space, for example,

dk = {wk,1.t1, wk,2.t2, . . . , wk,M .tM} (10)

where wk,q is the weight of the qth term in the kth document. Here we use binary
weighting which depends on wether the term is in the document or not. As a
consequence, D can be represented by an N ×M matrix in which every row (dk)
is a document and every column (ti) represents the occurrence of the term in
every document. Based on this notation, inclusion, which is a term-term relation,
is defined in [17]. Inclusion index Inc(ti, tj), representing how much tj includes
ti, is calculated by,

Inc(ti, tj) =
||ti ∩ tj ||
||ti|| , Inc(ti, tj) �= Inc(tj , ti) (11)

where ||.|| is the cardinal number of the set. Inc(ti, tj) = 1 when tj is completely
covering ti and called full inclusive. Inc(ti, tj) = 0 means there is no overlap
between the two terms. There is also partial inclusion when 0 < Inc(ti, tj) < 1.
tj is called more inclusive than ti if Inc(ti, tj) > Inc(tj , ti). The inclusion matrix
Inc is an M ×M matrix in which each entry is an inclusion index between two
terms.

3.3 Redundancy Removal Algorithm

The main idea in identifying redundant terms is finding the sets of correlated
terms. For example, {rec,hockei,motorcycl,bike,nhl,playoff} shows one of these
sets including six correlated terms. The sets are extracted using inclusion matrix
Inc. Algorithm 1 represents the detail of extracting the sets and then identifying
redundant terms.

Let Sq be the qth set of correlated terms. Instead of calculating full matrix of
Φ, it is only obtained for the terms in the Sq. The resulting matrix is represented
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Algorithm 1 Extracting redundant terms
for 1 ≤ i, j ≤ M if Inc(i, j) > threshold ⇒ inc(i, j) ← 1 else inc(i, j) ← 0
for 1 ≤ i ≤ M TermIndex(i) ← 0
i ← 1
while “the set of zero element in TermIndex is not empty”
k ← index of 1st zero element in TermIndex
TermIndex(k) ← 1, u ← k, l ← 1
while “l is non-zero”

z ← the set of non-zero elements of kth column of inc
if “z is non-empty” ⇒ append z to u, sort u
TermIndex(k) ← 1
x ← number of zero elements of TermIndex according to u
l ← number of elements in x
if l > 0 ⇒ k ← u(x(1))

end while
CorrrelatedTermSet(i) ← u
i ← i + 1

end while
remove all sets from CorrelatedTermSet which have less than two elements
for q = 1 to number of set of correlated terms
calculate Φq, calculate Incq

for i = 1 to number of elements in qth set of correlated terms
for j = 1 to number of elements in qth set of correlated terms
Rq(i, j) ← Incq(i, j).Φq(i, j)
if i = j ⇒ Rq(i, j) ← 0

end for
end for
keep maximum element of each row of Rq and make other else zero
RedundantTerms ← terms according to the whole zero columns of Rq

end for

by Φq. We do the same for Incq. Matrix Rq, which is called redundancy matrix,
is calculated by entry-entry multiplication of Φq and Incq as follows

Rq(i, j) = Φq(i, j).Incq(i, j), 1 ≤ i, j ≤ nq (12)

where nq is the number of terms in Sq. The ith row of Rq, which is an nq × nq

matrix, shows that the ith term (in Sq) in which terms is included or with which
ones are being covered. In each row the maximum entry is kept and the others
are set to zero. Finally, every term that its corresponding column in Rq is full
zero (all elements are zero), is assigned as a redundant term because it does
not include any other term. Table 2 shows the resulting matrices for a set of
correlated terms.

4 Experimental Results

The proposed approach has been applied on 20 Newsgroups data set using an
SVM classifier with linear kernel. Although there are some reports showing fea-
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Table 2. An example of extracting redundant terms from qth set of correlated terms,
(A) normalized mutual information matrix Φq, (B) inclusion sub-matrix Incq, (C)
multiplication of the two matrices (Φq and Incq), (D) term redundancy matrix Rq.
Based on Rq, all terms, whose corresponding columns are zero, are redundant and
should be removed

(A)
rec hockei motorcycl bike nhl playoff

rec 1 0.4448 0.4415 0.2866 0.2078 0.2059
hockei 0.4448 1 0 0 0.4555 0.4300
motorcycl 0.4415 0 1 0.5886 0 0
bike 0.2866 0 0.5886 1 0 0
nhl 0.2078 0.4555 0 0 1 0.1754
playoff 0.2059 0.4300 0 0 0.1754 1

(B)
rec hockei motorcycl bike nhl playoff

rec 1 0.2221 0.2255 0.1162 0.0669 0.0680
hockei 0.9951 1 0 0 0.2998 0.2883
motorcycl 0.9903 0 1 0.4911 0 0
bike 0.9906 0 0.9530 1 0 0
nhl 0.9945 0.9945 0 0 1 0.2623
playoff 1 0.9459 0 0 0.2595 1

(C)
rec hockei motorcycl bike nhl playoff

rec 0 0.0988 0.0995 0.0333 0.0139 0.0140
hockei 0.4426 0 0 0 0.1366 0.1240
motorcycl 0.4372 0 0 0.2891 0 0
bike 0.2839 0 0.5609 0 0 0
nhl 0.2067 0.4530 0 0 0 0.0460
playoff 0.2059 0.4067 0 0 0.0455 0

(D)
rec hockei motorcycl bike nhl playoff

rec 0 0 0.0995 0 0 0
hockei 0.4426 0 0 0 0 0
motorcycl 0.4372 0 0 0 0 0
bike 0 0 0.5609 0 0 0
nhl 0 0.4530 0 0 0 0
playoff 0 0.4067 0 0 0 0

ture selection for SVM classifier not only is unnecessary but also can reduce its
performance [6,18], in addition to [8], in this paper we show that for a very small
size of feature vector, SVM performance can be improved by feature selection
through redundancy reduction.

The proposed schema has been evaluated by comparing its results with those of
stand-alone information gain ranking. A five-fold cross validation is used for better
estimation of classifier performance. In addition to classifier accuracy, two more
performance indices have been used, including micro-average, and macro-average.
They are calculated based on aj , the number of samples which are correctly clas-
sified as class j, and bj , the number of samples wrongly classified as class j.

macro − average =

∑C
i=1

ai

ai+bi

C
, micro − average =

∑C
i=1 ai

(
∑C

i=1 ai) + (
∑C

i=1 bi)
(13)

where C is the number of categories. Table 3 presents the results of two methods
with different performance measures. Each method has been applied on the SVM
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Table 3. Comparing the results of aggressive feature selection using information gain
ranking and the proposed method (bold) for the SVM text classifier

number of terms 5 10 15 20 25 30 35 40 average
accuracy 0.1793 0.3465 0.5843 0.6991 0.7630 0.8455 0.9299 0.9369 0.6606

0.2028 0.4854 0.7098 0.8032 0.9031 0.9036 0.9027 0.9022 0.7266
micro-average 0.1113 0.3334 0.5567 0.6799 0.7391 0.8481 0.9331 0.9403 0.6427

0.1601 0.4645 0.6860 0.7690 0.8844 0.8988 0.8871 0.8845 0.7043
macro-average 0.1004 0.2932 0.5065 0.6470 0.7185 0.8196 0.9300 0.9370 0.6190

0.1260 0.4120 0.6610 0.7640 0.8826 0.8842 0.8822 0.8827 0.6868

classifier with eight levels of aggressive feature selections. In all measures, and
most feature selection levels, the proposed method has outperformed information
gain ranking. The last column of the table depicts the averages which clearly
show that the proposed approach is more efficient.

5 Conclusion

Aggressive feature selection, with higher than 95% feature reduction, was dis-
cussed. This sort of feature selections is very applicable to text classifiers while
because of dealing with huge size of feature space so called vocabulary. Text clas-
sifiers, working with very small feature vectors, are very sensitive to noise, out-
liers and redundancies. Then, improving any classical feature selection method
like feature ranking for aggressive reduction is strongly necessary.

Term redundancy in text classifiers causes a serious drawback in most feature
rankings, such as information gain, because they always ignore correlation be-
tween terms. The result of an experiment in the paper showed that the effect of
term redundancy can be worse than noise. To find and reduce term redundancy,
a method was proposed for improving aggressive feature selection by informa-
tion gain ranking. The method was based on identifying and removing term
redundancy using mutual information measure and inclusion index. Terms were
grouped in a few sets of correlated terms using inclusion matrix. In the next step
each set was modelled by the term redundancy matrix.

Aggressive feature selection approaches by stand-alone information gain rank-
ing and proposed method (removing the redundant term from ranked feature
vector by information gain) were compared in an SVM text classifier frame-
work. Results showed that with three evaluation measures, the proposed schema
outperformed the aggressive feature selection by the stand-alone information
gain. The proposed method improved information gain 10% in accuracy, 9.5%
in macro-average, 11% in micro-average. Better results are expected for other
feature ranking methods such as Chi-Squared and odds-ratio.
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Québec, Canada H3G 1M8
krzyzak@cs.concordia.ca

Abstract. An efficient low-level word image representation plays a cru-
cial role in general cursive word recognition. This paper proposes a novel
representation scheme, where a word image can be represented as two
sequences of feature vectors in two independent channels, which are ex-
tracted from vertical peak points on the upper external contour and
at vertical minima on the lower external contour, respectively. A data-
driven method based on support vector machine is applied to prune and
group those extreme points. Our experimental results look promising and
have indicated the potential of this low-level representation for complete
cursive handwriting recognition.

1 Introduction

Although much progress has been made in off-line cursive word recognition over
the past decade [1] [2], this task is still very challenging and the performance
of the current recognition systems is far from that of human beings [3]. The
solutions to several key problems related to handwritten word recognition re-
main unknown. One of the most important problems is the efficient low-level
representation of a cursive word image for classification. Intuitively, although a
handwritten word is concatenated by a small set of handwritten characters (52
characters in English) from left to right, its shape exhibits considerable varia-
tions and depends on the uncertainty of human writing. The boundaries between
characters in a handwritten word are intrinsically ambiguous due to the over-
lapping and inter-connections. The changes in the appearance of a character
usually depend on the shapes of neighboring characters (coarticulation effects).
As a result, it is very difficult to represent the word image based on characters
in early visual processing.

In the current literature several methods have been proposed to alleviate
the character segmentation problem [4]. In the first case, the image of the given

P. Perner and A. Imiya (Eds.): MLDM 2005, LNAI 3587, pp. 590–599, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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word is regarded as an entity in the whole. A word is characterized by a sequence
of features such as length, loops, ascenders and descenders. No sub-models are
used as the part of its classification strategy. Although the method can avoid
the difficult problem of segmentation completely, no uniform framework in the
literature has been presented to extract those features. It is not clear how to
solve the problem of the correspondence of feature points if some features are
used as local shape descriptors.

In the second case, the word image is segmented into a sequence of graphemes
in left-to-right order [5]. The grapheme may be one character or parts of charac-
ters. After the segmentation, possible combinations of adjacent graphemes are
fed into a character recognizer. Then a dynamic programming technique is used
to choose the best sequence of characters. There are two problems with this
method. One is that segmentation and grapheme combination are both based
on heuristic rules that are derived by human intuition. They are error-prone. The
other is that the computational cost is probibitively high due to the evaluation
of a large grapheme combination.

In the third case, features are extracted in a left-to-right scan over the word
by a sliding window [6]. In this method, no segmentation is required. But there
are several problems related to it. One is that some topological information such
as stroke continuity and contour length will be lost. But stroke continuity is a
strong constraint for handwritten signals. The other is how to determine the
optimal width of a sliding window. Morover, this one-dimensional sampling of
two-dimensional word image will resut in information loss.

By reviewing the above methods, we know that none of them imply where
the important information is located in a word image and how to organize them
efficiently..In this paper, we locate certain extreme points in the vertical direction
on a contour, then apply support vector machines to classify those points into
two channels: local peaks in the upper external contour and local minima in the
lower external contour. For classification task, local feature vectors are extracted
at those points. As a result, a cursive word image will be represented by two
sequences of feature vectors.

In Section 2, we discuss the relationship of feature points to the process of
handwriting production and an algorithm for the extraction of those points will
be given. Then we present the method of feature extraction in Section 3. The
experimental results are described in Section 4. Finally, we summarize this paper
and draw conclusions.

2 Locating Extreme Points

In the process of handwriting production, strokes are basic units and a handwrit-
ing signal can be represented as a sequence of strokes in the temporal dimension.
A stroke is bounded by two points with curvature. In offline handwriting, the
image contour can be used to precisely represent a binary (black/white) word
image. The high-curvature points can be detected robustly. As a result, the ex-
ternal contour can be broken up into strokes under the assumption of contiguity.
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In terms of an oscillatory motion model of handwriting [7], we know that the
horizontal and vertical directions are more important than the other orienta-
tions. Then strokes are split into two groups: strokes in the upper contour and
those in the lower contour. These strokes are ordered from left to right. This
representation has several characteristics:

1. It is compatible with the study in psychology which shows that strokes are
basic units of handwriting signals.

2. The space neighboring relationship of strokes is preserved.
3. It is a local representation of word image. It is easier to extract low-level

invariant local features.
4. It is a 2D representation.

Also, unlike wavelet coding, more high-level units such as letters and words can
be visually constructed from this representation. As a result, this representation
will facilitate us in building a hierarchical system of cursive word recognition.

In order to obtain the above representation, we first need to locate those
interesting points with high curvature. In the writing process, the most important
part of a curve seems to be where the writing speed has reached a minimum
and curvature reaches a maximum [8][9]. The vertical extrema on an external
contour are the segmentation points of handwritten strokes. Fig. 1 shows the
procedures of the extraction of vertical extrema. The interesting locations are the
peaks in the upper external contour and minima in the lower external contour.
The neighboring curved segments at those extrema are convex. If the curve are
smooth, the curvatures at those points are positive. Theoretically there exists

extraction

Input image

Contour extraction

Vertical extrema

Fig. 1. Vertical extrema on the external contour of a word image. The peaks in the
upper contour are marked by rectangles. The minima in the lower contour are marked
by circles
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a point with the negative curvature between two neighboring extrema. This
indicates that a point with the negative curvature depends on its neighboring
points with positive curvature. Therefore, it is reasonable to assume that peaks
in the upper external contours are pairwisely independent. So are the minima in
the lower external contours. Also, these locations are analogous to the centers of
receptive fields [10], which attract visual attention [11]. Separating these extrema
into two groups have the following advantages:

– 2D space configuration of these extrema can be approximated by two 1D
space configurations. Consequently the problem complexity will be greatly
reduced.

– It conforms with the Gestalt principles of perceptual organization: proxim-
ity principle (vertical distances) and similarity (local curve shape at these
points).

– When we model the signal similarity independently and signals in one group
are degraded, the model in the other group is not affected.

In addition, for the inner contour, we represent it as a loop in the stage of feature
extraction, rather than as vertical extrema. The loop will be associated with the
closest extrema in the external contour. In the next stage, local features are
extracted at those extrema.

Vertical extrema can be detected on the image external contour. We propose
an algorithm to detect those points robustly as below:

Algorithm for Detection of Vertical Extrema
Input: contour points v[i], i = 1, . . . , n and working space v2 and v3.
Output: peaks and minima
1 Identify the index set B = {i|v[i].y �= v[i + 1].y}.
2 Copy elements in set B into the vector v2 whose elements are sorted in

an increasing order. The length of vector is K = |B|.
3 Calculate the difference of y-coordinate of two neighboring points in v2.

v3[k] ← sign(v[v2[k]].y − v[v2[k] + 1].y), k = 1, . . . , K.
4 Median filtering of window size 3 is applied to v3.
5 Select the candidates of extrema from the two indexed vectors:

peak[i] ← v2[k] if v3[k] < 0; minima[j] ← v2[k] if v3[k] > 0. P and M
denote the number of peaks and number of minima, respectively.

6 Prune invalid minima iteratively.
7 Prune invalid peaks iteratively.

In the above algorithm, three primary measures are used to prune invalid peaks:
contour length, height difference and bounded variation between two neighboring
peaks. For example, if the contour length between two neighboring peaks is small,
they will be merged into one peak that will be located at the middle point on
the contour. Also, if a local minimum point is located in the upper zone, it will
be pruned.
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3 Features

Although the algorithm in Section 2 can be applied to group peaks and minima
and prune invalid extrema, it is still not good enough due to various variations of
word shapes. Therefore, we need to introduce a classifier to refine the grouping
and pruning process. Several features have to be extracted at each extreme point.
We describe these features as follows:

1. Number of local minima on the current contour (f1). In Fig. 2, the feature
values at points 1 and 2 are 2.

2. Number of local peaks on the current contour (f2). In Fig. 2, the feature
values at points 1 and 2 are 2 and 1, respectively.

3. Minimum height difference with neighboring extrema (f3). When the current
point is a local minimum, two neighbors are local minima; When the current
point is local peak, two neighbors are local peaks. Neighbors may not be on
the same contour as the current one. In Fig. 3, the feature value at point 2
is min(|y1 − y2|, |y3 − y2|).

4. Minimum height difference with neighboring extrema (f4). When the current
point is a local minimum, two neighbors are local peaks; when the current

1

2

Fig. 2. Illustration for the extraction of number of peaks and minima

2

1
3

Fig. 3. Illustration for the extraction of minimum height difference. The neighbors have
the same convex attributes as the current extreme point
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1

2 3

Fig. 4. Illustration for the extraction of minimum height difference. The neighbors have
different convex attribute from the current extreme point

point is local peak, two neighbors are local minima; Neighbors may not be
on the same contour as the current one. In Fig. 4, two neighbors of point 1
are 2 and 3. The feature value at point 1 is min(|y1 − y2|, |y3 − y1|)

5. Percent of peaks above the current point (f5).
6. Percent of minima below the current point (f6).
7. Relative position in y axis (f7). The feature is defined by y

h , where y is the
coordinate of the current point in y-axis and h is the image height.

8. Minimum contour length with neighboring peaks (f8). Note that neighboring
peaks are on the same contour as the current point.

9. Minimum contour length with neighboring minima (f9). Note that neigh-
boring minima are on the same contour as the current point.

10. Minimum height difference with neighboring peaks (f10). The neighboring
peaks must be on the same contour as the current point.

11. Minimum height difference with neighboring minima (f11). The neighboring
minima must be on the same contour as the current point.

In the above features, f1 and f2 characterizes the information of word length.
f3 represents the information of ascender and descender. For each feature value,
a reasonable upper bound will be set. If the feature value is greater than the
corresponding bound, it will be rounded to this bound. In biological learning, it
is called “peak effect” [12]. Given that the specified bound bi of the feature fi,
the round operation is given by

f ′
i = min(fi, bi) (1)

For fast learning, the feature values will be first transformed into the interval
[0, 1], the variable transformation x0.4 is applied to each component of the fea-
ture vector such that the distribution of each feature is Gaussian-like [13]. The
formula is given by

f ′′
i = (

f ′
i

bi
)0.4 (2)
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Then a support vector classifier [14] is constructed to classify points to two
classes: extrema on the upper contour and extrema on the lower contour. If one
local minimum is classified to the upper contour, it will be pruned. If one local
peak is classified to the lower contour, it will be pruned. As a result, the valid
local peaks will be on the upper contour while the valid local minima will be on
the lower contour.

4 Experiments and Results

The word representation method described in this paper has been implemented
in C++ on Windows XP and compiled by Microsoft visual C++6.0. It is a part
of IMDS handwritten word recognition engine. The experiments were conducted
on IMDS cursive word database. At IMDS Software we designed a specified
electronic form to collect isolated handwritten words such that labelling can be
done automatically. Presently the vocabulary are the words from the category of
Collins Frequency Band 5, in which these words are most frequently used in daily
life. The size of this lexicon is 670. Our samples are written by a variety of 78
persons from different countries such as Arabian, Asian, Canadian, French., from
students and professors at universities, employees in companies. No constraints
are imposed on the writers in order to get most natural handwritten samples.
Each writer writes samples in blank boxes in the form, which contains 670 words.
This indicates there are no two samples from the same writer for each word. The
form is scanned as a gray-scale image in 300 DPI and is binarized. The samples
are randomly split into training and testing sets whose sizes are 38795 and 13733,
respectively. Some samples are depicted in Fig. 5.

(d)(b) (c)

(f) (g)

(a)

(e)

(i) (j) (k) (l)

(h)

Fig. 5. Some samples in IMDS cursive word database: (a) “daughter”, (b) “and”, (c)
“announce”, (d) “another”, (e) “army”, (f) “around”, (g) “before”, (h) “black”, (i)
“daughter”, (j) “and”, (k) “begin”, and (l) “before”
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Table 1. Upper bounds bi, i = 1, . . . , 11

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

13.0 13.0 70.0 70.0 1.0 1.0 1.0 120.0 120 70.0 70.0

Table 2. Performance of support vector machine

Training set Testing set Training rate Testing rate SV BSV

354,928 119,825 99.78% 99.6% 4377 2936

Support vector machine (SVM) is used as a classifier to classify extrema into
two categories. The radial basis function (RBF) is chosen as the SVM kernel,
given by

K(x, x′) = exp(−‖ x − x′ ‖2

0.62
) (3)

where ‖ . ‖ denotes Euclidean norm and the dimension of feature vectors x and
x′ is 11. The upper bounds bi, i = 1, . . . , 11 of eleven features in Section 3 are
shown in Table 1. The value of C in the dual form of SVM [14] is set to 10.0.
SVM is trained by HeroSvm2 1. Some labelled samples have to be collected before
we train support vector machine. Our strategy is first to label a small number
of extrema in the word images manually. Then these samples are divided into
training and testing sets. A SVM classifier is constructed. The classifier is used
to label other extrema. The misclassified errors are corrected manually. Since
the recognition rate of SVM classifier is very high, more than 99%, the number
of manual corrections is small. Much time-consuming cost has been be saved.
Table 2 shows the performance of SVM classifier, where SV and BSV denote the
number of support vectors and number of bounded support vectors, respectively.
The number of support vectors is small, compared with the size of the whole
training set. It may indicate that features are discriminative so that a small
portion of SVs can characterize the classification boundary. The above results
look very promising. They indicate that the extrema can be grouped into two
categories with a high accuracy though cursive word shapes exhibit consider-
able variations. It also infers that in low-level visual processing the data-driven
learning technique with top-down information can eliminate the uncertainty of
a decision to a great extent. Traditionally, the baseline information may be used
to determine the upper and lower zones. But the detection of baseline is not
robust due to uneven writing. Moreover, it is difficult to find a baseline for some
short words. One of the appealing properties of the proposed method is that the
output of SVM classifier can be used as the confidence value. When the absolute
value of SVM’s output is larger, the decision of the classifier becomes more reli-
able. Some examples are shown in Fig. 6. It can be observed that the proposed
method is insensitive to the word length and image size scale.

1 http://www.cenparmi.concordia.ca/ people/jdong/HeroSvm.html.
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Fig. 6. Some word images where extrema are classified to upper peaks and lower min-
ima. Peaks and minima are marked by squares and circles, respectively

5 Conclusions

In this paper, we present an efficient low-level representation of cursive word
images for classification task, which is an important step to build a general
hierarchical word recognition system. A word image can be represented as two
sequences of feature vectors which are extracted at vertical peak points on the
upper contour and at vertical minima on the lower contour. Some evidences
from the process of handwriting production and visual perception are linked to
this representation. The experimental results look promising and have shown the
potential of this representation for cursive word recognition task, which is our
primary goal.
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Abstract. In the context of large databases, data preparation takes a
greater importance : instances and explanatory attributes have to be
carefully selected. In supervised learning, instances partitioning tech-
niques have been developped for univariate representations, leading to
precise and comprehensible evaluations of the amount of information
contained in an attribute, with respect to the target attribute. Still, the
multivariate case remains unstated.

In this paper, we describe the partitioning intrinsic convenience for
data preparation and we settle a framework for supervised partitioning.
A new evaluation criterion of labelled objects partitions, which is based
on Minimum Description Length principle, is then set and tested on real
and synthetic data sets.

1 Supervised Partitioning Problems in Data Preparation

In a data mining project, the data preparation phase is a key one. Its main
goal is to provide a clean and representative database for the consecutive mo-
delling phase [3]. Typically, topics like instances representation, instances selec-
tion and/or aggregation, missing values handling, attributes selection, are to be
carefully dealt with. Among the many designed methods, partition-based one
are often used, for their ability to comprehensibly summarize the information.

The first examples that come in mind are clustering techniques, like the
most popular one : K-means [11], which aim at partitioning instances. Building
partitions hierarchy or mixture models is another way of doing unsupervised
classification [5]. Combining clustering and attributes selection has led to the
description of self-organizing feature maps [10].

In the supervised context, induction tree models are plainly partition-based
[2],[12],[8]. These models build a hierarchy of instances groups relying on the dis-
criminating power of the explanatory attributes with respect to the categorical
target attribute. As the naive Bayes classifier, they need to discretise the contin-
uous explanatory attributes to make probability estimations more accurate. As
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discretisation is the typical univariate supervised partitioning problem, we now
take a closer look at it.

The objective of the discretisation of a single continuous explanatory at-
tribute is to find a partition of the values of this attribute which best discrim-
inates the target distributions between groups. These groups are intervals and
the partition evaluation is based on a compromise : fewer intervals and stronger
target discrimination are better. There are mainly two families of search algo-
rithms : bottom-up greedy agglomerative heuristics and top-down greedy divisive
ones.

Discrimination can be evaluated in four ways using statistical test, entropy,
description length or bayesian prior :

– Chimerge [9] applies chi square measure to test the independance of the
distributions between groups,

– C4.5 [12] uses Shannon’s entropy based information measures to find the
most informative partition,

– MDLPC [6] defines a description length measure, following the Minimum
Description Length principle [13],

– MODL [1] states a prior probability distribution, leading to a bayesian eval-
uation of the partitions.

The discretisation problem is illustrative of the convenience of supervised
partitioning methods for data preparation since it addresses simultaneously the
three following problems :

– Data representation : a suitable representation of the objects at hand have
to be selected. Partitioning is an efficient mean to evaluate representations
quality (in the supervised context, statistical test for class separability is
another one, cf. [14]).

Table 1. Examples of resulting partitions of Fisher’s Iris database for different repre-
sentation spaces. Partitioning techniques allow, among other things, to carry out the
selection of an attribute subset in an intelligible way, as the results are quickly in-
terpretable and easily comparable. Here, we see that the three iris categories (Setosa,
Versicolor and Virginica) are completely discrimated by the four attributes. However,
one can consider petal width only. Furthermore, one can state that setosas distinguish
themselves by their sepal width and length

Labels distributions in groups
Group 1 Group 2 Group 3

Explanatory attributes Set. Ver. Vir. Set. Ver. Vir. Set. Ver. Vir.

Sepal width, sepal length, 50 0 0 0 50 0 0 0 50
petal width, petal length

Petal width, petal length 50 0 0 0 50 1 0 0 49

Sepal width, sepal length 50 2 1 0 48 49

Petal width 50 0 0 0 48 0 0 2 50
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– Interpretability : labelled groups result from an understandable compromise
between partition simplicity and target discrimination.

– Comparison capacity : explanatory attributes effects on the target can be
quickly compared.

These themes are intertwined and play a crucial role in the data preparation
phase (cf. Table 1 for an intuitive illustration in the multivariate case). The goal
of this paper is to set a framework for supervised partitioning and to specify
an evaluation criterion, preserving the interpretability bias and allowing not to
consider single continuous attributes only.

In the remainder of the paper, we first set our framework and a description
method of partitions (section 2). Then, we propose a new evaluation criterion
(section 3) and we test its validity on real and synthetic datasets (section 4).
Finally, we conclude and point out future works (section 5).

2 Graph Constrained Supervised Partitioning

Let O = {o1, . . . , oN} be a finite set of objects. A target ln lying in an alphabet
of size J is associated to each object on and a graph structure G is set on O. This
structure can be natural (road networks, web graphs, . . . ) or imposed (proximity
graphs, partial orders, . . . ). In the remainder, we will suppose G non-oriented.
Our problem consists in finding an optimal partition of G, considering parti-
tions composed of connected groups with respect to the discrete structure (i.e
connected partitions). As explained above, optimality of a partition relies on the
correct balance between the structure of its groups and its discriminating power
(cf Figure 1). The setting of the balance requires the definition of description
parameters both for the structure and the target distribution.

Let π be a connected partition of G. We now introduce an effective and inter-
pretable bias. We consider the balls induced by the discrete metric δ : δ(o1, o2)
is the minimum number of edges needed to link o1 and o2. As illustrated by
Figure 2, each group of π is then covered with δ-balls.

The method consists in selecting non-intersecting balls that are included in
a group of π. At each step, the biggest one is picked up :

Fig. 1. 2 classes problem: which is the ”best” partition?
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Fig. 2. Applying algorithm 1: description of a partition with non-intersecting balls
(B(a, 2), B(b, 1), B(c, 1), B(d, 0)) defined by the graph distance

Fig. 3. Examples of possible partitions obtained with different groupings of the balls

Algorithm 1 :

– A ← O
– B ← ∅
– While A �= ∅ Do

• S ← the ball with maximal size included in A and in a group of π
• B ← B

⋃{S}
• A ← A \ S

However, the set B does not characterise π : different partitions can give the
same set B (cf Figure 3). But if the number of groups K is considered as a
description parameter, obtaining π from B is the same as putting these balls in
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K different boxes. Finally, π is fully described by the set of balls B, the number
K and a partition of B in K groups. This is not a compact description as we
do not take into account the graph structure in the second step. Indeed, some
partitions of B in K groups do not lead to connected partitions and should not
be taken into account.

The description parameters of the target distribution are more easily catched.
If πk is one of the K groups in π, describing its inner labels distribution is the
same as putting the objects contained in πk in J boxes. This is done by firstly
assigning the numbers Nkj of objects in πk to put in the jth box, and secondly
specifying the partition of the group πk in J groups of sizes Nk1, . . . , NkJ .

The description bias allows to define the structural complexity of π relying
on its ball decomposition in an interpretable way : fewer and bigger balls means
simpler structure. The description of the target disribution in terms of frequency
parameters leads to an informational definition of the target discrimination :
strong discrimination is related to low entropy. The evaluation of a partition
must result from a compromise as strong discrimination goes with high structural
complexity.

3 Evaluation Criterion

Let π be a connected partition of O. To set an evaluation criterion l(π), the
Minimum Description Length principle is applied [13], for its intrinsic ability to
handle compromises. The problem turns into a two-step description problem :
description of the parameters defining groups and description of the labelling
parameters. This leads to write

l(π) := lstructure(π) + llabels/structure(π),

with l standing for description lengths function. A description protocol must be
designed from which description lengths can be specified.

As the structure is characterised by a set of balls B and a partition of B, its
description length is split into the sum of the descritpion length of B and that
of the partition of B :

lstructure(π) := lballsset(π) + lballsgrouping(π).

As the distributions are characterised in each group by the frequencies of the
labels and a partition, the related description length is split into the following
way :

llabels/structure(π) :=
K∑

k=1

lfrequencies(πk) +
K∑

k=1

lpartitioning/frequencies(πk),

where π = (π1, . . . , πK).
In the first place, let’s form a description protocol of the balls set B. The

balls in B are ordered by decreasing sizes d1 > · · · > dp and if ti is the number
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of balls of size di, Bi
j refers to the jth ball (1 ≤ j ≤ ti) of size di (1 ≤ i ≤ p).

The protocol consists in specifying by decreasing size which is the next ball of
the description and, when needed, the next size to be considered. Precisely :

– p ← 1
– describe dp

– if dp < N then
• While dp > 1

∗ describe successively Bp
1 , . . . , Bp

tp∗ p ← p + 1
∗ describe dp

As description lengths can be interpreted as negative log of probabilities, we
just have to assign probabilities to obtain lballsset(π). We choose a uniform prior
for each parameter description step and description lengths are computed using
counting. For example, description length of d1 is log2(N) as possible values of
d1 are 1, . . . , N . Description length of d2 is log2(d1 − 1) as, at this step, the
possible values of d2 are 1, . . . , d1 and so on. Besides, the description length of
B1

1 is log2 β1
1 , where β1

1 is the total number of balls of size d1 induced by the
discrete structure G. That of B1

2 is log2 β1
2 , where β1

2 stands for the total number
of balls of size d1 induced by G that do not intersect B1

1 , etc. . . The overall sum
of these lengths defines lballsset(π).

In the second place, to set lballsgrouping(π), we describe the group number K
of π and the partition of B in K groups. Once again, a uniform prior is applied.
As K lies between 1 and the size KB of B and as the number of partitions of B
in less than K groups is B(KB ,K) (the sum of the K first Stirling numbers),
we have

lballsgrouping(π) = log2 KB + log2 B(KB, K).

In the third and final place, applying a uniform prior to obtain the description
lengths of the target leads to set

llabels/structure(π) =
K∑

k=1

log2

(
Nk + J − 1

J − 1

)
+

K∑
k=1

log2

Nk!
Nk1! . . . NkJ

.

The first sum results from the description of the labels frequencies (Nk1, . . . , NkJ )
in each group k. These J-tuples satisfy the property

∑
Nkj = Nk (with Nk the

size of group k), and
(
Nk+J−1

J−1

)
is the number of such tuples. The number of

partitions of a set of size Nk in J groups of sizes Nk1, . . . , NkJ is the multinomial
coefficient Nk!

Nk1!...NkJ ! . That gives the second sum.

4 Experiments

The experiments are performed using the standard hierarchical greedy bottom-
up heuristic, the initial partition being that with one object per group :
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Algorithm 2.

– π ← InitialPartition
– For k = 2 to N Do

• π ← the best partition resulting from the merging of two groups of π
– Return the overall best partition encountered

Thus, O(N2) partitions are evaluated. The greedy character of this heuristic
does not allow to evaluate a significant part of the partitions set and such a
method easily falls into local optima. To alleviate these facts, we select a more
appropriate initial partition : initial groups are the biggest clean balls (i.e objects
in a ball share the same label).

A graph structure has to be selected. As the objects are always imbedded
in an euclidean space, the experiments are carried out with the Gabriel graph,
which is a proximity graph [7]. The distance between two objects o1 and o2 is
taken to be the imbedding euclidean one L and these objects are adjacent in the
Gabriel sense (cf Figure 4) if and only if

L(o1, o2)2 ≤ min
o∈O

L(o1, o)2 + L(o2, o)2.

We perform two experiments on synthetic datasets and one on real datasets.
In a first one, we check the criterion ability to detect the independence between
the descriptive attributes and the target one, on synthetic datasets. These are
two-classes problems, with points uniformly generated inside the Hamming hy-
percube and each point label uniformly assigned. The varying parameters are
the number N (from 1 to 100) of points and the space dimension d (taking val-
ues 1, 2, 3, 5 and 10). For each couple of values, 25 datasets are generated. For
every dataset, our method builds a partition composed of one single group. This
is exactly the expected behavior : no discrimination has to be done since the
target is independent of the explanatory attributes.

In a second experiment, we test the criterion discrimination ability for gaus-
sian mixture models in the plane. We settle a four gaussians problem, centered in

Fig. 4. Example of a Gabriel graph. The ball of diameter [ab] contains no other point :
a and b are Gabriel-adjacent. The ball of diameter [bc] contains another point : b and
c are not Gabriel-adjacent
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Fig. 5. Resulting number of groups on the four gaussians problem

Table 2. Prediction accuracy of both NN and partition-based rules and group number
of the partition. Our method gives additional information : each class lies in a single
cluster, for every datasets

Dataset NN Partition Group number

Iris 0.95 ± 0.03 0.94 ± 0.04 3 ± 0.0

Wine 0.95 ± 0.03 0.94 ± 0.04 3 ± 0.0

Breast 0.96 ± 0.01 0.96 ± 0.01 2 ± 0.0

(1, 1), (−1, 1), (−1,−1) and (1,−1), with diagonal covariance matrix
(

1/4 0
0 1/4

)
.

The varying parameter is the number N of points and for each value, 25 datasets
were generated. Figure 5 shows that, with sufficiently many points, the four
groups are detected. The detection threshold could however be better. Indeed,
as we do not take into account the graph structure for the description of the balls
set partition, the description length lballsgrouping is over-estimated. To obtain a
decrease of the total description length, the (too big) increasing of the structural
length induced by the decision of creating a new group must be balanced by a
(very) strong resulting discrimination.

In a third experiment, we consider the resulting partition as a predictive
model : a new instance is classified according to a majority vote in the nearest
group. The evaluation consists in a stratified five-fold cross-validation and results
of the Nearest Neighbor (NN) rule [4] are given for comparison. The tests were
carried through 3 datasets from the UCI machine learning database repository.

The well-known Fisher’s Iris dataset contains 150 instances of such flowers
described by 4 continuous explanatory attributes and belonging to one of the
three classes Setosa, Versicolor and Virginica (as previously seen). The Wine
database results from the analysis of 13 components found in each of 3 types
of wines, and is composed of 178 instances. Finally, the Breast dataset aims at
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studying the malignant character of a breast cancer for 699 subjects through 9
descriptive attributes.

In order to limit scale effects on the distance measure, each explanatory
attribute is linearly transformed to lie in [0, 1]. Table 2 summarizes the results
of the evaluation. The main advantage of partitioning methods lies in the fact
that they detect or supply an underlying structure of the analysed data. As this
structural gain may be balanced by an information loss, it’s noteworhty that, on
the three datasets, our technique does not suffer from such a curse.

5 Conclusion and Further Works

In this paper, we have discussed the usefulness of supervised partitioning meth-
ods for data preparation, set a framework for supervised partitioning, proposed
and tested an evaluation criterion of labelled partition. The representation qual-
ity of the objects and their inner amount of information about the target at-
tribute can be subtly and simply evaluated, whatever may be the kind of the
objects. Specifically, multivariate representations can be considered.

The proposed method builds an underlying structure of the data : a partition.
This is done in an understandable way (with the use of balls) and without loss
of predictive information (as shown by the experiments on real datasets). The
settled criterion is able to detect independance too. If the explanatory attributes
contain no information with respect to the target attribute, the ”best” partition
should be that with one group and that’s the way the criterion behaves.

Still, this is preliminary work. The presented criterion can be improved. The
”balls grouping” description part could take into account the graph structure,
leading to a more accurate evaluation criterion.

As well, the greedy agglomerative approach is not effective and easily falls into
a local optimum. Furthermore, the heuristic lacks of computational efficiency :
the complexity’s polynomial order is too high for real applications. In future
works, we plan to design a heuristic founded on the description bias (the use of
balls).
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Abstract. In this paper we address confidentiality issues in distributed
data clustering, particularly the inference problem. We present a measure
of inference risk as a function of reconstruction precision and number of
colluders in a distributed data mining group. We also present KDEC-S,
which is a distributed clustering algorithm designed to provide mining
results while preserving confidentiality of original data. The underlying
idea of our algorithm is to use an approximation of density estimation
such that it is not possible to reconstruct the original data with better
probability than some given level.

1 Introduction

Data Clustering is a descriptive data mining task aiming to partition a data set
into groups such that data objects in one group are similar to each other and are
so different as possible from those in other groups. In distributed data clustering
(DDC) the data objects are distributed among several sites. The traditional
solution to (homogeneous) DDC problem is to collect all the distributed data sets
into one centralized repository where the clustering of their union is computed
and transmitted back to the sites.

This approach, however, may be impractical due to constraints on network
bandwidth or secrecy issues, when the sites are not allowed to share data due to
legal issues or because it is against some local security policy. Examples of such
confidential data include medical information and marketing secrets. The main
problem is that confidential information may be reconstructed even if it is not
explicitly exchanged among the peers. This problem, known as inference problem,
was first studied in statistical data bases and more recently has attracted the
attention of the data mining community [7].

In this paper we address the problem of homogeneous DDC considering confi-
dentiality issues, particularly the inference problem. Informally, the problem is to
find clusters using distributed set of data ensuring that, at the end of the compu-
tation, each peer only knows his own dataset and the resulting cluster mapping.
Our main objective is to propose a measure of how confidential one algorithm

� This work is partially supported by CAPES (Coord. de Aperfeicoamento do Pessoal
de Nivel Superior) of Ministry for Education of Brazil, under Grant No. 0791/024.
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is, i.e. how vulnerable it is to inference attacks. Additionally, we present a dis-
tributed algorithm for confidential DDC with an analysis of its confidentiality
level.

The remaining of this paper is organized as follows. In section 2 we present
our definitions of confidentiality and inference risk. In section 3 we present our
algorithm. Related work are presented in section 4. Conclusions and remarks are
presented in section 5.

2 Confidentiality in Distributed Data Clustering

We define the problem of confidential distributed data clustering as follows.

Definition 1. Let L = {Lj |1 ≤ j ≤ P} be a group of peers sites, each of them
with a local set of data objects Dj = {xi | i = 1, . . . , N} ⊂ R

n, with x(d)
i denoting

the d-th component of xi. Let A be some DDC algorithm executed by the members
of L. We say that A is a Confidential DDC algorithm if the following holds: (a)
A produce correct results (b) at the end of the computation Lj knows only the
cluster mapping and its own data set Dj, with 1 ≤ j ≤ P .

Our objective in this paper is to analyze how much a given distributed clus-
tering algorithm copes with the second requirement.

2.1 Confidentiality Measure

Our starting point is the definition of a confidentiality measure. One way to
measure how much confidentiality an algorithm preserves, is to ask how close
one attacker can get from the original data objects. In the following we define
the notion of confidentiality of data w.r.t. reconstruction. Considering multidi-
mensional data objects, we have to look at each dimension at time.

Definition 2. Let L be a group of peer as in definition 1. Let A be some DDC
algorithm executed by the members of L. Denote by Rk ⊂ R

n a set of recon-
structed data objects owned by some malicious peer Lk after the computation of
the data mining algorithm, such that each ri is a reconstructed version of xi.
We define the confidence level of A with respect to dimension d as:

Conf
(d)
A = min{|x(d)

i − r(d)
i | : xi ∈ Dj , ri ∈ Rk, 1 ≤ i ≤ |Dj |}

Definition 3. We define the confidentiality level associated to some algorithm
A, as:

ConfA = min{Conf
(d)
A | 1 < d < n}

Roughly speaking, our confidentiality measure, indicates the precision with
which a data object xi can be reconstructed.

In a distributed algorithm we have to consider the possibility of two of more
peers forming a collusion group to disclose information owned by others. The
next definition extends the confidentiality level to include this case.
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Definition 4. Let A be a distributed data mining algorithm. We define the func-
tion ConfA : N → R+ ∪ {0}, representing ConfA when c peers collude.

Definition 5 (Inference Risk Level). Let A be a DDC algorithm being ex-
ecuted by a group L with p peers, where c peers in L forms a collusion group.
Then we define:

IRLA(c) = 2(−ConfA(c))

One can easily verify that IRLA(c) → 0 when ConfA(c) → ∞ and IRLA(c) → 1
when ConfA(c) → 0. In other words, the better the reconstruction, the higher
the risk. Therefore, we can capture the informal concepts of insecure algorithm
(IRLA = 1) and secure (IRLA = 0) as well.

2.2 Confidential Density Estimation

Density-based clustering is a popular technique, which reduces the search for
clusters to the search for dense regions. This is accomplished by estimating a
so-called probability density function from which the given data set is assumed
to have arisen. An important family of method is known as kernel estimator [8].
Let D = {xi | i = 1, . . . , N} ⊂ R

n represent a set of data objects. Let K be
a real-valuated, non-negative, non-increasing function on R with finite integral
over R. A kernel-based density estimate ϕ̂K,h[S](·) : R

n → R+ is defined as
follows:

ϕ̂K,h[D](x) =
1
N

N∑
i=1

K

(
d(x,xi)

h

)
(1)

In [8] is presented an algorithm to find center-defined clusters using a density
estimate. In [10] is presented the KDEC schema, a density-based algorithm for
DDC. In density-based DDC each peer contributes to the mining task with a
local density estimate of the local data set and not with data (neither original
nor randomized). As shown in [4], in some cases, knowing the inverse of kernel
function implies in the reconstruction of original (confidential) data. Therefore,
we look for a more confidential way to build the density estimate, i.e. one which
doesn’t allow reconstruction of data.

Definition 6. Let f : R+ ∪ {0} → R+ be a decreasing function. Let τ ∈ R be
a sampling rate and let z ∈ Z+ be an index. Denote by v ∈ R

n a vector of
iso-levels1 of f, whose each component v(i), i = 1, . . . , n, is built as follow:

v(i) = f(z · τ), if f(z · τ) < f([z − 1] · τ)

Moreover 0 < v(0) < v(1) . . . < v(n).

1 One can understand v as iso-lines used to contour plots.
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Fig. 1. ψf,v of the Gaussian function

Definition 7. Let f : R+ ∪{0} → R be a decreasing function. Let v be a vector
of iso-levels of f . Then we define the function ψf,v as:

ψf,v(x) =

⎧⎪⎨
⎪⎩

0, if f(x) < v(0)

v(i), if v(i) ≤ f(x) < v(i+1)

v(n), if v(n) ≤ f(x)
(2)

Definitions 6 and 7 together define a step function based on the shape of
some given function f . Figure 1 shows an example of ψf,v applied to a Gaussian2

function with μ = 0 and σ = 2, using four iso-levels.

Lemma 1. Let τ ∈ R denote a sampling rate, and z ∈ Z+ be an index. Define
f1 : R+ → R+, a decreasing function and v, a vector of iso-levels. If we define
a function f2 = f1(x − k), then ∀k ∈ (0, τ),∀z ∈ Z+ we will have ψf2,v(z · τ) =
ψf1,v(z · τ).

Proof. For k = 0 we get f2(x) = f1(x − 0) and its is trivial to see that the
assertion holds. For 0 < k < τ we have f2 = f1(x−k). Without loss of generality,
let z > 0 be some integer. So, f2(z ·τ) = f1(z ·τ −k) = f1([z−k/τ ] ·τ). If f1([z−
1] ·τ) = a > f1(z ·τ) = b then we have ψf1,v(z ·τ) = a. Since z−1 < z−k/τ < z,
and since f1 is decreasing, f1([z − 1] · τ) = a > f1([z − k/τ ] · τ) > b = f1(z · τ).
By the definition 7 we can write ψf1,v([z − k/τ ] · τ) = b = ψf1,v(z · τ)

This lemma means that we have some ambiguity associated with the function
ψf,v, given some τ and v, since two functions will issue the same values iso-levels
around the points close than τ .

With this definition we return to our problem of uncertainty of local density.
We will substitute a kernel K by ψK,v, Given a sample rate τ . According with

2 Gaussian function is defined by f(x) = 1

σ
√

2π
e−(x−μ)2/2σ2

.



614 J.C. da Silva and M. Klusch

the lemma 1, we should expect to localize the points in a interval not smaller
than |(0, τ)|, i.e. the confidentiality will be ConfA ≥ τ . So, we will compute a
rough approximation of the local density estimate using:

ϕ̃[Dj ](x) =

{∑
xi∈Nx

ψK,v(d(x,xi)
h ) , if (x mod τ) = 0

0 , otherwise.
(3)

where Nx denotes the neighborhood of x.
Since ψK,v is a non-increasing function, we can use it as a kernel function.

The global approximation can be computed by: ϕ̃[D](x) =
∑p

j=1 ϕ̃[Dj ](x)

3 The KDEC-S Algorithm

KDEC-S is an extension of the KDEC Schema, which is a recent approach for
kernel-based distributed clustering [10]. In KDEC each site transmits the local
density estimate to a helper site, which builds a global density estimate and
sends it back to the peers. Using the global density estimate the sites can execute
locally a density-based clustering algorithm. KDEC-S works in a similar way,
but replaces the original estimation by an approximated value. The aim is to
preserve data confidentiality while maintaining enough information to guide the
clustering process.

3.1 Basic Definitions

Definition 8. Given two vectors zlow, zhigh ∈ Z
n, which differ in all coordinates

(called the sampling corners), we define a grid G as the filled-in cube in Z
n

defined by zlow, zhigh. Moreover for all z ∈ G, define nz ∈ N as a unique index
for z (the index code of z). Assume that zlow has index code zero.

Definition 9. Let G be a grid defined with some τ ∈ R
n. We define a sampling

Sj of ϕ̃[Dj ] given a grid G, as:

Sj =
{
ϕ̃j

z | ∀z ∈ G, ϕ̃j
z > 0

}
where ϕ̃j

z = ϕ̃[Dj ](z · τ). Similarly, the global sampling set will be defined as:
S = {ϕ̃z | ∀z ∈ G, ϕ̃z > 0}

Definition 10 (Cluster-guide). A cluster guide CGi,θ is a set of index codes
representing the grid points forming a region with density above some threshold θ:

CGi,θ = {nz | ϕ̃z ≥ θ}
such that ∀nz1 , nz2 ∈ CGi,θ : z1 and z2 are grid neighbors and

⋂C
i=1 CGi,θ = ∅.

A complete cluster-guide is defined by: CGθ = {CGi,θ| i = 1, . . . , C} where C is
the number of clusters found using a given θ.

A cluster-guide CGi,θ can be viewed as a contour defining the cluster shape at
level θ (a iso-line), but in fact it shows only the internal grid points and not the
true border of the cluster, which should be determined using the local data set.
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3.2 Detailed Description

Our algorithm has two parts: Local Peer and Helper. The local peer part of our
distributed algorithm is density-based, since this was shown to be a more general
approach to clustering [8].

Algorithm 1 Local Peer
Input: Dj (local data set), L (list of peers), H (Helper);
Output: clusterMap;

1: negotiate(L, K, h, G, θ);
2: lde ← estimate(K, h, Dj , G, δ);
3: Sj ← buildSamplingSets(lde, G, θ, v);
4: send(H, Sj);
5: CGθ ← request(H, θ);
6: clusterMap ← cluster(CGθ, Dj , G);
7: return clusterMap

8: function cluster(CGθ, Dj , G)
9: for each x ∈ Dj do

10: z ← nearestGridPoint(x, G);
11: if nz ∈ CGi,θ then
12: clusterMap(x) ← i;
13: end if
14: end for
15: return clusterMap;
16: end function

Local Peer. The first step is the function negotiate(), which succeeds only if
an agreement on the parameters is reached. Note that the helper doesn’t take
part on this phase. In the second step each local peer compute its local density
estimate ϕ̃[Dj ](z · τ) for each z · τ , with z ∈ G. Using the definition 9 each
local peer builds its local sampling set and sends it to the helper. The clustering
step (line 6 in algorithm 1) is performed as a lookup in the cluster-guide CGθ.
The function cluster() shows the details of the clustering step. The data object
x ∈ Dj will be assigned to the cluster i, the cluster label of the nearest grid
point z, if nz ∈ CGi,θ.

Helper. Given a θ, the helper sums up all samples sets and uses definition 10 to
construct the cluster-guides CGθ. Function buildClusterGuides() in algorithm 2
shows the details of this step.

3.3 Performance Analysis

Time. At the local site our algorithm has time complexity O(|G|M j+log(C)|Dj |),
where |G| is the grid size, M j is the average size of the neighborhood, C is the
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Algorithm 2 Helper
1: Sj ←receive(L);
2: ϕ̂z[D

j ] = recover(Sj);
3: ϕ̂z ←∑ ϕ̂z[D

j ];
4: CGθ ← buildClusterGuides(ϕ̂z, θ);
5: send(L, CGθ);

6: function buildClusterGuides(ϕ̂z, θ)
7: cg ← {nz|ϕ̂z > θ};
8: n ∈ cg;
9: CGi,θ ← {n};

10: i ← 0;
11: for each n ∈ cg do
12: if ∃a((a ∈ neighbors(n)) ∧ (a ∈ cg)) then
13: CGi,θ ← {n, a} ∪ CGi,θ;
14: else
15: i++;
16: CGi,θ ← {n};
17: end if
18: cg ← cg \ CGi,θ;
19: end for
20: CGθ ← {CGi,θ|i = 1, . . . , C};
21: return CGθ

22: end function

number of clusters and Dj is the set of points owned by peer Lj . The first lines
have complexity O(|G|M j), since the algorithm compute the density for each
point z in the grid G using the subset of points in Dj which are neighbors from
z, with average size M j . Line 4 has complexity determined by the size of sam-
pling set Sj , which is a subset of G, i.e., its complexity is O(|G|). Line 5 has
complexity O(C). The last step (line 6) has to visit each point in Dj and for
each point it has to decide its label by searching the corresponding index code in
one of the cluster-guides. There are C cluster guides. Assuming the look-up time
for a given cluster to be log(C) we can say that O(log(C)|Dj |) is the complexity
of the last step.

Time complexity at the helper (algorithm 2) is mainly determined by the size
of the total sampling set. The helper will receive from p peers at most |G| sam-
pling points. The local peer has to reconstruct and sum them up (lines 2 and 3),
what takes in the worst case O(p|G|) steps. Thus, the process of building the
cluster-guides (line 4) will take O(|G|) steps in worst case.

Communication. Each site will have at most |Sj | < |G| sampling points (index-
codes) to send to the helper site. The helper site has at most |G| index-codes to
inform back to local sites, but this size would be reduced if some compression
technique is used. Moreover, our algorithm uses few rounds of messages. Each site
will send one message informing the local sampling Sj set to the helper and one
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(or more subsequent) message(s) requesting a cluster-guide with some desired θ.
The helper will send a message informing the cluster-guides on demand.

3.4 Security Analysis

We will use two scenarios to analyze the inference risk level of KDEC-S (denoted
IRLKDEC-S). First scenario we assume that the malicious peers doesn’t form
collusion group, i.e. c = 1, and the second scenario we assume that they can
form collusion group, i.e., c ≥ 2.

Lemma 2. Let L be a mining group formed by p > 2 peers, one of them being
the helper, and c < p malicious peers form a collusion group in L. Let τ ∈ R be
a sampling rate. We claim that IRLKDEC-S(c) ≤ 2−τ for all c > 0.

Proof. Assume that c = 1, and that each peer has only its local data set and the
cluster-guides he gets from the helper. The cluster-guides, which are produced by
the helper, contains only code-index representing grid points where the threshold
θ is reached. This is not enough to reconstruct the original global estimation.
The Helper has all sampling points from all peers, but it has neither information
on the kernel nor on sampling parameters. Hence, the attackers can not use
the inverse of Kernel function to reconstruct the data. The best precision of
reconstruction has to be based on the cluster guides. So, one attacker may use
the width of the clusters in each dimension as the best reconstruction precision.
This lead to ConfKDEC-S(1) = aτ , with a ∈ N, since each cluster will have at least
a points spaced by τ in each dimension. Hence, if c = 1 then IRLKDEC-S(c) =
2−aτ ≤ 2−τ .

Assume c ≥ 2. Clearly, any collusion group with at least two peers, including
the helper, will produce a better result than a collusion which doesn’t include
the helper, since the helper can send to the colluders the original sampling sets
from each peer. However, each sampling set Sj was formed based on the ϕ̃[Dj ]
(cf. eq. (3)). Using lemma 1 we expect to have ConfKDEC-S(c) = τ . With more
colluders, say c = 3, one of them being the helper, there are no new information
which could improve the reconstruction. Therefore, IRLKDEC-S(c) ≤ 2−τ , for
all c > 0.

3.5 Comparison with KDEC

KDEC Scheme exploit statistical density estimation and information sampling
to minimize communications cost among sites. Some of possibilities of inference
attacks in KDEC were shown in[4]. Here we analyze it using our definition of
inference risk.

Lemma 3. Let τ ∈ R be a sampling rate. Then IRLKDEC(c) > 2−τ , forall
c > 0.

Proof. Since KDEC uses y = ϕ̂(x) it can be used by a malicious peer inside
the group to compute the distance d = K−1(y)h, and consequently the true
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x∗ with x∗ = x + d. Errors in this method can arise due machine precision,
but they are still much smaller than τ , which in KDEC is suggested to be h/2.
Actually, this error is expected to be very small, since it is caused by machine
precision. We remark that these results can be reached by one malicious peer
alone, i.e. ConfKDEC(1) � τ . With collusion group this reconstruction may be
more accurate. Therefore, ConfKDEC(c) � τ for c > 0. Hence, IRLKDEC(c) >
2−τ , for all c > 0.

Theorem 1. Let τ ∈ R be a sampling rate parameter. Using the same τ we
have IRLKDEC-S(c) < IRLKDEC(c), for all c > 0.

Proof. Using lemmas 2 and 3 we verify that the assertion holds.

4 Related Work

The question of how to protect confidential information from unauthorized dis-
closure has stimulated much research in the data base community. This problem,
known as the inference problem, was first studied in statistical databases and se-
cure multi-level databases and more recently in data mining [7].

Other works in privacy preserving data mining uses secure multi-party com-
putation (SMC) [11, 12, 9], sanitization [3, 5] and data randomization [2, 13].
Some privacy measures were proposed in [6] and [1] to the case where the min-
ing algorithm uses randomized data. The idea of randomization seems to be
promising but in a distributed set the reconstruction of local probabilities den-
sities would lead to errors in the global density, what would lead to erroneous
clustering results.

5 Conclusions

Our contribution can be summarized as: a definition of inference levels for DDM
and a distributed algorithm for clustering which is inference-proof at certain
level. Our definition of confidentiality and inference levels make little assump-
tions, what allow comparison of a broad range of data mining algorithms with
respect to the risk of data reconstruction, and consequently permit us to classify
them in different security classes. On the other hand, this levels are currently
defined just to distributed data clustering and doesn’t include (up to date) the
notion of discovery of data ownership in a mining group.

KDEC-S is based on a modified way of computing density estimation such
that it is not possible to reconstruct the original data with better probability than
some given level. Results of our analysis using our inference risk level showed that
our algorithm presents better improved security level w.r.t. inference attacks to
kernel density estimate, without compromising the clustering results. One can
argue that KDEC-S has the disadvantage of using more parameters than KDEC.
However, KDEC-S is better noise resistance than KDEC, can find arbitrary-
shape clusters (as any density-based clustering algorithm), and performs the
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clustering faster, since it uses a lookup table instead of hill climbing the density
estimation.

As future work we plan to apply our definition of inference level to others
DDM areas.

References

1. Dakshi Agrawal and Charu C. Aggarwal. On the design and quantification of
privacy preserving data mining algorithms. In Proceedings of 20th ACM Symposium
on Principles of Database Systems, pages 247–255, Santa Barbara, Califonia, May
2001.

2. Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In
Proc. of the ACM SIGMOD Conference on Management of Data, pages 439–450.
ACM Press, May 2000.

3. M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V. Verykios. Disclosure
limitation of sensitive rules. In Proceedings of 1999 IEEE Knowledge and Data
Engineering Exchange Workshop (KDEX’99), pages 45–52, Chicago,IL, November
1999.

4. Josenildo C. da Silva, Matthias Klusch, Stefano Lodi, and Gianluca Moro. Inference
attacks in peer-to-peer homogeneous distributed data mining. In 16th European
Conference on Artificial Intelligence (ECAI 04), Valencia, Spain, August 2004.

5. Elena Dasseni, Vassilios S. Verykios, Ahmed K. Elmagarmid, and Elisa Bertino.
Hiding association rules by using confidence and support. Lecture Notes in Com-
puter Science, 2137:369–??, 2001.

6. A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy
preserving data mining. In In Proceedings of PODS 03., San Diego, California,
June 9-12 2003.

7. Csilla Farkas and Sushil Jajodia. The inference problem: A survey. ACM SIGKDD
Explorations Newsletter, 4(2):6–11, 2002.

8. Alexander Hinneburg and Daniel A. Keim. An efficient approach to clustering in
large multimedia databases with noise. In Knowledge Discovery and Data Mining,
pages 58–65, 1998.

9. Murat Kantarcioglu and Chris Clifton. Privacy-preserving distributed mining of
association rules on horizontally partitioned data. In The ACM SIGMOD Work-
shop on Research Issues on Data Mining and Knowledge Discovery (DMKD’02),
June 2002.

10. Matthias Klusch, Stefano Lodi, and Gianluca Moro. Agent-based distributed data
mining: the KDEC scheme. In Matthias Klusch, Sonia Bergamaschi, Pete Edwards,
and Paolo Petta, editors, Intelligent Information Agents: the AgentLink perspective,
volume 2586 of Lecture Notes in Computer Science. Springer, 2003.

11. Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. Lecture Notes
in Computer Science, 1880:36–54, 2000.

12. Benny Pinkas. Cryptographic techniques for privacy-preserving data mining. ACM
SIGKDD Explorations Newsletter, 4(2):12–19, 2002.

13. Shariq J. Rizvi and Jayant R. Haritsa. Maintaining data privacy in association
rule mining. In Proceedings of the 28th VLDB – Very Large Data Base Conference,
pages 682–693, Hong Kong, China, 2002.



 

P. Perner and A. Imiya  (Eds.): MLDM 2005, LNAI 3587, pp. 620 – 629, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Novel Approach of Multilevel Positive and Negative 
Association Rule Mining for Spatial Databases 

L.K. Sharma1, O.P. Vyas1, U.S. Tiwary2, and R. Vyas1 

1 School of Studies in Computer Science, 
Pt. Ravishankar Shukla University Raipur (C.G.) 492010-India 

{lksharmain, dropvyas, ranjanavyas}@gmail.com 
2 Indian Institute of Information Technology, Allahabad- India  

ust@iiita.ac.in 

Abstract. Spatial data mining is a demanding field since huge amounts of spa-
tial data have been collected in various applications, ranging form Remote 
Sensing to GIS, Computer Cartography, Environmental Assessment and Plan-
ning. Although there have been efforts for spatial association rule mining, but 
mostly researchers discuss only the positive spatial association rules; they have 
not considered the spatial negative association rules. Negative association rules 
are very useful in some spatial problems and are capable of extracting some 
useful and previously unknown hidden information. We have proposed a novel 
approach of mining spatial positive and negative association rules. The ap-
proach applies multiple level spatial mining methods to extract interesting pat-
terns in spatial and/or non-spatial predicates. Data and spatial predi-
cates/association-ship are organized as set hierarchies to mine them level-by-
level as required for multilevel spatial positive and negative association rules. A 
pruning strategy is used in our approach to efficiently reduce the search space. 
Further efficiency is gained by interestingness measure. 

1   Introduction 

A spatial association rule describes the implication of a feature or a set of features by 
another set of features in spatial databases. A spatial association rule [5] is a rule of 
the form “A  B”, where A and B are sets of predicates, some of which are spatial 
ones. In large spatial databases, many association relationships may exist but most 
researchers [5], [6], [7] focus only on the patterns that are relatively “Strong” i.e. the 
patterns that occur frequently and hold.  In most cases the concepts of minimum sup-
port and minimum confidence are used. Informally the support of a pattern A in a set 
of spatial objects S is the probability that a member of S satisfies pattern A, and the 
confidence of  “A  B”, is the probability that pattern B occurs if pattern A occurs. 

A large number of robberies/crimes are committed in a large metropolitan area. A 
criminologist who analyzes the pattern of these robberies may visualize crime sites 
using a GIS system and use the maps presenting locations of other objects. A financial 
analyst can do the real estate investment analysis, such as price changes of houses in 
different localities, using maps and location-specific characteristics. It has become an 
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essential software tool for government services making decisions, analysis, planning 
and management of census, voting, mining and mineral exploration, systems for con-
sultation and integration.  

In spatial databases certain topological relationships hold at all times. Such topo-
logical relationships can be viewed as spatial association rules with 100% confidence, 
for example the containment relationship, which can be expressed as; 

            contain (X, Y) Λ contain (Y, Z) → contain (X, Z)                             (1) 

However a problem with such a process is that the selection of interesting patterns 
has to be performed only on frequent patterns. Standard association rules are not 
enough expressive for some applications, so we need to mine not only frequent pat-
terns but also infrequent patterns. Mining of infrequent patterns is known to be intrac-
table. For example in crime site analysis of a criminologist, one can analyze pattern of 
robberies using maps presenting locations of other objects to find patterns, but it is 
also very important to know the infrequent patterns involved on the location. 

Unlike existing spatial mining technique, in this paper we extend the traditional 
spatial associations to include infrequent patterns or negative spatial association rule 
mining in the following form; 

             contain (X, Y) Λ contain(Y, Z) → not_contain(X, Z)                      (2) 

Mining negative spatial association rules is a difficult task due to the fact that there 
are essential differences between positive and negative association rule mining.  In 
mining task, the possible negative rules can be quite more than positive association 
rules, but the user may not be interested in all positive and negative association rules. 
In this paper we also discuss how can one find out the interesting positive and nega-
tive spatial association rules. This technique makes computation faster. The rest of 
this paper is organized as follows. In next section we present some related concepts 
and definition of spatial association rule. In section 3, we discuss the pruning strategy 
for mining spatial positive and negative association rule. In section 4, we discuss the 
spatial positive and negative association rule and finally in section 5 we discuss the 
efficiency and other features of the algorithm and the conclusions and the scope of the 
future work. 

2   Spatial Association Rule 

Most researchers [5][6][7] used rules reflecting structure of spatial objects and spa-
tial/spatial or spatial/nonspatial relationships that contain spatial predicates, e.g. adja-
cent_to, near_by, inside, close_to, intersecting, etc. Spatial association rules can 
represent object/predicate relationships containing spatial predicates. For example, the 
following rules are spatial association rules. 

Nonspatial consequent with spatial antecedent(s) 
is_a(X, town) ∧ intersects(X, highway) → adjacent_to (X, water)… (80%). 
Spatial consequent with non-spatial/spatial antecedent(s) 
is_a (X, gas_station) → close_to(X, highway) ……………………… (75%). 
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Various kinds of spatial predicates can be involved in spatial association rules. They 
may represent topological relationships between spatial object, such as disjoint, inter-
sects, inside/outside, adjacent_to, covers/covered_by, equal, etc. They may also rep-
resent spatial orientation or ordering, such as left, right, north, east, etc, or contain 
some distance information, such as close_to, far_away, etc.  For systematic study of 
the mining of spatial association rules, some preliminary concepts are discussed in 
[6], as follows;  

Definition 1. A Spatial association rule is a rule of the form; 

P1 Λ  P2 Λ P3 Λ……Λ Pm  → Q1 Λ  Q2 Λ Q3 Λ……Λ Qn         (c %)………….(3) 

Where at least one of the predicates P1 Λ…Λ Pm ,  Q1 Λ…Λ Qn   is a spatial predicate, 
and c% is the confidence of the rule which indicates that c% of objects satisfying the 
antecedent of the rule will also satisfy the consequent of the rule. 

Definition 2. A rule “P → Q/S” is strong if predicate “P Λ Q” is large in set S and 
confidence of “P→ Q/S” is high. 

The above definition for an association rule P → Q has a measure of the strength 
called confidence (denoted as conf) defined as the ratio supp (P ∪ Q)/supp (P), where 
P ∪ Q means that both P and Q are present. 

Association rule discovery seeks rules of the form P → Q with support and confi-
dence greater than or equal to, user specified support (ms) and minimum confidence 
(mc) thresholds respectively. This is referred to as the support-confidence framework 
[1] and the rule P → Q is an interesting positive association rule. An item set that 
meets the user specified minimum support is called frequent item set. Accordingly an 
infrequent item set can be defined as an item set that does not meet the user specified 
minimum support. Like positive rule, a negative rule P →¬ Q also has measure of its 
strength, confidence, defined as the ratio supp (P ∪ ¬Q)/supp (P) where supp (¬Q) can 
be measured by 1- supp (Q). This infrequent item set may be significant as illustrated 
by following example [9]. 

Example 1. Let supp(c) = 0.6, supp (t) = 0.4, supp (t ∪ c) = 0.05 and mc = 0.52.  The 
confidence of t → c is supp (t ∪ c)/supp (t) = 0.05/0.4 = 0.125 < mc (= 0.52) and supp 
(t ∪ c) = 0.05 is low. This indicates that t ∪ c is an infrequent item set and that t → c 
cannot be extracted as rule in support confidence framework. However, supp (t ∪ ¬c) 
= supp (t) - supp (t ∪ c) = 0.4 – 0.05 = 0.35 is high and the confidence of t →¬ c is the 
ratio supp (t ∪ ¬c) / supp (t) = 0.35/04 = 0.875 > mc. Therefore t →¬ c is a valid rule.  

By extending the definition in [5] [6] [7] negative spatial association rule discovery is 
proposed to be defined as follows:            

Definition 3. The support of a conjunction of predicate, P = P1 Λ…Λ Pm , in a set S 
denoted as supp (P/S), is the number of objects in S which satisfy P versus the cardi-
nality of S. The confidence of rule P →¬ Q   is the ratio of supp (P ∧ ¬ Q /S) versus 
supp (P/S) i.e. the possibility that a member of S does not satisfy Q when the same 
member of S satisfies P.  A single predicate is called 1-predicate. A conjunction of k 
single predicates is called a k-predicate. 
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Our study of spatial association relationship is confined to newly formed Chhattis-
garh (C.G.) state in India whose map is presented in Figure 1 with the following data-
base relations for organizing and representing spatial objects: 

 

 

Fig. 1. Chhattishgarh State in India 

Town (town_name, town_type, population, literacy, geo…) 
Road (road_name, road_type, geo…) 
Water (water_name, water_type, geo…) 
Boundary (type, admin_region, geo...) 
Mine (mine_name, mine_type, geo…) 
Forest (forest_name, forest_type, geo…) 

It may be noted that in the above relational schema, the attribute “geo” represents a 
spatial object (a point, line, area, etc.) whose spatial pointer is stored in a tuple of the 
relation and points to a geographic map. The attribute “type” of a relation is used to 
categorize the types of spatial objects in the relation. For example, the type for road 
could be {national highway, state highway, …} and the type of water could be {riv-
ers, lakes, …}. The boundary could be boundary between two state regions such as 
Chhattisgarh and Maharastra in India. 

To facilitate mining multiple level association rules and efficient processing, con-
cept hierarchies are provided for both data and spatial predicates. 
A set of hierarchies for data relations is defined as follows. 
A concept hierarchy for town 
(town (large town (big city (Raipur, Bilaspur, Durg …)), medium size (…),..))) 
A concept hierarchy for water  
(water (river (large river (Mahanadi, Kharun, Shivnath, …))…) ) etc 

 

Fig.  2.  Approximate spatial relations 
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Spatial predicates (topological relations) should also be arranged into a hierarchy for 
computation of approximate spatial relations (like “g_close_to see Figure - 2) using 
efficient algorithms with coarse resolution at a higher concept level and refining the 
computations when it is confined to a set of more focused candidate objects. 

3   Identification of Interesting Item Set 

There can be an exponential number of predicates in a database and only some of 
them are useful for mining association rule of interest. Therefore it is also an impor-
tant issue to efficiently search the interesting itemset. In this paper we use a pruning 
strategy [9] to find out potentially interesting itemset. An interestingness function [9], 
interest (X, Y) =  supp (X ∪ Y) – supp (X) supp (Y)  and a threshold mi (minimum 
interestingness) are used. If interest (X, Y) ≥ mi, the rule X → Y is of potential inter-
est, an X ∪ Y is referred to as potentially interesting intemset. Using this approach, 
we can establish an effective pruning strategy for efficiently identifying all frequent 
itemsets of potential interest in a database.  

Integrating this interest (X, Y) mechanism into the support-confidence framework, 
‘I’ is a frequent itemset of potential interest (fipi) if:  

fipi (I) = supp (I) ≥ ms ∧ 

∃ X, Y: X ∪ Y = I ∧ 

fipis (X, Y)                                                        (4) 

Where   fipis (X, Y) = X ∩ Y = ∅ ∧  

f(X, Y, ms, mc, mi) = 1                                             (5) 

f(X, Y, ms, mc, mi) =   

1|),(int||)(||)(sup|

1)(),(int)() supp(X

+−+−→+−∪
+++−+→+∪

miYXerestmcYXconfmsYXp

mimcmsYXerestYXconfY  

Where f () [9] is a constraint function concerning the support, confidence and interest-
ingness of X → Y. Integrating the above insight and the interest (X, Y) mechanism 
into the support-confidence framework, J is an infrequent itemset of potential interest 
(iipis) if 

iipis (J) = supp (J) < ms ∧ 

∃ X, Y: X ∪ Y = J ∧ 

iipis (X, Y)                                                        (6) 

Where iipis (X, Y) = X ∩ Y = ∅ ∧ 

g(X, ¬Y, ms, mc, mi) = 2                                          (7) 

g(X, ¬Y, ms, mc, mi) =      f(X, Y, ms, mc, mi)    +  
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1|ms-supp(Y)| |ms - supp(X)|

12)(supp)(pp

++
+−+ mcYXsu  

Where g () [9] is a constraint function concerning f () [9] and the support, confidence, 
and interestingness of X→Y.   

4   A Method for Mining Spatial Association Rules 

4.1   An Example of Mining Spatial Association Rule 

Example 2. We examine how the data-mining query posed in Example 1 is proc-
essed, which illustrates the method for mining spatial association rules for Chhattis-
garh state. 

Firstly, a set of relevant data is retrieved by execution of the data retrieval methods 
[2] on the data-mining query. This extracts the following data sets whose spatial por-
tion is inside Chhattisgarh:  (1) towns: only tahsil place (2) road: National and state 
highway (3) water: only rivers, lake. 

Secondly the generalized close_to relationship between towns and the other four 
classes of entities is computed at a relatively coarse resolution level using a less ex-
pensive spatial algorithm such as the MBR data. 

Table 1. Large k-predicate sets at the first level (for 50 towns in Chhattisgarh) 

Spatial association rules can be extracted directly from table 1. To illustrate this, the 
object set of interest; f (X, Y, ms, mc, mi) can be replaced with the following  

f(X, Y, ms, mi) = 
1|),(interest||)(supp|

1)(),(interest) supp(X

+−+−∪
++−+∪

miYXmsYX

mimsYXY
 

K Large k - predicate set  Count 

1 <Adjacent to, water > 29 

1 <Intersect to, highway> 25 

1 <close to, highway> 30 

1 <close to, state boundary> 25 

2 <Adjacent to, water ><Intersect to, highway> 20 

2 <Adjacent to, water ><close to, highway> 20 

2 <Adjacent to, water ><close to, state boundary> 18 

2 <close to, highway><close to, state boundary> 15 

3 <Adjacent to, water ><Intersect to, highway><close to, state boundary> 10 

3 <Adjacent to, water ><close to, highway><close to, state boundary> 8 
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For example (intersect highway) has support 0.5 and (adjacent to, water), (intersect, 
highway) has support 0.4 and if we consider ms = 0.2 and mi = 0.1 then f  (<intersect, 

highway>, <adjacent _to, water>, 0.2, 0.1) = 
1|1.005.0||2.04.0|

11.005.04.0

+−+−
+−+

> 1 

Table 2. Large k-predicate sets at the second level (for 50 towns in Chhattisgarh) 

K Large k - predicate set  Count 

1 <Adjacent to, river> 20 
1 <Intersect to, national highway> 15 
1 <close to, national highway> 25 
1 <close to, MP state boundary> 20 
2 <Adjacent to, river ><Intersect to, National highway> 15 
2 <Adjacent to, river ><close to, National highway> 15 
2 <Adjacent to, river ><close to, MP boundary> 13 
2 <close to, National highway><close to, MP state boundary> 10 
3 <Adjacent to, river  ><Intersect to, national highway><close to, MP 

boundary> 
5 

3 <Adjacent to, river ><close to, National highway><close to, MP state 
boundary> 

5 

Spatial association rules can be extracted directly from table 2. For example (close to, 
MP boundary) has support 0.4, (adjacent to, river) has support 0.4, and (adjacent to, 
river) (close to, MP boundary) has support 0.26 and if we consider ms = 0.15 and mi 
= 0.1 then f (<adjacent to, river>,  <close to, MP boundary> 0.15, 0.1) = 

 
1|1.01.0||15.026.0|

105.01.026.0

+−+−
+−+

>1 

4.2   An Algorithm for Mining Spatial Association Rules 

Algorithm 4.1. Mining the spatial positive and negative association rules in a large 
spatial database. 

Input: The input consists of a spatial database, a mining query and a set of thresholds 
as follows: 

i. A spatial database SDB and set of concept hierarchies. 
ii. A query of a reference class set of task relevant classes for spatial object and a 

set of task relevant spatial relations. 
iii. Three thresholds: minimum support, minimum confidence, and minimum     

interestingness.  

Output: Strong spatial positive and negative association rules for the relevant sets of 
objects and relations. 
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The above algorithm can be summarized in the following way: 

Producer find_large_interested_predicate (SDB) 
(1) for(l = 0 ; L[l,1] != 0 and l < max_level; l++) 
(2) PL[l] ← 0; NL[l] ← 0 
(3)  let L[l,1]= get_predicates(SDB, l);   

 PL[l] ← PL ∪ L[l,1] 
(4) for (k = 2; L[l, k-1] !=0; k++)do begin 
  (4.1) let Pk = get_candidate_set (L [l,, k-1]); 
  (4.2) for each object s in S do begin 
  (4.3) Ps= get_subsets (P, s);//Candidate satisfied by s 
  (4.5) for each object set p ∈Ps do p.supp++; 
  (4.6) end; 
  (4.7) Let L[l,k]←{p|p∈Pk∧(supp(c)=(c.supp/| SDB|)>=ms); 
  (4.8) Let N [l, k] ← Pk- L [l, k]; 
  (4.9) for each object set I in L [l, k] do 
         if Not(fipi(I)) then 
    let L[l,k] = L[l,k] – {I}; 
         let PL[l] = PL[l] ∪ L[l,k]; 
  (4.10) for each object set J in N [l, k] do 
    if NOT(iipi(J)) then  
    let N[l,k] = n[l,k] - {J}; 
    let NL[l] = NL[l] ∪N[l,k]; 
      end  

end  
 end 

(5) Output = generate_association_rules (PL[l], NL[l]) 
      end  

In this procedure, step (1) shows that the mining of the positive and negative asso-
ciation rules is performed level by level, starting from the top most level until either 
the large 1-predicate set table is empty or it reaches the maximum concept level for 
each level l, step (3) computes the large 1-predicate sets and puts into table L[l, 1], 
step(4) computes the potentially frequent and infrequent itemsets, which is stored 
respectively as PL[l], NL[l] and finally the algorithm  generates the spatial positive 
and negative association rules at each concept level from the frequent predicate table 
PL[l] and infrequent predicate table NL[l].  

5   Implementation  

The Algorithm explained here was implemented taking thematic map data of Chhat-
tisgarh state of India and using programming language JAVA. The experiment was 
performed on a Pentium IV having 128 MB RAM. 

The algorithm generated multilevel positive and negative associationships.  
Figure 3 shows the performance of the algorithm for generating both association 
rules. It is evident that the execution time is increasing with the number of objects in 
database but the increase for large number of positive and negative association rules is 
not enormous in view of the fact that the number of negative associations are  
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reasonably large. This justifies the use of our proposed algorithm to mine positive and 
negative association rules simultaneously. The algorithm proposed in this paper is 
efficient for mining multiple level potentially interesting spatial positive and negative 
association rules in spatial database. We have used a pruning strategy [9] to effi-
ciently reduce the search space. 

 

Fig. 3. Graph showing performance of ARM algorithm generating multilevel positive and 
negative associationships 

6   Conclusion 

Spatial data mining is used in areas such as remote sensing, traffic analysis, climate 
research, biomedical applications including medical imaging and disease diagnosis. 
The algorithm presented in this paper discusses efficient mining procedures for spatial 
positive and negative association rules. It explores techniques at multiple approxima-
tion and abstraction levels. Further, efficiency is gained by interestingness measure, 
which allows us to greatly reduce the number of associations needed for considera-
tion. In our proposed approach approximate spatial computation is performed initially 
at an abstraction level on a large set of data, which substantially reduces the set of 
candidate data to be examined in the next levels. The outcome of the above mentioned 
spatial association rule algorithm is a set of association rules in which either the ante-
cedent or the consequent of the rule must contain some spatial predicates (such as 
close_to):  

• Non-spatial antecedent and spatial consequent: All elementary schools are 
located close to single-family housing developments.  

• Spatial antecedent and non-spatial consequent: If a house is located in a 
Park, it is expensive. 

• Spatial antecedent and spatial consequent: Any house that is near downtown 
is situated in the south of Chhattisgarh. 

This algorithm works in a similar manner as the Apriori algorithm with negation and 
interestingness function in the “large predicate sets”. Here predicate set is a set of 
predicates of interest. A 1-predicate might be {(close_to, water)}, so all spatial objects 
that are close_to water will be counted as satisfying this predicate. Similarly a 2-
predicate sets can be counted, and so on. In actuality the algorithm can be used to 
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generate multilevel positive and negative association rules at the desired coarse level 
or a fine level. The outcome of the algorithm can be interpreted to find the interesting 
associations between the spatial predicates and non-spatial predicates. 
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Abstract. As a powerful tool for summarizing the distributed medi-
cal information, Meta-analysis has played an important role in medical
research in the past decades. In this paper, a more general statistical
model for meta-analysis is proposed to integrate heterogeneous medi-
cal researches efficiently. The novel model, named mixture random effect
model (MREM), is constructed by Gaussian Mixture Model (GMM) and
unifies the existing fixed effect model and random effect model. The pa-
rameters of the proposed model are estimated by Markov Chain Monte
Carlo (MCMC) method. Not only can MREM discover underlying struc-
ture and intrinsic heterogeneity of meta datasets, but also can imply
reasonable subgroup division. These merits embody the significance of
our methods for heterogeneity assessment. Both simulation results and
experiments on real medical datasets demonstrate the performance of
the proposed model.

1 Introduction

As the great improvement of experimental technologies, the growth of the vol-
ume of scientific data relevant to medical experiment researches is getting more
and more massively. However, often the results spreading over journals and on-
line database appear inconsistent or even contradict because of variance of the
studies. It makes the evaluation of those studies to be difficult. Meta-analysis is
statistical technique for assembling to integrate the findings of a large collection
of analysis results from individual studies. Many academic papers and books
have discussed the application of meta-analysis in medical researches[1].

Meta-analysis employs various statistic models to integrate available individ-
ual medical research results. Those models can be divided into fixed effect model
and random effect model according to the different assumption of effect size,
which is conceptualized as a standardized difference between trials for identical
purpose. In the fixed effect model, the studies are assumed all to generate from a

� These two authors contribute equally to this paper.
�� Corresponding author.

P. Perner and A. Imiya (Eds.): MLDM 2005, LNAI 3587, pp. 630–640, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



MREM Based Meta-analysis for Medical Data Mining 631

fixed underlying effect size; while random effect model further takes into account
the extra variation[2]. The Hierarchical Bayes Linear Model (HBLM) mentioned
in[3] is essentially a random effect model cooperated with prior knowledge.

Although existing meta-analysis methods have been used for decades, their
intrinsic limitations lead to poor performance on complicated meta datasets. The
reason is that the model assumption of those methods is too strong and therefore
lack of flexibility. For example, fixed effect model regards the underlying effect
size is not influenced by any other factor; while random effect model deems that
the influences are centralized. In this paper, we propose a novel meta-analysis
model based on Gaussian Mixture Model (GMM). The novel model, which can
be viewed as an optimal linear combination of random effect models, is named
Mixture Random Effect Model (MREM). It will be shown that traditional fixed
effect methods and random effect methods are just two special cases of the
proposed MREM.

2 Statistic Strategies in Meta-analysis

In meta-analysis, effect size is defined to represent the standardized performance
difference between treatment group and control group in medical studies. There
are multiple types of definitions of the effect size, such as risk difference (RD),
relative risk (RR), odds ratio (OR), and the logarithm of the them[1]. The treat-
ment group consists of individuals who undergo a certain medical treatment;
while the control group is a collection of individuals who keep away from the
treatment and just serve as reference.

Since a medical study is effected by many factors, the distribution of effect
size approximates to be normal according to Central Limit Theorem, that is

yi ∼ N(μi, s
2
i ), (1)

where μi is the underlying effect size in the ith study and s2
i is the correspon-

dent variance. The fixed effect model assumes the effect sizes of all studies are
homogeneous and share the same fixed underlying value:

yi ∼ N(μ, s2
i ), (2)

where each study shares the same mean but different variance. Different from
the fixed effect model, the random effect model considers the heterogeneity of
data and assumes the distribution of underlying effect size is normal:

yi ∼ N(μi, s
2
i )

μi ∼ N(μ, τ2) (3)

where μi and s2
i are study-specific mean and variance respectively, that is to say,

in the random effect model, μi is assumed to arise from a gaussian distribution
with mean μ and variance τ2.

The Hierarchical Bayes Linear Model (HBLM) makes an improvement of
random effect model. It replaces μ in Equation (3) with a linear combination of
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the covariates, xiβ. Thus, it demands strong support of prior knowledge, such
as correct selection and complete covariate information. Even so, HBLM is still
poor for arbitrary distribution of effect size.

3 Mixture Random Effect Model

3.1 Mixture Random Effect Model

Fixed effect model and random effect model provide us two approaches to exploit
the underlying structure of μi in meta data set. For a real meta dataset, μi may
arise from an arbitrarily complex distribution rather than a constant in fixed
effect model or a simple gaussian distribution in random effect model. Random
effect model may exhibit poor performance at least in the following two cases:

1. The distribution of effect size has a unique peak but it is not a normal.
Modelling μi as a gaussian distribution will introduce extra error.

2. The distribution of μi complies with a multi-peak distribution. This situation
is common in real world dataset.

As mentioned, HBLM makes an effort to deal with a complex distribution by
introducing covariate, xiβ. The three shortages of regression based remedy are
that the covariates may not be linear additive, the selection of covariates is not
easy, and the covariate information is usually unavailable for some studies in
many practical cases .

Therefore, we develop a novel model to describe the characteristic of μi, which
is expected to handle both of the two special cases listed above. Here, we propose
the Mixture Random Effect Model (MREM), which is given by:

yi ∼ N(μi, s
2
i )

μi ∼
∑M

l=1 αlN(ξl, σ
2
l ),
∑M

l=1 αl = 1, αi > 0
(4)

Mathematically speaking, the above model utilize a gaussian mixture distri-
bution to describe μi, the mean of effect size. When the number of gaussian
components, M , is equal to 1, MREM degenerates to the traditional random
effect model. Since μi in mixture random effect model is learnt unsupervisedly,
we do not need any special covariate information from literatures.

After presenting MREM in this section, the problems such as choosing a
proper method for parameter estimating, finding an explanation for learnt model,
and proceeding subgroup analysis when the learnt gaussian components are well
clustered, will be discussed in the following sections.

3.2 Parameter Estimation by Gibbs Sampling

In this section, we explore the methods to learn the parameters of the pro-
posed MREM model from a meta dataset. As an important task in statistics
and data mining, parameter estimation for mixture distribution has been ex-
plored for many years. Among these parameter estimation schemes, Expectation
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Maximization (EM) algorithm [4] and Gibbs sampling [5] are two widely used
methods. For the proposed mixture random effect model, we tried EM algorithm
and found that there was no close form for estimating θls in each iteration, so a
complicated nested iteration should be performed in each EM iteration. Thus,
Gibbs sampling is considered for MREM.

Gibbs sampling scheme is one of the widely used Markov Chain Monte Carlo
(MCMC) routes [5] and has been applied in multidimensional sampling prob-
lems. In those problems, the joint distribution P (x) is assumed to be too difficult
to draw samples directly; while conditional distributions P (xi|{xj}j �=i) are com-
paratively feasible to be sampled.

In MREM, we need to estimate parameters of M gaussian components, Θ =
{αl, ξl, σl|l = 1, ...,M}. Those parameters are assumed to be independent to
each other. Let all priors on mixture ratio αl, location ξl and logarithm variance
log σl be noninformative, that is,

αl ∼ U(0, 1), ξl ∼ U(−∞,∞), log σl ∼ U(0,∞) (5)

where the prior on ξl, log σl are two improper priors in statistics. An improper
prior is not integrable until it times by a likelihood function, that is, we can
obtain a proper posterior distribution from an improper prior.

For each sample, we introduce a latent variable termed component indicator,
zi ∈ {1, 2, · · · ,M}, which means that μi generates from gaussian component zi.
Therefore, the joint distribution is decomposed as:

p(α, σ, ξ, Y, Z) = p(α, σ, ξ)p(Z|α, σ, ξ)p(Y |Z,α, σ, ξ)
= p(α)p(σ)p(ξ)p(Z|α, σ, ξ)p(Y |Z,α, σ, ξ) (6)

To apply Gibbs sampler, we need to find the full conditional distribution of
each parameter. Since

p(αl|αl̄, σ, ξ, Y, Z) ∝ p(α)p(Z|α, ξ, σ) ∝
K∏

i=1

αzi=l (7)

where l̄ = {1, 2, · · · , M}\{l} and the full conditional on α is a Dirichlet distribu-
tion,

p(α1, ..., αM |σ, ξ, Y, Z) = Dir (n1, n2.., nM ) (8)

where nl =
∑K

i=1 I(zi = l). From Equation (6), we choose factors containing ξ,
thus we have,

p(ξl|α, σ, ξl̄, Y, Z) ∝ p(ξ)p(Y |α, ξ, σ, Z)

∝
K∏

i=1,zi=l

exp
(
−1

2
(yi − ξl)2

σ2
l + s2

i

)
(9)
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Normalizing the proportion above, we get an explicit gaussian distribution,

p(ξl|α, σ, ξl̄, Y, Z) = N

⎛
⎜⎜⎜⎝

K∑
i=1,zi=l

yi

σ2
l
+s2

i

K∑
i=1,zi=l

1
σ2

l
+s2

i

,
1

K∑
i=1,zi=l

1
σ2

l
+s2

i

⎞
⎟⎟⎟⎠ (10)

Now, we derive the updating formula for variance σ. From Equation (6), we
have,

p(σ2
l |α, σl̄, ξ, Y, Z) ∝ p(σ)p(Y |α, ξ, σ, Z)

∝ 1
σ2

l

K∏
i=1,zi=l

1√
σ2

l + s2
i

exp
(
−1

2
(yi − ξl)2

σ2
l + s2

i

)
(11)

At last, the full conditional for zi is calculated straight forward, that is,

p(zi = l|α, σ, ξ, Y, zī) ∝ p(zi = l|α, ξ, σ)p(yi|α, ξ, σ, zi = l)

∝ αl
1√

σ2
l + s2

i

exp
(
−1

2
(yi − ξl)2

σ2
l + s2

i

)
(12)

Note that zi is a discrete random variable valued in {1, 2, · · · , M}, where M is
the total number of components of the gaussian mixture model.

3.3 Implement of Variance Updating

Once obtaining the full conditional distributions of the parameters (Equation
(8), (10), (11) and (12)), we can iteratively apply Gibbs sampler for estimation.
However, the full conditional distribution on σl is not a standard distribution
and can not sample directly. Here, we employ rejection sampling with a uni-
form proposal function to address this problem. Therefore, the problem turns to
determining the upper and lower bounds of the proposal function.

Consider a special case in which all si are identical, i.e. si ≡ s and the
noninformative prior, p(σ2

l ) ∝ 1/σ2
l . Thus, the posterior density turns to an

inverse χ2 density function:

p((σ2
l + s2)|α, σl̄, ξ, Y, Z) = Inv–χ2(nl,

nl∑
i=1

(yi − ξi)2/nl) (13)

The above posterior is also represented equivalently as a inverse gamma dis-
tribution. Denoting sample variance vl =

∑nl

i=1(yi−ξi)2/nl, we obtain confidence
interval of σ2

l with respect to given precision range, (Pmin, Pmax), that is,

(σ2
min, σ2

max) =
(

nlv
2
l

Iχ2(Pmax, nl)
,

nlv
2
l

Iχ2(Pmin, nl)

)
(14)

where Iχ2(P, nl) is inverse χ2 cumulative distribution function with freedom
degree of nl and value of P , e.g. 2.5% and 97.5%. Let s = mini(si), we have
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a confidence interval (σ(1)
min, σ

(1)
max); and s = maxi(si), we have (σ(2)

min, σ
(2)
max).

Therefore, we get a new interval as (σmin, σmax) = (σ(1)
min, σ

(2)
max) , within which

σ2
l occurs with a high propability. Then, rejection sampling is consequently ap-

plied on (σmin, σmax) to generate a sample for updating σ2
l .

4 Model Selection and Subgroup Division

4.1 Model Selection by BIC

The number of gaussian components, M , is the only parameter that should
be preset in MREM. Essentially, determining the best value of M is a model
selection problem which can be solved with some feasible model selection criteria,
such as AIC[6], MDL[6] and BIC[7]. Because of its broadly application, BIC is
employed in MREM:

BIC = log p(D|Θ) − 1
2
d log(K) (15)

where D is the data, Θ is the ML estimate of the parameters, d is the number of
parameters, and K is the number of data points. BIC is quite intuitive, namely,
it contains a term measuring how well the parameterized model predicts the data
(log p(D|Θ)) and a term which punishes the complexity of the model (1

2d log(K)).
Thus, in our algorithm, the model with the highest BIC score is selected.

4.2 Subgroup Division

One merit of MREM proposed in this paper is that it is capable to approxi-
mate arbitrary distribution, even if the distribution is very complicated. When
significant disequilibrium heterogeneity exists, it is natural to divide samples
into several subgroups for further study. There are two approaches for subgroup
division.

The first approach is to implement division by directly observing the dis-
tributions of the gaussian components estimated in MREM, which are all one-
dimensional. This approach is often feasible when the number of the gaussian
components is small, or there is enough prior knowledge.

The other subgroup division approach is required when the number of com-
ponents is somewhat large, and it is lack of sufficient prior knowledge. We adopt
hierarchical clustering to unsupervisedly merge adjacent components. Different
from an ordinary clustering task, the clustering here is applied on gaussian com-
ponents. Thus, a proper measurement of dissimilarity between two gaussian com-
ponents is required. Here, we employ symmetric KL divergence[8]:

KL(θi, θj) =
∫

x

(p(x|θi) − p(x|θj)) log
p(x|θi)
p(x|θj)

dx (16)

where θi is the parameter of the ith component. The hierarchical clustering
technique is an unsupervised data analysis method, which dose not demand any
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prior knowledge. The results of hierarchical clustering not only reveals the proper
number of subgroups, but also indicates which components should be merged in
most cases.

5 Experiments

5.1 Simulation Experiment

In this section, we design an experiment on a simulated dataset to illustrate
the performance of MREM. In this experiment (Experiment 1), the underlying
distribution of μi is a GMM with three gaussian components:

μi ∼ 0.18N(x| − 2.5, 0.72) + 0.45N(x| − 1, 0.72) + 0.36N(x|2.5, 0.62) (17)

We draw 150 samples from Equation (17) as the means of effect size and
denote them as μ1, μ2, ..., μ150. The correspondent variance s2

i is generated from a
uniform distribution U(0.5, 1). Then, a effect size yi is drawn from yi ∼ N(μi, s

2
i ).

The task in this experiment is to approximate the distribution of μi given yi and
si for i = 1, 2, · · · ,K. Figure 1 shows the results.

The number of components in GMMs are set from 1 to 5 respectively (see
Figure 1(a) to (e)). It is found that all the iterative processes of MREM con-
verge rapidly. The BIC score curve (see Figure 1(f)) suggests the model with 3
components is the best one, which is consistent with that of the true model.

From the selected model in Figure 1(c), we find that the left two components
locate closely and they are prone to merging together as a subgroup. Therefore,
it is intuitionally reasonable to divide the simulated data into two subgroups.
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Fig. 1. Results of Experiment 1. (a)∼(e) the estimation results of GMMs with 1,2,· · ·,5
components respectively, where the solid curve indicates the true pdf and the dashed
curve represents the estimated pdf. (f) BIC scores versus the number of components



MREM Based Meta-analysis for Medical Data Mining 637

This division is also supported by the KL divergences of the three gaussian
components: KL(θ1, θ2) = 7.86,KL(θ1, θ3) = 33.76 and KL(θ2, θ3) = 15.96,
where the three components are denoted as 1, 2 and 3 from left to right.

5.2 Real Data Experiments

In this section, we give two experiments (Experiment 2 and Experiment 3) on two
real medical meta datasets. The first experiment (Experiment 2) concentrates
on the level difference of the hormone factor cortisol in rheumatoid arthritis
(RA) and healthy population. The data summarized from 15 random controlled
trials [9, 10, 11, 12, 13, 14, 15] (Figure 2 (a)). The experimental results are given
in Figure 2 (b) and (c).

It is found that the MREM with one gaussian component, which is equiva-
lent to the random effect model, has the highest BIC score. The MREMs with
multiple components e.g. the one shown in Figure 2(c), get smaller scores. This
experiment shows that traditional random effect model is just a particular case
of the proposed model. And the results illustrates the level of the hormone fac-
tor cortisol is not different between RA and healthy population. This conclusion
complies with medical domain knowledge that inflammatory factor such as IL-6
is active in RA patients; while the hormone factor is not significant.

The data of the second real experiment (Experiment 3) is taken from [16]
which summaries 90 randomized studies valuating the effect of Nicotine Replace-
ment Therapy (NRT) on smoking cessation. Eliminating four incomplete data,
we apply MREM to the remaining 86 effect sizes to find out whether the use of
NRT successfully stops smoking and what its efficacy to different populations.

The result shown in Figure 3 suggests the best model is two components
MREM, which presents more explicit information of underlying effect size com-
pared to random effect model and it implies us to divide those studies into two
subgroups for further study. The heterogeneity in each subgroup suggested by
MREM is relatively equilibrium and their confidence intervals (CI) are listed in
Table 1.

The CIs of two subgroups in Table 1 illustrate that the effect of NRT in Sub-
group 2 is quite positive. While in Subgroup 1, the effect is minor, because the

ID Avg. 95% CI

1   44.14(  −1.85,  90.13)
2   27.59(   6.44,  48.74)
3 113.00( 101.0, 124.97)
4   50.00(  38.26,  61.74)
5   68.97(  51.09,  86.85)
6   −8.64 ( −54.73,  37.46)
7  −41.66( −67.30, −16.02)
8  −60.69(−165.22, 43.83)
9   26.76( −38.10,  91.62)
10   75.04(   0.27, 149.81)
11    8.83 ( −45.84,  63.50)
12  −204.2( −308.7, −99.63)
13  139.05( 84.34, 193.75)
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Fig. 2. Figures of Experiment 2. (a) the meta data where the short dash indicates the
coordinate axes; the long dash shows the mean of data ;(b) and (c) results of random
effect model and MREM respectively
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Fig. 3. Results of Experiment 3. (a) MREM with highest BIC scores. (b) estimated
random effect model. (c) BIC score of models with different number of components

Table 1. The BIC scores and confidence intervals for Experiment 3

Experiment BIC Score 95% CI

Whole data (random effect model) 75.9 ( -0.0309, 0.201)
Whole data (MREM) 78.9 (-0.00874, 0.253)
Subgroup 1 (MREM) 86.2 (-0.00119, 0.0923)
Subgroup 2 (MREM) 26.8 ( 0.108, 0.305)

interval contains zero. This result of subgroup division obtained by MREM sug-
gests an interesting direction for medical study. In fact, we find that Subgroup
1 mainly corresponds to women patients both in mid- and long-term follow-up
and men patients in long-term follow-up; while Subgroup 2 mainly corresponds
to women patients in short-term follow-up and men patients in both short- and
mid-term follow-up. This division demonstrates the NRT effect is promising at
short-term follow-up for all population and its efficacy becomes minor with the
time lapse. Comparatively speaking, the long-term maintenance of NRT treat-
ment gains decrease more rapidly for women than men according to our subgroup
division. We find such phenomenon arising from our subgroup division consists
with the medical knwoledge[17][18] that NRT is efficacious both in men and
women at short-term follow-up while the abstinence-rate efficacy significantly
decline at long-term follow-up especially for women who suffer more from smok-
ing cessation, such as dysphoric or depressed mood, anxiety and weight gain
associated with quitting cigarettes.

6 Conclusion

In this paper, we present a novel statistical model, the mixture random effect
model, for summarizing distributed heterogeneous medical studies. The proposed
model unifies the traditional meta-analysis tools, that is, the fixed effect model
and random effect model are just two particular cases of it. The mixture random
effect model has the ability to capture arbitrary complex distribution of the
effect size and provides useful information for subgroup division without prior
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knowledge. We construct the model essentially by GMM, the parameters of which
are estimated by MCMC approach. The novel model achieves prominent results
in experiments on real clinical data, which demonstrate its potentially value for
heterogeneous data analysis and medical data mining.
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Abstract. This paper aims to install Latent trait on Association Rule
Mining for the semantic analysis of consumer behavior patterns. We
adapt Item Response Theory, a famous educational testing model, in
order to derive interesting insights from rules by Latent trait. The pri-
mary contributions of this paper are fourfold. (1) Latent trait as an
unified measure can measure interestingness of derived rules and spec-
ify the features of derived rules. Although the interestingness of rules is
swayed by which measure could be applied, Latent trait that combines
descriptive and predictive property can represent the unified interesting-
ness of the rules. (2) Negative Association rules can be derived without
domain knowledge. (3) Causal rules can be derived and analyzed by the
Graded Response Theory which is extended model of Item Response
Theory. (4) The features of consumer choice that is based on the con-
cept of multinomial logit mode in Marketing Science could be extracted.
Especially the effect of promotions and product prices based on Causal
rules can be generated. Our framework has many important advances
for accomplishing in mining and analyzing consumer behavior patterns
with diversity.

1 Introduction

In the past decade, Association Rule Mining[3] has become the focus of attention.
An association rule is an implication of the form X ⇒ Y , where X and Y are
item-sets satisfying X ∩Y = φ and represents the consumer purchasing patterns
in a transaction. In order to measure interestingness of Association rules, many
useful measures have been proposed. However respective measures have their own
interestingness so that we often encounter the interpretational problems. Because
there is no measure to describe the unified interestingness of Association rules,
each interestingness differs much from the others. Even support and confidence,
the most fundamental measures, are not efficient enough to represent the unified
interestingness. Additionally there exists no measure that is not only descriptive
but also predictive. The prediction and description tasks have been treated as
the distinct problems for mining Association rules. As just stated, measures
with well-matched properties are demanded for these purposes. We address these
issues by introducing Latent trait to Association rule analysis.

P. Perner and A. Imiya (Eds.): MLDM 2005, LNAI 3587, pp. 641–650, 2005.
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An implication of the form X ⇒ ¬Y is called a Negative Association rule[2],
and represents a rule that customers who buy an item-set X are not likely to
buy at least one item in an item-set Y . Negative Association rules are significant
for understanding consumer behavior patterns. Although Negative Association
rule mining is quite useful, too many worthless Negative Association rules could
be derived. To settle this issue, Indirect Association rule mining was proposed
in [3] for deriving the interesting Negative Association rules effectively.

An Indirect Association rule is an implication of the form X ⇒ Y with
Y = {y1, y2} where there is a negative correlation between y1 and y2. In the
frameworks in [3, 4] an item-set X called a mediator represents a common item-
set for the consumers, i.e., X illustrates the similarity of consumer behavior
patterns. The relations of X and each of items in Y illustrate that the consumers
who bought all items of a mediator X take different actions of buying an item y1

or y2. For example, if we discover an Indirect Association rule (X ⇒ y1, X ⇒ y2),
consumers that buy all items in X tend to buy either y1 or y2 but not both. It
enables us to figure out that the items y1 and y2 are in a choice item-set, i.e.,
they could be competitive products or alternative products.

We have previously extended the model of an Indirect Association rule in or-
der to represent interesting consumer behavior patterns. An Indirect Association
rule due to S. Hamano and M. Sato[4] is an implication of the form X ⇒ βyj

with βyj ∈ {yj ,¬yj} for j = 1, 2 and illustrates behaviors of consumer choice
with two alternatives. For example, if we discover an Indirect Association rule
(X ⇒ y1, X ⇒ ¬y2), consumers that buy all items in X tend to buy together
with y1 but not with y2. Even though an Indirect Association rule is quite valu-
able to recognize consumer behavior patterns, it can describe only consumer
choice between two alternatives. In order to illustrate consumer choice behav-
ior with multiple alternatives, we are going to introduce a new framework of
Association rule analysis via Item Response Theory[8].

IRT is a mathematical model in educational testing for studying individual
responses. The aim of IRT is to obtain fine estimates of Latent trait called
ability. This is an attractive model to predict the probability of each correct
response as a function of the Latent trait and some parameters. Latent trait is
a powerful unobserved factor of measuring interestingness of derived rules as an
unified measurement and specify the features of derived rules. Latent trait is
estimated by the EM algorithm[5] with some parameters. These parameters are
also significant as well as Latent trait in terms of capturing the features of rules.
One of the parameter a called discrimination parameter can classify Association
rules and Negative Association rules without domain knowledge and remove
uninteresting rules effectively. The parameter c called guessing parameter can
remove trivial rules without asking experts.

Graded Response Theory which is the extended model of IRT can be applied
to Causal rule mining[7]. From this application, the effect of promotions and
product prices based on Association rules can be generated like multinomial
logit model[6]. As you have seen, our framework has many important advances
for accomplishing in mining and analyzing consumer behavior patterns with
diversity.
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This paper is organized as follows. In the next section, Item Response Theory
for analysis of Association rules is introduced. In Section 3, we present Graded
Response Theory for analysis of Causal rules. Experimental results are presented
in Section 4.

2 Semantic Analysis of Association Rules via IRT

2.1 Preliminary

Let I be a finite set of items, and D be a set of customer transactions, called
a database, where each transaction T is a set of items such that T ⊆ I. Each
transaction has a unique identifier i, called Transaction ID (TID), is denoted
by Ti. We denote subsets of I, called item-sets, by X, Y and items of X and Y
by x1, x2, x3, · · · and by y1, y2, y3, · · · respectively. In this paper, an item-set X
means not only the subset of I but also the event that a transaction contains
all items in the set X, and Pr(X) denotes the probability that a transaction
contains the set X. Moreover, ¬X denotes the negation of the event X, i.e.,
the event that a transaction does not contain at least one item in X, and thus
¬¬X = X and Pr(¬X) = 1 − Pr(X).

We consider an item-set Y such that Y = {y1, y2, ..., yn}. Let yij represent
a presence or an absence of an item yj in a transaction with TID = i, that is,
yij = 1 if yj ∈ Ti and yij = 0 if yj /∈ Ti. Item response data with TID = i for
given an item-set Y , denoted by Ti,Y , are represented as a binary vector, i.e.,
Ti,Y = (yi1, yi2, ..., yin). Remark that Ti ∩ Y = {yj |yij = 1, j = 1, 2, ..., n}. For
example, consider an item-set Y = {y1, y2, y3, y4, y5}. The item response data
T4,Y = (1, 0, 0, 0, 1) indicate that the transaction with TID = 4 contains items
y1 and y5, but does not contain items y2, y3, and y4.

2.2 Semantic Analysis of Association Rules via IRT

In this section, we introduce Item Response Theory for an Association rule with
Multiple Alternatives. Let X and Y = {y1, y2, ..., yn} be item-sets such that X,
Y ⊆ I and X∩Y = φ. Let DX be the set of transactions which contains all items
in X. We assume the condition that all items in Y are statistically independent
in the database DX , called the local independence condition. We denote an
Association rule with Multiple Alternatives (X ⇒ βy1 , X ⇒ βy2 , · · · , X ⇒ βyn

)
with βyj ∈ {yj ,¬yj} by (X; βy1 , βy2 , · · · , βyn).

We presume that there is a Latent trait between item-sets X and Y . Let
θ be a Latent trait that is an unobserved factor of measuring the underlying
ability and θX represent the ability of an transaction that contains all items in
X. That is, Dx has an inherent unobserved variable, Latent trait θX , and this
θX dominates the probability of occurring an item yj . Let pj(θX) and qj(θX)
represent the probabilities of the presence and the absence of an item yj ∈ Y in
DX respectively as follows:

pj(θX) = Pr(yj |X), qj(θX) = 1 − pj(θX) = Pr(¬yj |X). (1)
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The interestingness of an Association rule X ⇒ yj is measured by the conditional
probability of yj given X while the interestingness of a Negative Association
rule X ⇒ ¬yj is measured by the conditional probability of ¬yj given X. The
measures λ for evaluating interestingness of an Association rule and a Negative
Association rule are defined as follows:

λ(X ⇒ yj) = Pr(yj |X), λ(X ⇒ ¬yj) = Pr(¬yj |X). (2)

Because there is a Latent trait between item-sets X and Y and the Latent trait
θX of DX dominates the probability of occurring yj , the conditional probability
can be represented as a function of θX . Therefore pj(θX) and qj(θX) represent
the interestingness of an Association rule and a Negative Association rule re-
spectively. The probability of that a transaction with TID = i whether contains
an item yj can be represented briefly as follows:

f(yij |θX) = pj(θX)yij qj(θX)1−yij . (3)

For item response data Ti,Y = (yi1, yi2, · · · , yin), translating process into a joint
probability model based on the local independence assumption results in the
following:

f(Ti,Y |θX) =
n∏

j=1

pj(θX)yij qj(θX)1−yij . (4)

Logarithmic likelihood function of the above probability is illustrated as follows:

log L(Ti,Y |θX) =
n∑

j=1

[yij log pj(θX) + (1 − yij) log qj(θX)] . (5)

The parameters θX is estimated by maximization of the above Logarithmic like-
lihood function.

IRT is a prominent mathematical model in educational testing for studying
individual responses. The aim of IRT is to obtain fine estimates of Latent trait
called ability. This is an attractive model to predict the probability of each
correct response as a function of the Latent trait and some parameters. The
function called an Item Response Function (IRF) of two parameter logistic model
(2PL) is defined as follows:

pj(θX) =
1

1 + exp(−1.7aj(θX − bj))
(2PL) (6)

where aj is the discrimination parameter, bj is the difficulty parameter and θX

is the ability level. The parameters aj , bj and θX are estimated by maximization
of the above Logarithmic likelihood function. We apply the IRF defined above
to Association Rule Mining for measuring interestingness of the rules.

The IRF for Association Rule Mining represents the conditional probability of
yj given X where θX is the Latent trait of causing the event yj . These parameters
aj , bj and θX could be generated from the database by the EM algorithm[5].
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In our new perspective, Association and Negative Association rules are dis-
criminated by the parameter aj . If aj > 0, the Association rule X ⇒ yj is derived
because the conditional probability of yj given X monotonically increases with
θX . On the other hand, if aj < 0, the Negative association rule X ⇒ ¬yj is de-
rived because the conditional probability of yj given X monotonically decreases
with θX . Hence, the parameter aj is the key factor of distinguishing Associ-
ation and Negative Association rules. Moreover the higher the absolute value
of the discrimination parameter is, the more interesting the rule is. The Fisher
information of an item-set Y is defined as follows:

I(θX) = E

[
∂

∂θ
logL(Ti,Y |θX)2

]
= 1.72

n∑
j=1

a2
jpj(θX)qj(θX) (7)

Moreover the Fisher information of an item yj is defined as follows:

Iyj
(θX) = 1.72a2

jpj(θX)qj(θX). (8)

The discrimination parameter aj for an item yj is noticeably significant in terms
of augment the information. Therefore the parameter aj is applied for measur-
ing interestingness of the rules and classifying Association rules and Negative
Association rules.

The parameter bj represents how much the occurrence of X relates the occur-
rence of each of items in a set of alternatives, i.e., causal relationships between
X and each of items could be measured.

The most important and fascinating factor is the parameter θX that repre-
sents the Latent trait. By estimating the parameter θX , the responses of each
rule could be predicted. When the three parameters are reasonably accurate, the
predictive property will be assured. The parameter θX represents the interest-
ingness of the rules. The higher the ability level is, the more interesting the rule
is. We can say that these parameters are descriptive measures for derived rules.
Item Characteristic Curve (ICC) is a graph of Item Response Function and a
visual tool of illustrating the choice probability of each items.

According to the Latent trait model, the local independence condition is nec-
essary for estimation of Latent trait and some parameters. That is, the condition
of that correlations of any items are all statistically independent is absolutely
necessary in order to generate fine estimates. However it is expensive to generate
an item-set that satisfy the local independence condition. Therefore we intro-
duce choice item-set for relaxing the condition of local independence in the next
section.

2.3 Common Item-Sets and Choice Item-Sets

In order to apply IRT to analysis of an Association rule with Multiple Alterna-
tives, we introduce two item-sets called common item-set and choice item-set.
The common item-sets help to reduce search space and the number of unin-
teresting and trivial rules. Common item-sets illustrate the consumer behavior
patterns as ordinal patterns. The common item-set O is defined as follows:

O = {X ⊂ I | Pr(X) ≥ ηf},
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where ηf is a common item-set threshold predefined by the user. We should
note that it is desirable that there are at least 500 transactions containing all
items in a common item-set for stable parameter estimations of the Latent trait.
Even though common item-sets can describe the similar consumer behaviors, it
is not sufficient enough to recognize the characteristics of consumers. In order
to illustrate characteristics, we are going to define choice item-set as a set of
Multiple Alternatives. The items in choice item-set could give us great insights
by deriving with a common item-set because we could see many kinds of different
selecting actions of consumers as characteristics. Let � be a family of sets as
follows:

� = {Y ⊂ I | ∀ij ,∀ik ∈ Y, |ρ(ij , ik)| ≤ ηρ, j �= k, |Y | ≥ 2},
where ρ is the coefficient of correlation between the pair of items and ηρ is a
correlation threshold predefined by the user. Let us define an choice item-set S
that is a maximal set in �, i.e., there is no sets S

′
in � satisfies S � S

′
. We

should also note that it is desirable that the size of a choice item-set has to be
secured to a certain degree for stable parameter estimations of the Latent trait.

Definition 1. Let X be a common item-set and Y be a choice item-set where
X,Y ⊆ I and X ∩ Y = φ and aj be a discrimination parameter of an item yj.
An Association rule with Multiple Alternatives can be extracted as an interesting
rule for 2PL IRT model if

(1) |aj | ≥ ηd (Discrimination parameter Condition).

In the next section, we introduce Graded Response Theory for analysis of Causal
rule which is extension of Association rule.

3 Causal Rule Analysis via Graded Response Theory

A Causal rule proposed in [7] is an implication of the form X ⇒ Y where X and
Y are sets of categorical variables with X ∩Y = φ. For each categorical variable
Xi, R(Xi) called range consists of finite order categorical items. We assume that
X is a conjunction of explanatory categorical variables Xi and yj is a target
item. By adapting Graded Response Theory (GRT) which is extended model of
IRT, interesting insights from Causal rules could be derived such as influence
and interestingness of categorical variables. Let Xi be categorical variable that
has K ordered value as follows:

Xi = 0, 1, 2, · · · , k, · · · ,K − 1 (9)

The probability of Xi = k is defined as follows:

p(Xi = k|θyj ) = pik = p∗ik(θyj ) − p∗ik+1(θyj ), (10)

where p∗ik(θyj ) represents the probability of that Xi ≥ k. Note that p∗i0(θyj ) = 1
and p∗iK(θyj ) = 0. The probability p∗ik(θyj ) for 2PL logistic model is defined as
follows:
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p∗ik(θyj ) =
1

1 + exp(−1.7ai(θyj − b∗ik))
. (11)

Let Ml be the categorical response data matrix. By the local independence con-
dition, the probability of an observation Ml is illustrated as follows:

p(Ml|θyj
) =

n∏
i=1

K−1∏
k=0

pik(θyj
)Xik . (12)

Logarithmic likelihood function of the above probability is defined as follows:

log L(Ml|θyj
) =

n∑
i=1

K−1∑
k=0

Xik log pik(θyj
). (13)

The parameters ai, b∗ik are estimated by the EM algorithm as maximization of
the above Logarithmic likelihood function. The Fisher information for a target
item yj is defined as follows:

IXi
(θyj

) = 1.72a2
i

K−1∑
k=0

(p∗ik(θyj
)q∗ik(θyj

) − p∗ik+1(θyj
)q∗ik+1(θyj

))2

pik(θyj
)

(14)

Let θ̂X and θ̂Xi
be an estimated Latent trait of X and Xi respectively for a

target item yj . The estimated Latent trait θ̂ is regarded significant as much as a
discrimination parameter. Hence an estimated Latent trait is one of criteria for
measuring the interestingness of derived Causal rules.

Definition 2. Let X = {X1, X2, · · · , Xn} be a set of explanatory categorical
variables and yj be a target item. Let θ̂X and θ̂Xi

be an estimated Latent trait
of a set X of explanatory categorical variables and each explanatory categorical
variables Xi respectively for a target item yj. Causal rule X ⇒ yj can be extracted
as an interesting causal rule, if

(1) θ̂X ≥ 1
n

∑n
i=1 θ̂Xi

, (Latent Trait Condition)
(2) |ai| ≥ ηd, (Discrimination Condition).

3.1 Analyzing Effect of Promotion and Price

Multinomial logit model[6] have been contributed Marketing Science for identi-
fying the variables that affect consumer choices from among a set of alternatives
such as price, promotion, and so on. Even though data of price and promotion
are significant factors for marketing, there have been no effective method to an-
alyze the effect of promotions and product prices based on Association rules for
market basket data. Our framework can analyze them by introducing variables
for price and promotion data as explanatory categorical variables for a target
item. Let Promoyj be a promotion variable and Priceyj be a price variable for a
target item yj . A Latent trait and a discrimination parameter for each explana-
tory variables can be estimated by the EM algorithm. The higher discrimination
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Fig. 1. Item Characteristic Curve

parameter is, the more influential and significant variable is. For example, sup-
pose there are three explanatory variables X1, Promoy1 and Pricey1 for a target
item y1, i.e., X = {X1, P romoy1 , P ricey1} and the estimated discrimination pa-
rameters for each variables are 1.0, 1.5 and 0.5 respectively. As easily seen, the
Promotion variable is more significant than the Price variable. Hence the pro-
motion is the most influential factor for consumers who bought a target item
y1. Moreover the explanatory variable X1 is more significant than the Price
variable. This could be an interesting insight because there is the factor that is
more influential than the price of an item y1. As a result, we can recommend
a marketing manager that the pricing for an item y1 should be reconsidered.
Moreover the higher Latent trait is, the more significant categorical variable is.
For example, three kinds of promotions have been done for a target item y1.
The promotion categorical variable is presented as 1, 2, and 3 for”only special
display promotion”, ”only advertisement promotion”, and ”both special display
and advertisement promotion” respectively. Note that the promotion variable 0
means ”no promotion”. If estimated Latent traits are -1.5, 0.5, 1.0, 1.5 for each
promotion categorical variable 0, 1, 2, and 3 respectively, then the ICC as in
figure 1 is represented. The ICC indicates that most effective promotion was
”both special display and advertisement promotion” and the promotion ”only
special display” was not effective.

4 Experiments

We have performed analysis of Direct Marketing data distributed for the KDD
CUP in 1998. These experiments are for deriving interesting Causal rules based
on the graded response model and analyzing categorical variables. Suppose a
Causal rule has three categorical variables for a set X of categorical variable,
i.e., X = {X1, X2, X3}. The domains for categorical variables X1, X2, X3, and
Y are X1 = {F,N, A,L, S}, X2 = {1, 2, 3, 4}, X3 = {A,B,C, D, E, F,G}, and
Y = {Donor}. Due to the space limitation, we present only the results of RFA 2
and RFA 3.

Figure 3 depicts the ICC of estimated parameters of each categorical variable
from the data of RFA 2 and RFA 3. The domain of the first categorical variable
X1 in RFA 2 is {L}, that is, all donors belong to the category {L}. Although the
higher discrimination parameter is, the more significant the categorical variable
is, there is hardly difference between the item discrimination parameters for X2
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Fig. 2. Algorithm and top 5 interesting Causal rules

variables. The fact that the highest item difficulty parameter of X2 is a category
4 indicates people who belong to category 4 are likely to be Donor. Low item
difficulty parameters for categories 1 and 2 indicate that people who belong
to these categories are not likely to be Donor. Although category 3 has much
high difficulty parameter, it could not be an attractive category because its
highest probability is not high enough. The highest item difficulty parameter of
X3 is D so that the people are potentially attractive Donor. Additionally, the
second highest parameter E is attractive enough because the highest probability
is high enough. The domain of the first categorical variable X1 in RFA 3 is
{F,N, A, S}, of the second variable X2 is {1, 2, 3, 4} and of the third variable
X3 is {D,E, F, G}. Because categories A, B and C in the third category are too
low to generate secure estimates. I and L in the first category are too low as

Fig. 3. Experimental results
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well as A, B and C. The ICC and parameter estimations indicate S, 3, 4 and
G are attractive categories for Donor. The most interesting rules are L4D and
S4D for RFA 2 and RFA 3 respectively. Therefore the people who belong to
these categories have propensity for being Donor.

5 Conclusion and Future Work

We are convinced that our framework produce good results from semantic anal-
ysis of Association rules and Causal rules. As a future work, we are going to
extend the current model to relax local independence condition.
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Abstract. The real transactional databases often exhibit temporal characteristic 
and time varying behavior. Temporal association rule has thus become an active 
area of research. A calendar unit such as months and days, clock units such as 
hours and seconds and specialized units such as business days and academic 
years, play a major role in a wide range of information system applications. The 
calendar-based pattern has already been proposed by researchers to restrict the 
time-based associationships. This paper proposes a novel algorithm to find 
association rule on time dependent data using efficient T tree and P-tree data 
structures.  The algorithm elaborates the significant advantage in terms of time 
and memory while incorporating time dimension. Our approach of scanning 
based on time-intervals yields smaller dataset for a given valid interval thus 
reducing the processing time. This approach is implemented on a synthetic 
dataset and result shows that temporal TFP tree gives better performance over a 
TFP tree approach. 

1   Introduction  

Efficient algorithm for finding frequent patterns has been one of the key success 
stories of data mining. The Apriori algorithm [1] by Agrawal et al is based on 
support-confidence framework.  It begins with counting the support of each and every 
item of transaction table. It comprises of two phases; (1) Candidate generation in all 
possible combinations. (2) The database scanning and counting of all transactions for 
each itemset. The process continues as long as frequent item is available. There are 
some pertinent questions which can be raised like : What about mining the  - 

• Associationship in all patterns of a certain type during a specific time interval. 

• Associationship in all patterns of a certain type with a specific periodicity. 

• Associationship in all patterns of certain type with a specific periodicity during a 
specific time interval. 

All these statements indicate that data is dependent on time. Time plays an 
important role in real dataset. In various business setups such as stock market and 
share market time is most important dimension In existing algorithms like Apriori [1] 
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and Fp-growth[7] when time aspect  is  involved in the dataset, it  provides useful 
information for business, but it increases the time complexity because it is needful to 
scan the database for every valid specific interval. Though Fp-growth is one of the well-
known approaches for finding frequent itemset, but it performs miserably when the 
nature of data is sparse. Sparse data creates large number of nodes and if temporal 
dimension is also incorporated on dataset, it again increases the branches of tree and is 
thus  difficult to fit in memory. In such case Apriori outperforms  Fp-growth approach.  

Our proposed approach is aimed at devising an efficient algorithm for mining 
association rule in time-based dataset by using efficient data storage mechanism- 
Temporal T-tree. 

Definition 1: A temporal pattern is a triplet  <pattern , periodicexp, interval exp>, 
where pattern is a general pattern which may be a trend  , a classification rule, an 
association a causal relationship etc. Periodicexp is a periodic time expression or a 
special symbol p_null with  φ (p_null) being {T} and intervalexp is a general interval 
expression or a special symbol I_null with  φ (p_null) being {T}. It expresses that 
pattern hold during each interval in φ (periodicexp 0  intervalexp). T is the time 
domain. [10] 

Given a time-stamped dataset D over a time domain T, the problem of mining 
temporal  pattern  of a certain type is to discover all pattern of the form <pattern, 
periodicexp, intervalexp> in D which satisfy  all the user defined threshold with 
respect to described  minimum  frequency min_f% with some given condition. 

Three properties of the algorithm are of interest when considering its performance: 

• The number of database access required 
• The no. of computational step required in counting subset of records 
• The memory requirements. 

For small values of n these set of algorithm are appropriate, but large dataset these 
algorithms are computationally infeasible. 

The rest of the paper is organized as follows : Section 2, discusses some related 
works. In section 3 defines temporal association rule in term of calendar schema. In 
Section 4 elaborate the proposed work  , section 5 shows the experimental study and 
section 6 elaborates  conclusion and future works and section 6 provides application 
of above investigation. 

2   Related Work  

The concept of association rule was introduced as Apriori algorithm [1]. Its 
performance was improved by deploying frequent-pattern growth approach [7]. In 
paper [6]  the omission of the time dimension in association rule was very clearly 
mentioned. A temporal aspect of association rule was given by Juan [5]. According to 
this the transactions in the database are time stamped and time interval is specified by 
the user to divide the data into disjoint segments, like month , days and years. Further 
The cyclic association rule was introduced by Ozden [6] with minimum support and 
high confidence. Using  the definition of cyclic association rule,  It may not have high 
support and confidence for the entire transactional database. A nice bibliography of 
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temporal data mining can be found in the Roddick literature[8]. Rainsford and 
Roddick presented extension to association rules to accommodate temporal semantics. 
According to [9] logic the technique first searches the associationship than it is used 
to incorporate temporal semantics. It can be  used in  point based and interval based 
model of time simultaneously[9]. A Frequent pattern approach for mining the time 
sensitive data was introduced in[4] where the  pattern frequency history under a tilted-
time window framework is used to answer time-sensitive queries. A collection of item 
patterns along with their frequency histories are compressed and stored using a tree 
structure similar to FP-tree are updated incrementally with incoming transactions [4]. 
Li  et. al. addresses the calendar based association rule problem [11],the result shows 
temporal apriori is 5 to 22 times faster than direct apriori, for fuzzy match temporal 
apriori is 2.5 to 12 times faster than direct apriori and the execution time  extremely 
decreases with respect to  precise match or fuzzy match. 

3   Problem Definition 

3.1   Association Rule 

The concept of association rule, which was motivated by market basket analysis and 
was originally presented by Agrawal. [1]. Given a set of T of transaction, an 
association rule of the form X  Y is a relationship between the two disjoint itemsets 
X and Y. An  association rule satisfies some user-given requirements. The support of 
an itemset by the set of  transaction is the fraction of transaction that contain the 
itemset. An itemset is said to be large if its support exceeds a user-given threshold 
minimum support. The confidence X  Y over T is a transaction containing X and  
also containing Y. Due to complex candidate generation in the data set  Jiewai Han 
invented a new technique of FP-growth method  for mining frequent pattern without 
candidate generation [7]. In our opinion this mining associationship will  become 
more useful if we include the time factor in to it. 

3.2   Temporal Association Rule 

Definition 2: The frequency of an itemset over a time period T is the number of 
transactions in which it occurs divided by total number of transaction over a time 
period. In the same way , confidence of a item with another item is the transaction of 
both items over the period divided by  first item of that period. 

Support(A) =  Frequency of occurrences of A in specified time interval / Total  no 
of Tuples in  specified time interval 

Confidence(A => B[Ts,Te] ) = Support_count(A U B) over Interval / occurrence of  
A in interval 

Ts indicates the valid start time and Te  indicate valid time according to temporal data. 

3.3   Simple Calendar Based Pattern  

When temporal information is applied in terms of date, month , year and week they 
form the term calendar schema. It is introduced in temporal data mining. A calendar 
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schema is a relational schema (in the sense of relational databases) R = (fn : Dn, Fn-1 : 
Dn-1,………F1 :d1) together with a valid constraint. A calendar schema (year : 
{1995,1996,1997…..} , month : {1,2,3,4,……12}, day : {1,2,3…..31} with the 
constraint is valid if that evaluates (yy, mm, dd) to True only if the combination gives 
a valid date. For example <1955,1,3> is a valid date while ,<1996,2,31> is not.   

In calendar pattern , the branch e cover e’ in the same calendar schema if the time 
interval e’ is the subset of e and they all follow the same pattern. If a calendar pattern 
<dn, dn-1, dn-2……..d1>  covers  another pattern <d’n, d’n-1;, d’n-2  ……..d1>  if and only 
if for each I, 1<=i<=n  or di = d’i.  Now our task is to mine frequent pattern over 
arbitrary time interval in terms of calendar pattern schema. 

4   Proposed Work  

The support of dataset in the data warehouse can be maintained by dividing it into 
different intervals. The support of a item in interval t1 can not be the same in interval 
t2. A infrequent or less support item in interval t1 can be frequent item in interval t2.  

The calendar schema is implemented by applying apriori algorithm [11]. It follows  
the candidate generation approach in order to mine the frequent item. We assist here 
that Total tree construction from partial tree is an efficient approach for mining time 
based associated items. It first constructs a partial tree (P tree).  A P-tree is a set 
enumeration tree structure in which to store partial counts for item sets. The top, 
single attribute, level comprises an array of references to structures of the form shown 
to the right, one for each column [12].  Each branch indicate the association ship of 
item. It reduces the size of dataset and increases the performance and efficiency of 
algorithm. It can  solve  following queries (1) What are the frequent set over the 
interval t1 and t2 ? (2)  what are the period when (a,b) item are frequent ? (3)  Item 
which are dramatically change from t4 to t1. 

 
Fig. 1. Frequent pattern in different interval 

4.1   Partial Support [2]  

Most of the existing methods described above proceed essentially on each database 
pass by defining some candidate set and then examining each record to identify all the 
members of the candidate set that are subsets of the record, incrementing a support-
count for each. The computational cost of this increases with the density of 
information in database records, i.e. when the average number of attributes present in  
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Fig. 2. Lattice of item {A,B,C,D} 

a record is high, leading to an exponential increase in the number of subsets to be 
considered, and when candidate sets are large. In principle, however, it is possible to 
reduce this cost of subset- counting by exploiting the relationships between sets of 
items. For example, in the simplest case, a record containing the attribute set ABD 
will cause incrementation of the support-counts for each of the sets ABD, AB, AD, 
BD, A, B and D. Strictly, however, only the first of them is necessary, since a level of 
support for all the subsets of ABD can be inferred subsequently from the support-
count of ABD. 

Let i be a subset of the set I (where I is the set of n attributes represented by the 
database).  We define Pi , the partial support for the set i, to be the number of records 
whose contents are identical with the set i . Then Ti , the total support for the set i , 
can be determined as: 

iT  = ),( ijjPj ⊇∀                                              (1) 

This allows us to postulate a general algorithm for computing total supports. Let P 
be the set of partial support counts Pi corresponding to sets i which appear as records 
in the database, and T be the set of total support counts in which we are interested 
(however this is defined). With the members of P and T initialized to zero. 

Algorithm A 
Inputs: Transaction  DS, countset P 
Output: Returns P and T counting sets in DS 
Method: 

A1: ∀ Records j in DS do 
 begin add 1 to Pj 
   insert j to P 

 end; 

A2: ∀ j in P do 
 begin . i in T, i ⊆. j do 
   begin add Pj to Ti 

end; 
end; 
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Fig. 3. Tree Storage of Subset (A,B,C,D) 

For a database of m records, stage 1 of the algorithm (A1) performs m support-
count  incrementations in a single pass, to compute a total of m  partial supports, for 
some m’≤ m. The second stage of the algorithm (A2) involves, for each of these, the 
examination of subsets which are members of the target set T . In an exhaustive 
version of the method, T will be the full set of subsets of I. Computing via summation 
of partial supports, however, offers three potential advantages. Firstly, when n is 
small (2n << m), then A2 involves the summation of a set of counts, which is 
significantly smaller than a summation over the whole database. Secondly, even for 
large n, if the database contains a high degree of duplication (m’ << m) then the stage 
2 summation will again be significantly faster than a full database pass, especially if 
the duplicated records are densely-populated with attributes. Finally, and most 
generally, we may use the stage A1 to organize the partial counts in a way which will 
facilitate a more efficient stage 2 computation, exploiting the structural relationships 
inherent in the lattice of partial supports. 

Figure 3 shows an alternative representation of the sets of subsets of I , for I = {A, 
B,C, D}, in the form of  Rymon’s [13] set enumeration tree. In this structure, each 
subtree contains all the supersets of the root node, which follow the root node in 
lexicographic order 

4.2   Algorithm for Generating Calendar Based Temporal Association Rule 
Using TFP Tree  

The proposed algorithm first extract the data of particular interval from whole data 
set and apply the TFP Mining approach to find frequent itemset on that specific 
intervals. 

Input: A Transaction Database D, Specified calendar pattern <dd,mm,yy> 
Output: Frequent item set, Temporal database table TDB 
Method: 

 Step (1) Set pointer to first record of database 
 Step (2) Scan the Database one by one and follow the Step(3)  
 Step (3) { 
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 Step (4)    If  data ∈ <dd,mm,yy> 
 Step (5)         Send the data into Temporal database Table TDB 
 Step (6) } 
 Step (7) set K = 1 
 Step (8) Build level K in the T -tree. 
 Step (9) “Walk” the P-tree, applying algorithm TFP to add interim 

supports associated with individual P-tree nodes to the level K 
nodes established in (2). 

 Step (10) Remove any level K T-tree nodes   that do not have an 
adequate level of support. 

 Step (11) Increase K by 1. 
 Step (12) Repeat steps (8) through (11); until a level K is reached where 

no nodes are adequately Supported.    

In above algorithm step (1) to step (5) used to find out the itemset, which occurs on 
valid time period specified by calendar schema. Step (7) to step (12) used for mining 
frequent itemset from TFP tree. 

5   Experimental Observation  

In this section we present the experimental result showing the performance of TFP 
tree approach and temporal TFP tree approach. The experiments were performed on 
the synthetic data set based on KDD cup T20I10D250kN500. The Pentium III with 
128 MB Main Memory, 20 GB hard disk having Microsoft windows was used. 
Algorithms were implemented in C++ and Java. Figure 4(a) and 4(b) shows the 
comparative graph for different time intervals. The execution time taken by CPU in 
TFP algorithm is almost three times more than temporal TFP algorithm, which is a 
significant improvement and also shows that the performance of temporal TFP 
algorithm steadies as the support of itemset grows.  

  

Fig. 4. Comparative graph of TFP tree and Temporal TFP tree 
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6   Conclusion and Future Work  

In real world data the knowledge used for mining is always time varying. Real 
transactional databases specially exhibit temporal characteristic and time varying 
behavior. For example, in Telecommunication Data Analysis, the calling pattern may 
vary with time.  Similarly for Market Basket Analysis the associationships between 
various items may change with time and also that this transaction Database may have 
either a sparse or dense database. In this paper we have adopted time sensitive 
approach and presented an algorithm for mining frequent itemset on specified time 
interval using TFP approach. Frequent items generated for specific time interval have 
great impact from the databases. It has the capability to affect all aspects of doing 
business in today’s world. It will empower decision makers with realistic results and 
that too with more accuracy and reduced time lag. It will thus help in more realistic 
and relevant decision-making. An inherent advantage of using P- tree and T- tree 
structure is in having   branches which can be considered independently and therefore 
the structures can be rapidly adapted for use in parallel / distributed Association Rule 
Mining. 
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Abstract. In multi-dimensional image, ICA-based feature extraction algorithm, 
which is proposed in this paper, is for the purpose of detecting target feature 
about pixel assumed as a linear mixed spectrum sphere, which is consisted of 
each different type of material object (target feature and background feature) in 
spectrum sphere of reflectance of each pixel. Landsat ETM+ satellite image is 
consisted of multi-dimensional data structure and, there is target feature, which 
is purposed to extract and various background image is mixed. In this paper, in 
order to eliminate background features (tidal flat, seawater and etc) around tar-
get feature (aquaculture) effectively, pixel spectrum sphere of target feature is 
projected onto the orthogonal spectrum sphere of background feature. The rest 
amount of spectrum sphere of target feature in the pixel can be presumed to re-
move spectrum sphere of background feature. In order to make sure the excel-
lence of feature extraction method based on ICA, which is proposed in this pa-
per, aquaculture feature extraction from Landsat ETM+ satellite image is ap-
plied. Also, In the side of feature extraction accuracy and the noise level, which 
is still remaining not to remove after feature extraction, we have conducted a 
comparing test with traditionally most popular method, maximum-likelihood. 
As a consequence, the proposed method from this paper can effectively elimi-
nate background features around mixed spectrum sphere to extract target fea-
ture. So, we found that it had excellent detection efficiency.  

1   Introduction 

The image, which is obtained to take a picture for the surface of earth from Landsat 
ETM+ satellite is consisted of multi-dimensional data structure of multiplex spectrum 
sphere. A lot of data for the surface of earth are recorded such as an image of multi-
dimensional data structure. In order to extract target feature from multiplex spectrum 
satellite image, there is an image processing method to change the peculiarity of data 
with the reflection of a certain axis for image data. At this time, the number of axis of 
reflected are needed to match the number of original data level so that the data level 
after reflection can be the same with the data before reflection or small to have the 
effect of compress. 

There are methods to decide the axis to get the result as a meaningful outcome 
value when multi-dimensional data are reflected[1, 2]. ICA (Independent Component 
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Analysis) method, which is expanded method of PCA (Principal Component Analy-
sis) is a statistical technique represented as a multi-dimensional vector of independ-
ence component with combination of linear. ICA can eliminate not only mutual rela-
tions of data but also higher level of mutual relations. In a consequence, it is the 
method to transform to independent between dimensions [3]. ICA is primarily applied 
to analyze data and extract feature. In this regards, we can use BSS (Blind Source 
Separation) method for original data and tracking down to find original data with 
mixed data without knowing the data to be mixed processing [4]. 

In this paper, ICA method is applied to extract wished feature data from multi-
dimensional data structure. In this regard, Lee et al [6, 7], Hyvarinen [5] develops 
ICA-based feature extraction method based on the result of previous research works. 
An experiment about aquaculture feature extraction from Landsat ETM+ satellite 
image has been conducted to verify the validity of the result about actual application. 
In chapter 2, the materials and methods used in this paper are described and, in chap-
ter 3, test result will be reviewed together with them. And, finally, the conclusion will 
be described in chapter 4. 

2   Materials and Methods 

This paper is described for algorithm of object detection, which can be classified as 
object and background from each pixels of multi spectral image consisted more than 2 
object peculiarities. Multi spectrum image, which is used in this paper, is obtained 
from Landsat TM sensor with the following spectrum sphere: 450 ~520 (band 1), 
520 ~ 600 (band 2), 630 ~690 (band 3), 760 ~ 900 (band 4), 1550
~1750 (band 5), 1040 ~ 1250 (band 6), 2080 ~2350 (band 7).  

 

Fig. 1. Experiment data (Landsat ETM+) and research area 
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Fig. 2. Band image of different spectrum of LANDSAT ETM+ Satellite Image 

 

Fig. 3. Curved line of spectral reflection of Landsat ETM+ bands 
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In here, band 6, which is spectrum sphere of thermal infrared rays, is excluded in 
this paper. Fig. 1 shows you the satellite image of Landsat ETM+ used for experiment 
and, as a place of aquaculture; its location is Jungsanpo Taeahn-gun, Chungnam prov-
ince. Fig. 2 shows you image data of each different spectrum band photographed from 
LANDSAT ETM+ Satellite Image around sea area of Jungsanpo Taean-gun, Chung-
name province when ebb and flow is ebb tide on Feb 16, 2003. 

Signal energy is controlled by reflected sunbeams radiant energy rather than dis-
charged sunbeams by observed substance in spectrum sphere. Fig. 3 shows you the 
curved line of spectral reflectance, which is drawn with Landsat ETM+ spectrum 
sphere to measure spectral reflectance for aquaculture and around substances. 

In algorithm for object detection of partial pixel based on mixed models of linear 
spectrum, reflected spectrum sphere of each pixel is presumed as linear mixed spec-
trum sphere from each different kinds of substance in the surface of pixel. If pixel 
spectrum sphere is controlled by object spectrum sphere, this pixel is the sign as an 
object pixel. If the contribution extent of object spectrum sphere can neglect in pixel 
spectrum sphere, that pixel can be classified as a background. As a consequence, what 
pixel spectrum sphere is disassembled as an organization spectrum sphere is needed 
to decide what kinds of substances are occupied extensively as a target or back-
ground. 

3   Feature Extraction Procedure Using ICA 

ICA is a technique to isolate mutual independent signals statistically from linear 
mixed signals and, it is applied to not only signal field but also image field vigor-
ously. ICA method seeks for direction to reach independence elements in data. 

There are lots of performance algorithms to exist for ICA such as Entropy mini-
mized method, common data minimized method, Gaussian measure most suitable 
method and, maximum likelihood method. Lee[6, 7] is applied as a mixed model of 
independent element analyzer by maximum likelihood method. The weakness of this 
method is not extended easily to find a partial space. That weakness is not applied for 
fields like image coding. However, in an image segmentation and field of image clas-
sification, image is described as much smaller dimension than the numbers of pixels. 

Fig. 4 is a sequence chart of data processing to extract target feature based on ICA 
method, which is indicated in this paper.  

At first, in a data preparation stage as a first step, input feature with N unit from 
Landsat ETM+ Satellite Image data and creation of input data collection with N+1 
dimension from output class. And, they go through the process of formalizing for 
each input features. In a second performing stage of ICA, ICA is performed to new 
data collections, which have been made in the data preparation step. And, the result is 
saved as an extra weight matrix W in dimension of (N+1) x (N+1). 

In a third step, absolute average of each independent line vector, which has N+1 of 
extra weight matrix W, is searched. And, among the extra weight line elements, elem- 
ents value, which has an extra weight value less then absolute average, is made as 
zero. Fourth step is the stage of extracting for candidate feature. After all extra weight 
value line vectors are reflected in an original peculiar space, candidate feature of new 
N+1 unit is extracted to multiply original input data by new extra weight matrix of 
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(N+1) x N dimension. Extracted candidate features have been mixed with target and 
background features. Last stage is the step of deleting background feature from ex-
tracted candidate features. Candidate feature set F is made in this stage and, if extra 
weight value, which is coped with each candidate features, is zero, it is considered as 
background features and, it is removed. As a consequence, only final target features, 
which are removed background features from candidate features will be extracted.  

 

Fig. 4. The sequence chart for data processing of feature extraction 

4   Test Results and Considerations 

In this chapter, in order to extract aquaculture feature from Landsat ETM+ multi spec-
trum image data, image of 200x161 size is applied and, it is formalized to keep gau-
cian distribution peculiarity of N (m, 2). Also, in order to delete noise effectively 
from original data, test has been conducted to find how features are extracted with 
keeping the average as regularly (m=0) and changing ( 2: 0~1) the dispersion. 

Fig. 5 shows you aquaculture feature extracted to apply feature extraction method 
based on ICA, which is proposed in this paper. Indicated section with black color in 
white dotted line is shown for aquaculture feature. 

Fig. 6 shows you aquaculture feature extracted through distribution method of 
maximum likelihood, which is the most popular used. The test has been conducted by 
the side of noise, which is not eliminated after feature extraction and accuracy of 
extracted feature. 

Landsat ETM+ Satellite Image

Data preparation  

ICA performance 

Adjustment of small extra weight 

Extraction of candidate feature  

Elimination of background feature  

Extraction of target feature  
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Fig. 5. Aquaculture feature through ICA-based feature extraction method (Black color in white 
dotted line) 

 

Fig. 6. Aquaculture feature extracted by maximum likelihood distribution method (Black color 
in white dotted line) 
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Fig. 7. Accuracy comparison for feature extraction and noise, which is not eliminated from 
extracted feature after test 
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Noise, which is not eliminated after feature extraction, from ICA-based feature ex-
traction method is shown 10% lower than maximum likelihood method and, also, in 
the side of accuracy, ICA-based feature extraction method is shown 6% higher than 
maximum likelihood method. Test result of Fig. 5 and 6 are shown well in image and, 
it displays the superiority of ICA-based feature extraction method. 

5   Conclusion and Discussion 

ICA-based feature extraction algorithm, which is proposed in this paper, is purposed 
to detect target feature about pixel supposed as a linear mixed spectrum sphere, which 
is consisted of each different substance types (target feature and background feature) 
that has different reflection spectrum sphere of each pixels. 

On Landsat ETM+ Satellite Image, which is consisted of multi dimensional data 
structure, ICA-based feature extraction method is indicated to eliminate background 
features (tidal flat, seawater and etc), which is located around target feature (aquacul-
ture) effectively and, in order to confirm the superiority of proposed method, aquacul-
ture feature can be successfully extracted on Landsat ETM+ satellite image. 

In the side of noise level, which is not eliminated after feature extraction and accu-
racy, comparing test with maximum likelihood method, which is the most popular 
method traditionally, has been conducted. 

As a consequence, the proposed method in this paper shows you superior detection 
performance in extraction of target feature to extract as background feature is elimi-
nated effectively in mixed spectrum sphere around target feature. 
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Abstract. We present how the supervised machine learning techniques can be 
used to predict quality characteristics in an important chemical engineering ap-
plication: the wine distillate maturation process. A number of experiments have 
been conducted with six regression-based algorithms, where the M5’ algorithm 
was proved to be the most appropriate for predicting the organoleptic properties 
of the matured wine distillates. The rules that are exported by the algorithm are 
as accurate as human expert’s decisions.  

1   Introduction 

There are many chemical engineering processes, where the quality characteristics of 
the product cannot be measured objectively either on-line due to the lack of proper 
sensors or off-line due to the absence of any measuring devices [11]. In these cases, a 
human expert is employed to assign the product quality characteristics to certain pre-
defined categories (classes), based on his experience and perceptions. The procedure 
of employing a human expert to perform the classification usually requires the inter-
ruption of the process in order to collect a sample. Furthermore, this way of classify-
ing the product quality is very subjective and may lead to significant errors, especially 
when the same expert is not always employed to perform the classification [2], [7]. 

A different approach to classify quality parameters is to use supervised algorithms 
in order to automate the process. In this paper, we present how the supervised ma-
chine learning techniques can be used to predict quality characteristics in an important 
chemical engineering application: the wine distillate maturation process. 

The case under study is a part of the maturation process of METAXA Distilleries, 
a Greek aged wine distillates producing company. The firm has the problem of blend-
ing aged distillates to produce a series of final products of different quality specifica-
tions. Since most distillates characteristics cannot be accurately modelled as a func-
tion of their organoleptic properties, a system that anticipates automatically this rela-
tionship is of at most importance for the blending process engineer. 
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The following section describes in brief the problem and the dataset of our study. 
In section 3 we present the basic design issues of the supervised machine learning 
techniques that are used here. Section 4 compares the experimental results obtained 
by these techniques, while the concluding remarks are given in section 5. 

2   Problem and Data Description 

Freshly distilled spirits such as wine distillates, whiskies and rums have pungent, 
unpleasant odorous and sharp taste. The organoleptic properties are improved by 
storing the distillates in oak barrels for several years. During this process, which is 
known as maturation process, a number of wood components are extracted and many 
chemical reactions take place. However, due to the plethora of factors that affect the 
maturation process such as immature distillate, size, nature and usage of the barrel, 
environmental conditions etc., the maturation mechanisms are not completely under-
stood. Furthermore, there is no reliable chemical or physical index that can indicate 
the progress of the maturation process. 

The case under study is a part of the maturation process of S&E&A METAXA 
Distilleries S. A., a famous Greek aged wine distillates producing company. Until 
today, an expert tries some samples from the barrels and carries out the product qual-
ity classification, based on his perceptions. It is clear that a system, which can auto-
matically anticipate the organoleptic properties of the distillates, based on some other 
accurately measured distillate characteristics, is of main importance. We applied su-
pervised machine learning algorithms to develop models for the classification of the 
aroma and taste of the distillate. The intensity of aroma is of relative importance since 
it is basically a measure of quantity. Persistence of aroma is an indication of quality, 
particularly in the lingering bouquet of a mature wine. 

For the aroma and taste prediction, we are based on the following input parameters: 

• x1=barrel usage (the number of refills of each barrel) 
• x2=barrel age (in years) 
• x3=distillate age (in years) 

The available data consisted of 170 input–output pairs [11]. The output values in the 
data set are the classifications for the aroma (y1) and taste (y2), which were given by 
the expert using discrete values ranging from 0 to 10, with a step of 1, where 0 and 10 
correspond to the worst and finest quality, respectively. This dataset reflects long 
years of knowledge and experience about the process and consequently, until now it is 
usually used for the suggestion of suitable distillates to obtain a consistent blend from 
one production batch to the next. 

Given ordered classes, one is not only interested in maximizing the classification 
accuracy, but also in minimizing the distances between the actual and the predicted 
classes. The usage of regression algorithms to solve ordinal classification problems 
has been examined in [5]. In this case each class needs to be mapped to a numeric 
value. Another approach is to reduce the multi-class ordinal classification problem to 
a set of binary classification problems using the one-against-all approach [4]. Because 
the problem can be solved either with regression techniques or ordinal classification 
techniques we present both techniques in the next section. 
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3   Supervised Machine Learning Techniques 

The problem of regression consists in obtaining a functional model that relates the 
value of a target continuous variable y with the values of variables x1, x2, ..., xn (the 
predictors). This model is obtained using samples of the unknown regression function. 
These samples describe different mappings between the predictor and the target vari-
ables.  

For the propose of our comparison the six most common regression techniques 
namely Model Trees and Rules [12], Neural Networks [6], Linear regression [3], 
Locally weighted linear regression [1] and Support Vector Machines [10] are used. In 
the following we will briefly describe these regression techniques. 

Linear regression (LR) is the simplest statistical technique used to find the best-
fitting linear relationship between the class and its predictors (other features).  

0 1 1i k ik
y x xβ β β= + + +L  

Find values of beta that minimize Q:  

2

0 1 1 2 2

1

( ( ... ))
n

i i i k ik

i

Q y x x xβ β β β
=

= − + + + +  

Note that nominal features with n values are converted into n-1 binary features and a 
Wald test is used to test the statistical significance of each coefficient ( ) in the model [3].  

Model trees are the counterpart of decision trees for regression tasks. Model trees 
are trees that classify instances by sorting them based on attribute values. Instances 
are classified starting at the root node and sorting them based on their attribute values. 
The most well known model tree inducer is the M5  [12]. A model tree is generated in 
two stages. The first builds an ordinary decision tree, using as splitting criterion the 
maximization of the intra-subset variation of the target value [13]. The second prunes 
this tree back by replacing subtrees with linear regression functions wherever this 
seems appropriate. 

M5rules algorithm produces propositional regression rules in IF-THEN rule format 
using routines for generating a decision list from M5 Model trees [13]. The algorithm 
is able to deal with both continuous and nominal variables, and obtains a piecewise 
linear model of the data.  

Artificial Neural Networks (ANNs) are another method of inductive learning based 
on computational models of biological neurons and networks of neurons as found in the 
central nervous system of humans [6]. Regression with a neural network takes place in 
two distinct phases. First, the network is trained on a set of paired data to determine the 
input-output mapping. The weights of the connections between neurons are then fixed 
and the network is used to predict the numerical class values of a new set of data. Back 
Propagation (BP) is the most well known technique for training ANNs. 

Locally weighted linear regression (LWR) is a combination of instance-based 
learning and linear regression [1]. Instead of performing a linear regression on the 
full, unweighted dataset, it performs a weighted linear regression, weighting the train-
ing instances according to their distance to the test instance at hand. This means that a 
linear regression has to be performed for each new test instance, which makes the 
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method computationally quite expensive. However, it also makes it highly flexible, 
and enables it to approximate non-linear target functions.  

The sequential minimal optimization algorithm (SMO) has been shown to be an ef-
fective method for training support vector machines (SVMs) on classification tasks 
defined on sparse data sets [9]. SMO differs from most SVM algorithms in that it 
does not require a quadratic programming solver. In [10] SMO is generalized so that 
it can handle regression problems (SMOreg). This implementation globally replaces 
all missing values and transforms nominal attributes into binary ones. 

As we have previously mentioned the presented problem can be also solved by or-
dinal classification techniques. The most sophisticated approach that enables standard 
classification algorithms to make use of ordering information in ordinal class attrib-
utes is presented in [4]. This method converts the original ordinal class problem into a 
series of binary class problems that encode the ordering of the original classes. How-
ever, to predict the class value of an unseen instance this algorithm needs to estimate 
the probabilities of the k original ordinal classes using our k − 1 models. For example, 
for a three class ordinal problem, estimation of the probability for the first ordinal 
class value depends on a single classifier: Pr(Target < first value) as well as for the 
last ordinal class: Pr(Target > second value). Whereas, for class value in the middle of 
the range, the probability depends on a pair of classifiers and is given by  

Pr(Target > first value) * (1 − Pr(Target > second value)). 

4   Experiments Results 

All accuracy estimates were obtained by averaging the results from 10 separate runs 
of stratified 10-fold cross-validation. In cross-validation technique, the training set is 
divided into mutually exclusive and equal-sized subsets and for each subset the re-
gressor is trained on the union of all the other subsets.  An estimation of the regres-
sor’s criterion is then the average of the error rate of each subset.  

It must be mentioned that we mainly used the free available source code for our 
experiments by the book [13]. For our problem the regression criteria are most suit-
able. However, there isn’t only one regressor’s criterion. Table 1 represents the most 
well known. Fortunately, it turns out that in most practical situations the best regres-
sion method is still the best no matter which error measure is used. 

Table 1. Regressors’ criteria (p : predicted values, a : actual values, 
1

i

i

a a
n

−

= ) 

Mean absolute error ( )1 1 n np a p a n− + + −K  

Root mean squared error 2 2
1 1 1 1( ) ( )p a p a n− + + −K  

Relative absolute error ( ) ( )1 1 1n n np a p a a a a a− + + − − + + −K K  

Root relative squared error 
2 2 2 2

1 1 1 1 1 1( ) ( ) ( ) ( )p a p a a a a a− + + − − + + −K K
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In Table 2, the regressors’ criteria for each algorithm for aroma estimation are pre-
sented.  

Table 2. Aroma 

 M5  BP LR LWR SMO-
reg 

M5rules Ordinal 
technique 

Mean abso-
lute error 

0.45 0.83 0.78 0.72 0.76 0.46 0.50 

Root mean 
squared error 

0.56 1.01 0.93 0.86 0.97 0.56 0.67 

Relative 
absolute 
error 

22.48 40.93 38.52 35.71  37.21 22.69 24.70 

Root relative 
squared error 

22.16 40.27 36.86 34.11 37.95 22.34 26.71 

In Table 3, the regressors’ criteria for each algorithm for taste estimation are pre-
sented.  

Table 3. Taste 

 M5  BP LR LWR SMO-
reg 

M5rules Ordinal 
technique 

Mean abso-
lute error 

0.62 0.88 0.76 0.75 0.75 0.64 0.80 

Root mean 
squared error 

0.79 1.10 0.96 0.95 0.98 0.81 0.98 

Relative 
absolute 
error 

25.31 36.09 31.23 30.85 31.02 26.29 32.64 

Root relative 
squared error 

28.06 39.37 34.42 33.75 35.02 29.08 34.72 

 
distillateAge <= 3.33 : LM1 (51/23.386%) 
distillateAge >  3.33 :  
|   distillateAge <= 8 : LM2 (86/25.419%) 
|   distillateAge >  8 : LM3 (33/20.786%) 
 
LM num: 1 
FinalScore = -0.1313 * barrelUsage - 0.0594 * barrelAge + 1.6481 * distillateAge + 2.0491 
 
LM num: 2 
FinalScore =  -0.2139 * barrelUsage - 0.0479 * barrelAge +0.4957*distillateAge + 6.2112 
 
LM num: 3 
FinalScore = -0.1134 * barrelUsage - 0.0705 * barrelAge +0.5631 * distillateAge+6.1581 

Fig. 1.  M5’ model tree for aroma prediction 
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According to the results, the M5’ is the most accurate algorithm to be used for our 
problem. An advantage of M5’ except for its better performance is its comprehensibil-
ity. In figure 1, we present the produced rules for the prediction of wine aroma by the 
M5’ algorithm. 

In figure 2, we present the produced rules by the M5’ algorithm for the prediction 
of wine taste. 

 
 

distillateAge <= 6.67 :  
|   distillateAge <= 1.68 : LM1 (27/21.7%) 
|   distillateAge >  1.68 :  
|   |   barrelUsage <= 2.5 : LM2 (22/38.291%) 
|   |   barrelUsage >  2.5 : LM3 (64/28.848%) 
distillateAge >  6.67 : LM4 (57/21.572%) 
 
LM num: 1 
FinalScore = -0.1829 * barrelUsage - 0.1107 * barrelAge + 1.3845 * distillateAge + 2.7629 
 
LM num: 2 
FinalScore = -0.1837 * barrelUsage - 0.1958 * barrelAge + 0.9566 * distillateAge + 5.1988 
 
LM num: 3 
FinalScore = -0.2414 * barrelUsage - 0.1428 * barrelAge +0.6525*distillateAge + 4.8879 
 
LM num: 4 
FinalScore = -0.1417 * barrelUsage - 0.1032 * barrelAge +1.0884*distillateAge + 1.7945  

 
 

Fig. 2. M5’ model tree for taste prediction 

It must be mentioned that the exported rules by the algorithm are as accurate as 
human experts’ decisions. 

5   Conclusion 

Food processing is most often characterized by severe complexity, non-linearity and 
lack of objective information regarding the qualitative final product characteristics. 
The increasing and strong need for total quality management in food industries has 
rendered the construction of flexible and robust automotive decision making systems 
for product evaluation. 

It is long been recognized that the classification of aged wine distillates is a non-
linear, multi-criteria decision making problem characterized by great complexity, 
non-linearity and lack of objective information regarding the desired final product 
qualitative characteristics. The most efficient solution for the evaluation of aged wine 
distillates estimations with emphasis on aroma and taste, when an appropriate mathe-
matical model cannot be incorporated, is to develop adequate and reliable expert sys-
tems based on machine learning for the classification. 
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In this paper, we presented how the supervised machine learning techniques can be 
used to predict the quality characteristics of matured wine distillates. Six algorithms 
were applied and compared each other with respect to real-life data, taken from a 
wine distillates producing company. The results showed that the M5’ algorithm was 
the most appropriate, among the tested algorithms, for predicting the organoleptic 
properties of the distillates. The rules that are exported by the algorithm are as accu-
rate as human experts’ decisions.  

Using machine learning in wine industry has clear advantages: it does not color the 
score of an individual wine with a tester’s bias and it retains a level of objectivity that 
allows comparisons across all available wines. In a future work we will use super-
vised machine learning techniques to classify the variety of the wine as well as the 
production place (origin denomination). This classification can be carried out by 
processing information corresponding to physical features (color, density, conductiv-
ity, etc.) and chemical features (phenols, anthocians, amino acids, etc) [8]. 
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Abstract. We present an ensemble of classifiers that can be used to predict 
quality characteristics of an important process in pulp and paper industry: the 
tissue softness estimation. This classification problem is a difficult one since, 
with respect to our data set, the accuracy of all the well-known classifiers is be-
low 68%. Contrary to that, the bagging random trees ensemble model is able to 
increase the accuracy up to 75%.  

1   Introduction 

A process in pulp and paper industry is the tissue softness estimation. The production 
of tissue paper, softness is one the key attributes to improving the marketability of the 
final product. Consistent production of soft tissue is the key in ensuring production; 
sales and cost targets are met.  

A problem related to tissue softness estimation is that the quality characteristics of 
the final product cannot be objectively measured due to the lack of proper sensors and 
measuring devices [10]. Thus, in order to estimate the quality, an expert is usually 
employed to carry out the classification by assigning the tissue softness characteristics 
to certain predefined categories. However, in most of the cases the use of an expert to 
perform the above classification requires the interruption of the process in order to 
collect samples. Another issue is that the classification of the quality is subjective and 
may lead to errors, especially when the same expert is not always employed to per-
form the classification. 

In this paper we use supervised machine learning algorithms to automatically de-
termine the tissue softness characteristics. The implementation of various well-known 
classifiers to the available data set yielded accuracy below 68%. This fact directly 
implies that the process is a very difficult one. To increase the accuracy and to im-
prove the classification efficiency we use a technique called bagging random decision 
trees, which can provide more accurate results. After a number of experiments we 
showed that, in contrast to the most well known classifiers and ensemble methods, the 
used technique can significantly increase the classification accuracy of the process. 
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The following section describes in brief the problem and the dataset of our study. 
In section 3 we present the basic design issues of the supervised machine learning 
techniques. In section 4, we present the used ensemble method. Section 5 compares 
the experimental results obtained by other well-known techniques with the used en-
semble, while the concluding remarks are given in section 6. 

2   Problem and Data Description 

Consumer acceptance of tissue is strongly influenced by the level of softness. Soft-
ness is a complex human perception that is influenced by both physical properties and 
psychological factors. Both bulk softness and surface softness are factors in the over-
all perception of softness. 

Tissue is used mainly for body care, so quality issues in tissue making are more 
important than in any other type of paper production. There are several parameters, 
which affect the tissue softness, including the constitution and consistency of pulp, 
pulp refining and thickness of stock in the paper machine. However, the most impor-
tant parameters are the ones related to the drying process, which is designed so that 
the sheet detaches from the Yankee dryer prior to contact with the doctor blade and 
forms a loop (the microfold) [6]. These parameters are the doctor blade angle and 
wear, the crepe ratio (the ratio of the speed of the sheet on the Yankee dryer to the 
speed of the sheet on the reel) and the rates of the chemicals, which adjust coating and 
release. Due to this process, the produced tissue becomes softer, bulkier and more 
absorbent. Tissue softness is usually measured in a subjective manner by the touch of 
an expert who compares it with some scaled samples.  

For this reason, a model that infers tissue softness from other variables, which are 
accurately measured, could be of great use. A model using supervised machine learn-
ing techniques can be developed for a tissue-producing process, using the tissue soft-
ness as the output variable and the following parameters as input variables: 

• x1: cross directional tensile of tissue 
• x2: machine directional tensile of tissue 
• x3: machine directional stretch of tissue 
• x4: Yankee coating rate (ml/min) 
• x5: Yankee release rate (ml/min) 

The available data consisted of 375 input–output pairs. More information about 
data set can be found in [18]. 

3   Machine Learning Techniques and Estimation of Tissue 
Softness 

Supervised machine learning is the exploration for algorithms that reason from exter-
nally supplied instances to produce general hypotheses, which will make predictions 
about future instances. In other words, the goal of supervised learning is to build a 
concise model of the distribution of the class label in terms of the predictor features. 
The resulting classifier is then used to assign class labels to the testing instances 
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where the values of the predictor features are known but the value of the class label is 
unknown.  

Decision trees are trees that classify instances by sorting them based on attribute 
values. Each node in a decision tree represents an attribute in an instance to be classi-
fied, and each branch represents a value that the node can take. A recent overview of 
existing work in decision trees is provided in [14]. In rule induction systems, a deci-
sion rule is defined as a sequence of Boolean clauses linked by logical AND operators 
that together imply membership in a particular class [10]. The general goal is to con-
struct the smallest rule-set that is consistent with the training data.  

Artificial Neural Networks (ANNs) are another method of inductive learning and 
they all based on computational models of biological neurons [13]. A multi layer 
neural network consists of large number of units (neurons) joined together in a pattern 
of connections. First, the network is trained on a set of paired data to determine the 
input-output mapping. The weights of the connections between neurons are then fixed 
and the network is used to determine the classifications of a new set of data.  

Naive Bayes classifier is the simplest form of Bayesian network [7]. This algo-
rithm captures the assumption that every attribute is independent from the rest of the 
attributes, given the state of the class attribute. The assumption of independence is 
clearly almost always wrong. However, a large-scale comparison of Naive Bayes 
classifier with state-of-the-art algorithms on standard benchmark datasets found it 
sometimes to be superior to each of the other learning schemes [7]. 

Instance-based learning algorithms belong in the category of lazy-learning algo-
rithms [13], as they delay the induction process until classification is performed. One 
of the most straightforward instance-based learning algorithms is the nearest 
neighbour algorithm [1]. K-Nearest Neighbour (kNN) assumes that the instances 
within a data set will generally exist in close proximity with other instances of the 
similar class.  

The SVM technique revolves around the notion of a ‘margin’ that separates two 
data classes. Maximizing the margin, and thereby creating the largest possible dis-
tance between the separating hyperplanes can reduce the upper bound on the expected 
generalization error [5]. However, most real-world problems involve non-separable 
data for which no hyperplane exists that successfully separates the positive from 
negative instances in the training set. The solution is then to map the data into a 
higher-dimensional space and define a separating hyperplane there. 

For the purpose of this study, a representative algorithm for each described learn-
ing technique was used. The most commonly used C4.5 algorithm [17] was the repre-
sentative of the decision trees in our study. The most well known learning algorithm 
to estimate the values of the weights of a neural network - the Back Propagation (BP) 
algorithm [13] - was the representative of the ANNs. The Naive Bayes algorithm, 
which we used, is based on estimating marginal Gaussian estimators for numerical 
attributes. The 3-NN algorithm that combines robustness to noise and less time for 
classification than using a larger k for kNN was also used [1]. Finally, the Sequential 
Minimal Optimization (or SMO) algorithm was the representative of the SVMs as one 
of the fastest methods to train SVMs [16].  

All accuracy estimates were obtained by averaging the results from stratified 10-
fold cross-validation in our dataset. It must be mentioned that we used the free avail-
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able source code for our experiments by the book [12]. As one can see, this classifica-
tion problem is very difficult since the accuracy of all the well known classifiers in 
this domain is below 68% according to our dataset. 

Table 1. Accuracy of simple models in our dataset 

 NB C4.5 3NN BP RIPPER SMO 

Accuracy 54.93% 67.20% 60.53% 58.93% 64.27% 60% 

For this reason, there is a need for a more accurate technique. Combining classifi-
ers is proposed as a new direction for the improvement of the classification accuracy 
[2]. When multiple classifiers are combined using voting methodology, we expect to 
obtain good results based on the belief that the majority of experts are more likely to 
be correct in their decision when they agree in their opinion. Voters can express the 
degree of their preference using a confidence score i.e. the probabilities of classifiers 
prediction. 

4   Used Technique 

Random Forests, recently introduced by Breiman [4], have been shown to be a power-
ful classification technique. In bagging, single models are induced over bootstrap 
samples of the training data, and the classification is made by voting. Random Forests 
is a particular implementation of bagging in which each model is a Random Tree. In a 
Random Tree for each split, rather than considering all possible splits, a tournament 
is held with a small group of randomly selected splits, and the best split of this 
smaller group is chosen. Therefore randomness enters the Random Forest algorithm 
in two places: the bootstrap sample for each tree, and choice of splits for participa-
tion in tournament selection. Random Forests exhibit many desirable characteris-
tics: parallelism, high accuracy, fast to train, built-in error predictor, and a tendency 
not to overfit [4].  

In the case of Random Forests, tree decorrelation is attained through randomness in 
choosing the bootstrap sample to train each tree, and tournament selection in growing 
each tree. As tournament size F approaches the total number of possible splits in the 
training set, the procedure becomes equivalent to bagging decision trees (where each 
tree is grown deterministically). Any other value of F corresponds to Random Forests.  

In our implementation, instead of select possible splits at random, evaluate them 
and choose best, we evaluate all splits, and choose at random one of the best. This 
modification would be expected to slightly increase the correlation between individ-
ual trees. We also do not use pruning, as the bagging-like procedure can only reduce 
the variance, but not improve on high bias [2]. Therefore one probably want a low 
bias learner, and no pruning means lower bias.  

Finally, the used technique is presented in Fig. 1.  
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MODEL GENERATION 
For i = 1 to n:  
• Draw a bootstrap sample from the data.  
• Grow a "random" tree, where at each node, the split is a random variable of the 3 

best variables. The tree is grown to maximum size and not pruned back.  
• Store the resulting models. 

CLASSIFICATION 
For each of the n models: 
   Predict class of instance for each of the n models. 
Return class that has been predicted most often. 

Fig. 1. The used ensemble 

The used ensemble has a free parameter: the numbers of models (n). In our ex-
periments, we used 90 models since most of the researchers used 100 models for their 
ensembles [2], [16], [20] and we wanted this technique to use less time for training. It 
must be also mentioned that the used ensemble can be easily parallelized.  

The computations required to obtain the classifiers in each bootstrap sample are in-
dependent of each other. Therefore we can assign tasks to each processor in a bal-
anced manner. By the end each processor has obtained a part of the ensemble. In the 
case we use the master-slave parallel programming technique, the method starts with 
the master splitting the work to be done in small tasks and assigning them to each 
slave. Then the master performs an iteration in which if a slave returns a result (this 
means it finished its work) then the master assigns it another task if there are still 
tasks to be executed. Once all the tasks have been carried out the master process ob-
tains the results and orders the slaves to finish since there are not more tasks to be 
carried out. This parallel execution of the presented ensemble can achieve almost 
linear speedup. 

In the following section, we briefly describe the most well known ensembles tech-
niques and we compare the used technique with the other well known ensembles. 

5   Experiments Results in Relation to Other Ensembles 
Techniques 

Boosting [8] is similar in overall structure to bagging, except that keeps track of the 
performance of the data mining algorithm and concentrates on instances that have not 
been correctly learned. Instead of choosing the t training instances randomly using a 
uniform distribution, it chooses the training instances in such a manner as to favor the 
instances that have not been accurately learned. AdaBoost is a practical version of the 
boosting approach [8]. It was subsequently observed that Adaboost is in effect ap-
proximating a stagewise additive logistic regression model by optimising an exponen-
tial criterion [9]. This leads us to new variants of Adaboost that fit additive models 
directly. One such variant is Logitboost, which uses the Newton-like steps to optimise 
the loss criterion [16]. 
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MultiBoosting [20] is another method that can be considered as wagging commit-
tees formed by AdaBoost. Wagging is a variant of bagging; bagging uses resampling 
to get the datasets for training and producing a weak hypothesis, whereas wagging 
uses reweighting for each training example, pursuing the effect of bagging in a differ-
ent way. Another meta-learner (DECORATE, Diverse Ensemble Creation by Opposi-
tional Relabeling of Artificial Training Examples) is presented in [12] that uses a 
learner to build a diverse committee. This is accomplished by adding different ran-
domly constructed examples to the training set when building new committee mem-
bers. Finally, LMT method builds logistic model trees, which are classification trees 
with logistic regression functions at the leaves [11]. 

Firstly, we compared the used technique with the previous referred well known en-
sembles. All accuracy estimates were obtained by averaging the results from stratified 
10-fold cross-validation in our data set. The t-test was also used to statistically com-
pare the algorithms. Throughout, we speak of two results for the dataset as being 
"significant different" if the difference is statistical significant at the 1% level accord-
ing to the corrected resampled t-test [15], with each pair of data points consisting of 
the estimates obtained in one of the 100 folds for our method and the other ensemble 
being compared.  

The presented ensemble is significantly more accurate than Bagging C4.5 with 100 
models, Boosting C4.5 with 100 models, Boosting NB with 100 models, Random 
Rorest with 100 trees and Decorate C4.5 with 100 iterations, according to the cor-
rected resampled t-test [15] (see Table 2). We used 100 models for the ensembles 
methods such as [2]. 

Table 2. Comparing the used technique 

 Bagging 
random 
trees 

Bagging 
C4.5 (100 
models) 

Boosting 
C4.5 
(100 mod-
els) 

Boosting 
NB 
(100 mod-
els) 

Random 
Rorest 
(100 trees)

Decorate 
C4.5 

Accuracy 74.40% 69.60% 69.60% 62.67% 69.07% 69.07% 

Moreover, the presented ensemble is significantly more accurate than Multiboost 
C4.5 with 100 models, Logitboost DS with 100 models, Bagging BP with 100 mod-
els, Boosting BP with 100 models and LMT classifier, according to the corrected 
resampled t-test [15] (see Table 3). 

Table 3. Comparing the used technique 

 Bagging 
random 
trees 

Multiboost 
C4.5 (100 
models) 

Logitboost 
DS (100 
models) 

Bagging 
BP (100 
models) 

Boosting 
BP (100 
models) 

LMT 

Accuracy 74.40% 69.60% 60.27% 61.07% 58.67% 68.27% 
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To sum up, the performance of the presented ensemble is more accurate than the 
other well-known classifiers and ensembles. The used ensemble can achieve an in-
crease in classification accuracy from 11% to 35% compared to single learners. 
Moreover, the average relative accuracy improvement of the used methodology is 
from 7% to 26% in relation to the well known ensembles techniques. This indicates 
that it is possible to obtain a feasible solution to the problem with the used technique. 

6   Conclusion 

Tissue is a true consumer product and as such there are continuous demands to im-
prove quality and performance. One of the most commonly sought after improve-
ments is the softness of the tissue. Tissue softness is perceived by the consumer as the 
primary quality property. 

In our case study, the classification of tissue softness was a very difficult problem 
since the accuracy of all the well known classifiers in this domain was below 68% 
according to our dataset. Contrary to that, the bagging random trees ensemble model 
was able to increase the accuracy up to 75%. In a following work, we will try to fur-
ther increase the classification accuracy.  
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Abstract. This article addresses the task of mining concepts from biomedical 
literature to index and search through this documents base. This research takes 
place within the Telemakus project, which has for goal to support and facilitate 
the knowledge discovery process by providing retrieval, visual, and interaction 
tools to mine and map research findings from research literature in the field of 
aging. A concept mining component automating research findings extraction 
such as the one presented here, would permit Telemakus to be efficiently ap-
plied to other domains. The main principle that has been followed in this project 
has been to mine from the legends of the documents the research findings as re-
lationships between concepts from the medical literature. The concept mining 
proceeds through stages of syntactic analysis, semantic analysis, relationships 
building, and ranking.  

1   Introduction 

As the number of scientific publications is increasing tremendously, it is becoming 
hard for researchers to find relevant information in a domain and keep up with the 
information flow. Researchers are foremost interested in collecting and analyzing the 
research findings presented in research literature. There is a need for an information 
system that can be used by researchers to extract domain knowledge in the form of 
research findings without trying to read the whole article. The idea pursued in this 
article is to extract knowledge from articles using mostly tables and figures legends, 
since this is where the main research findings are the most likely to be represented. 

With the rapidly growing body of scientific knowledge and increasing overspecial-
ization in specific domains, it is likely that the scientific work of one research group 
might also solve an important problem that arises in the work of another group. Yet 
the two groups might not be aware of the work of each other. However, important 
knowledge is recorded at least in textual form in bibliographic databases, such as 
Medline for the field of biomedicine. In the present context these large documents 
databases provide both an opportunity and a need for developing advanced methods 
and tools for computer supported knowledge discovery [2, 3]. 

The goal of literature-based discovery in general is to discover new and potentially 
meaningful relations between a given starting concept of interest and other concepts 
by mining bibliographic databases [5, 6, 7] such as Medline [13]. The idea of discov-
ering new relations from a bibliographic database was introduced by [13, 14], who 
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describes a data mining system that made seven medical discoveries that have been 
later published in relevant medical journals. 

Telemakus is one such information system dedicated to the idea of literature-based 
information mining [1] for a core set of concepts in a medical domain. The motivating 
idea of Telemakus project is to aid researchers in the caloric restriction and aging 
domain to rapidly find the research findings and main concepts from research articles 
[8] in this domain. The research findings are represented by relationships between 
pairs of such concepts. The system can then be used to find, in particular, all the arti-
cles that study a particular relationship. For instance, a researcher can use this system 
to find all the articles which studied the relationship between caloric restriction and 
aging. The most helpful knowledge any researcher can gain while entering a new 
domain is the set of research findings so far, which is what can be more easily ac-
quired using Telemakus system [4]. Telemakus project is intended to assist research-
ers by providing visual and interaction tools to visualize and navigate the research 
findings in their domain of research [4]. 

The system presented here proposes to automate the process of extracting the re-
search findings from the literature by mining the concepts and relationships from 
documents and indexing these by the concepts learnt. An important feature of this 
system is that it mines for relationships between concepts, such as the relationhip 
between caloric restriction and aging, and not for isolated concepts. The next section 
presents the Telemakus project. The third section sets forth the system architecture, 
and the fourth section explains the concept mining process in detail through its differ-
ent stages. It is followed by the results and a conclusion. 

2   Telemakus Project 

The goal of the Telemakus project at the University of Washington Medical School is 
to support and facilitate the knowledge discovery process by developing interaction 
tools to retrieve and visualize documents by their research findings. For that purpose, 
this system mines and maps research findings from research literature. Telemakus 
system proposes tools and a framework to create, maintain, and query a database of 
documents through their research findings. Telemakus is part of SAGE KE, the Sci-
ence of Aging Knowledge Environment and an online resource for researchers in the 
field of aging [15]. 

The Telemakus system [4] consists of a set of domain documents (current focus is 
the biology of aging), a conceptual schema to represent the main components of each 
document, and a set of tools to query, visualize, maintain, and map the set of docu-
ments through their concepts and research findings [4]. The conceptual schema is 
composed of standard bibliographic information, information about the research proc-
ess (age, sex, number of subjects, treatment regimen, and research criteria for research 
animals), and most importantly research findings derived from data tables and figures. 
The “Unified Medical Language System” (UMLS), a specialized knowledge source in 
biomedicine, provides standardized concepts for the creation of a controlled domain 
vocabulary. The UMLS provides a very powerful resource for rapidly creating a ro-
bust scientific thesaurus in support of precision searching. Further, the semantic type 
descriptors for each concept and semantic network may offer some interesting oppor-
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tunities for intelligent searching and mapping of concepts representing research find-
ings, and their relationships. At present, knowledge extraction resorts to systems with 
both manual and automated components. A key area of current work is to move to-
wards automating the research concept identification process, through data mining [4]. 

Fig. 1 shows the architecture of Telemakus system. Fetcher, Extractor, and Cross-
check are the most important components in the system. Fetcher fetches documents 
from the bibliographic database and stores them in the domain-specific database (re-
ferred to as DSDB). The extraction process is performed by a domain expert who 
manually interprets each legend to extract relevant concepts and uses his or her 
knowledge of the domain to establish relationships.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Fig. 1. Telemakus architecture  

Crosscheck is a visualization tool used by researchers through the Web interface 
and by the domain expert for evaluation. The current Telemakus database has a Web 
interface, which can be accessed at www.Telemakus.net. 

3   Architecture 

The architecture of the systems (see Fig. 2) shows the datastores and components of 
the concept mining system. There are two knowledge bases involved, UMLS data-
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base, and DSDB database. Within DSDB, the domain specific thesaurus represents 
the standardized vocabulary of the “caloric restriction and aging” domain. The com-
ponents of the system are the following: 

1. Data Access Component, which extracts the document to mine from DSDB. 
2. Syntactic Analyzer, which analyzes the syntax of a document by parsing its legends 

and extracting lexical information. 
3. Relationship Builder, which takes the lexical information from above, locates a 

trigger phrase for a relationship from each legend, and forms from there a triple 
composed of two phrases and a trigger phrase. Each triple represents a relationship 
between two concepts. 

4. Relationship Selector, which semantically analyzes each phrase in each triple by 
accessing the UMLS, and extracts from each phrase its main concepts. 

5. Ranker, which ranks the relationships extracted. 
6. Evaluator, which evaluates the result of the concept mining process for each 

document. It accesses DSDB through Data Access Component in order to get the 
results of the manual mining process, and compare them with the automated ones. 
It produces precision and recall ratios as the reference in evaluating the system. 

 
 

Fig. 2. Concept Miner architecture  

4   Concept Mining Process 

Concept mining involves processing articles already stored in domain specific data-
base (DSDB). These articles currently do not comprise the full text of the original 
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articles, only the sections of documents that are of most interest. These are tables and 
figure descriptions, referred to as legends, which are considered the most probable 
placeholders for research findings. The full text of the article is not provided as input 
to the system. It has been established by Telemakus project team that the most inter-
esting information about research literature is usually found in legends [15]. 

 

Fig. 3. Concept Miner system process flow 

Given an article or a set of articles, the system starts by extracting all legends already 
stored in the database, processes each legend by identifying interesting relationships, 
filters relationships, ranks those relationships based on a number of parameters, and 
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finally writes the resulting relationships to an XML file for later use. For comparison 
purposes, precision and recall are also computed by the system on a per-article basis. 

The concept mining process can be divided into three main phases, syntactic 
analysis, semantic analysis and concept mapping and association. 

4.1   Syntactic Analysis 

In a given document, there may be one or more legends. Each legend may contain one 
or more sentences. For any given legend, the text is first broken into constituent sen-
tences. The process of concept extraction and association is applied at the sentence 
level. Each sentence is parsed and grammatical structures are extracted. From the 
concept association perspective, each sentence is made up of a connector phrase, 
called a trigger phrase, and the two phrases connected by that trigger phrase. An 
example of trigger phrase shown on Fig. 3 is “effects of”. These trigger phrases are 
usually prepositions, but human experts have also provided special phrases that act as 
triggers, such as “effect of”. A trigger phrase may contain a connector phrase that 
separates the remaining part of the sentence into two phrases. After a trigger is found 
in a sentence, the remaining sentence is split into two phrases optionally connected by 
a connector phrase. This phase of the system is called syntactic analysis in a broad 
sense. The connector word and two phrases together are called a triple. 

Syntactic parsing determines the structure of the sentence being analyzed. Syntactic 
analysis involves parsing the sentence to extract information contained within word 
ordering. Syntactic parsing is computationally less expensive than semantic processing. 
Syntactic analyzers can be classified into two types depending on their approach to 
analysis. Top-down analyzer starts from the root symbol of the grammar and succes-
sively predicts (usually in a left-to-right manner) what its constituent parts should be. 
On the other hand, bottom-up analyzer starts from the string to be analyzed and at-
tempts to construct a syntactic tree by recognizing the right-hand sides of the grammar 
rules and thus reducing those portions of the string to their non-terminals. This process 
is repeated until the only remaining non-terminal is the root symbol of the grammar.  

For the purpose of this project, the bottom-up analyzer is the best fit based on the 
input pattern, which means that the input string should be taken as input and parsed. 
Currently, the system uses a basic parser API called Specialist Text Tools API that is 
an open source java implementation [11]. This parser is a minimal commitment barrier 
category parser. The minimal commitment analysis assigns underspecified syntactic 
analysis to lexically analyzed input. The parser package contains a shallow parser that 
extracts minimal phrases from sentences.  Using the Specialist lexicon, the part of 
speech and other syntactic information are analyzed. This analysis is specific to bio-
medical field. The Specialist Text Tools tokenizer package tokenizes text into words, 
sentences, and sections. It can handle free text and Medline citation formats.  Sen-
tences are found by looking for sentence bounding punctuation for the most part, and 
looking at the capitalization of the next word that follows.  This method is not always 
successful, particularly when abbreviations such as Dr. and Mr. are met. A list of acro-
nyms is consulted when periods are hit. Two new lines in a row are also considered a 
sentence break.  By the end of processing, an analyzed sentence contains all the tokens 
that make up the sentence, along with their character offsets back to the original docu-
ment. The results of this phase are a set of triples (see Fig. 3 for an example). 
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4.2   Semantic Analysis 

After triples are built, each triple is further analyzed by semantic analysis. This in-
volves looking for concepts in each phrase, and is accomplished by applying a do-
main specific natural language processing tool. From each phrase, a candidate list of 
concept phrases from the UMLS is extracted. The semantic analysis is made possible 
by the National Library of Medicine (NLM)’s UMLS [12]. UMLS ultimate goal is to 
facilitate the development of computer systems that behave as if they "understand" the 
meaning of the language of biomedicine and health. 

Although the Specialist Text Tools also resort to UMLS, it is a foremost knowledge 
source for semantic analysis. The words or phrases are considered as concepts in the 
medical domain if said words or phrases can be found in the metathesaurus of the 
UMLS. Metathesaurus is one of the three UMLS knowledge sources. It is the central 
vocabulary component of the UMLS [12].  

In this project, initially, UMLS metathesaurus entries have been extracted manu-
ally in order to create a consistent controlled base vocabulary specific to the domain 
of caloric restriction and nutritional aspects of aging, and placed within DBSB data-
base. These UMLS selected thesauri characterize mainly research concepts and proc-
ess description, such as organism type. As new concepts are identified from the docu-
ments’ tables and figures, they are translated into their UMLS preferred terms, which 
are added to the controlled vocabulary database. 

Semantic analysis is performed on the results of syntactic analysis of the legends to 
determine the meaning of the words in the sentence. In this step, the semantics of each 
word or phrase is evaluated. Though there are a few choices for performing semantic 
analysis on free text, this project uses MMTx tool [10] as it is specifically developed 
for the biomedical field. The main purpose of MMTx semantic analysis is to find out 
the phrases and their variants and then match these to the phrases or words in the 
UMLS database. The words or phrases successfully mapped to the UMLS database 
can be considered as concepts in the biomedical or health field. The concept mapping 
process can be summarized as follows (see Fig. 3 for an example): 

− Parse the text into noun phrases and perform the remaining steps for each 
phrase;  

− Generate the variants for the noun phrase where a variant essentially consists 
of one or more noun phrase words together with all of its spelling variants, ab-
breviations, acronyms, synonyms, inflectional and derivational variants, and 
meaningful combinations of these;  

− Form the candidate set of all Meta strings containing one of the variants;  
− For each candidate, compute the mapping from the noun phrase and calculate 

the strength of the mapping using an evaluation function. Order the candidates 
by mapping strength; 

− Combine candidates involved with disjoint parts of the noun phrase, recompute 
the match strength based on the combined candidates; 

− Select those having the highest score to form a set of best Meta mappings for 
the original noun phrase.  
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4.3   Concept Mapping and Association 

Semantic analysis produces a candidate list of concepts for each phrase. This list is 
refined in multiple steps. First, duplicates or substrings that may be referring to the 
same concept are removed at the sentence level. For example, two candidate concepts 
“muscle mass increase” and “muscles” are considered as same candidate concepts. 
The latter is removed from the list since the algorithm favors the most precise con-
cepts. Next, a known synonym transformation is performed. This step is necessary to 
replace generic candidate concept names with those preferred by the domain. For 
example, “free access to food” is replaced with “ad libitum”.  

To improve precision, this list is further filtered by pattern matching the concept 
variations. A preliminary list of relationships is created from these two candidate 
concept lists of left and right phrases.  This is the relationship selector phase. General 
approach to association is based on trigger phrase in a sentence. Each sentence is 
conceptually equivalent to a list of left-side candidates and a list of right-side candi-
dates connected by a trigger phrase. From these lists, a set of relationships is con-
structed. Each relationship is a candidate association, containing exactly one left-side 
concept and one right-side concept (see Fig. 3 for an example). 

At the article level, all unique relationships from constituent sentences are aggre-
gated. This list is again refined to remove partial matches. This step is necessary to 
remove partial matches that may be unique at the sentence level but partially equiva-
lent at the article level. 

This list of relationships is ranked based on the importance of concepts, in particu-
lar based on the presence of the concepts in the domain-specific database. They are 
further ranked based on the weight of the relationships involved. The weight of a 
relationship is the sum of the weights of concepts in that relationship. The weight of a 
concept is calculated as the number of times this concept occurs in a relationship. 

After obtaining a short list of relationships, the effectiveness of the system is evalu-
ated by precision and recall. Finally, the results are written to an XML file, and made 
available to other parts of the Telemakus system, like Crosscheck. 

5   Results 

This system is designed to analyze multiple documents at the same time. The success 
of the system is determined by the recall and precision ratios. Current results show an 
average recall of 81% and precision of 50% for partial match. Precision is the ratio of 
matching relations to the total number of relations identified. Recall is the ratio of 
matching relations to the total number of relations identified by the manual process. 
The precision and recall are calculated in two ways: partial matching and total match-
ing. In partial matching strategy, if the system extracted relationship (muscle mass – 
caloric restriction) and the manual results has relationship (muscle mass increase – 
caloric restriction), then this relationship is considered a match. In total matching, the 
relationship should be present in the manual results exactly matching both concepts.  

The system is evaluated for 30 random articles. The average values of recall and 
precision for these 30 documents are shown in Table 1. It shows that the average 
values of precision and recall are much higher when partial matches of the concepts 
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Table 1. Precision and recall ratios 
 

 

are also considered as a match. The reason for considering partial matching is that, 
there can be some implied knowledge that is used by the domain expert during the 
manual process, but that kind of knowledge is either not available to this system or 
hard to automate. These results are encouraging because relationships mining is a 
much more complex task, in particular when it involves semantic analysis such as in 
this system, than classical information retrieval. Some of the relationships retrieved 
do not even share a word with sentences in the documents. These figures compare 
system performance with human performance, while even humans between them-
selves would not retrieve the same relationships. An interesting result is that the rela-
tionships extracted make good sense, even though the human indexer may not have 
selected these as the most important in a document. 

6   Conclusion 

Mining concepts to index literature is a complex task that requires many levels of 
refinements at both the syntactic and semantic level. Although the results so far are 
encouraging, several ways are still open for refinements. In the future, the algorithm 
to extract relationships can be improved in particular by eliminating the legends that 
represent facts, instead of research findings. Another improvement will be to store the 
legends in the database in full, so that the input to the automated system and the man-
ual system are the same. This system approach is very original in comparison with 
other systems mining biomedical literature for concepts, because it mines for relation-
ships between concepts, and not for isolated concepts. Telemakus indexes and navi-
gates through the documents database by relationships between concepts. 
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